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Abstract

Classification for very large datasets has many practical applications in data mining. Tech-
niques such as discretization and dataset sampling can be used to scale up decision tree classifiers
to large datasets. Unfortunately, both of these techniques can cause a significant loss in accu-
racy. We present a novel decision tree classifier called CLOUDS, which samples the splitting
points for numeric attributes followed by an estimation step to narrow the search space of the
best split. CLOUDS reduces computation and I/O complexity substantially compared to state
of the art classifiers, while maintaining the quality of the generated trees in terms of accuracy

and tree size. We provide experimental results with a number of real and synthetic datasets.

Keywords: Classification, Decision Trees, Data Mining, Large Datasets, Sampling, Estimation,

Gini index

1 Introduction

Classification is the process of generating a description or a model for each class of a given dataset.
The dataset consists of a number of records, each consisting of several fields called attributes. Each
record belongs to one of the given (categorical) classes. The set of records available for developing

classification methods is generally decomposed into two disjoint subsets, a training set and a test
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set. The former is used for deriving the classifier, while the latter is used to measure the accuracy
of the classifier. The accuracy of the classifier is determined by the percentage of the test-dataset
examples that are correctly classified [19]. Another measure of a classifier is the size of the model

generated; compact models are preferred as they generalize better and they are easier to understand.

Classification has been a well-studied problem in the area of statistics and machine learning and
has found applications in several disciplines. Some prominent methods are decision trees [2, 14],
statistical methods [8, 12, 19], rule induction [7], genetic algorithms [6], and neural networks [12, 19].
Many of these techniques are iterative in nature and require several passes over the entire dataset;
efficient computation using these methods requires that all the records be stored in the main
memory. This limitation and other inherent properties of these techniques generally limit them to

classifying small datasets.

The datasets for data-mining applications are large and may involve several million records.
Further, each record typically consists of ten to hundreds attributes. Using large datasets usually
improves the accuracy of the classifier [3, 5], but the enormity and complexity of the data involved in
these applications makes the classification task computationally intensive. Since datasets are large,
they cannot reside completely in the main memory, which makes I/O a significant bottleneck.
Performing classification for such large datasets requires the development of new techniques that
limit accesses to the secondary memory in order to minimize the overall execution time. Techniques
such as discretization and dataset sampling can be used to scale up decision tree classifiers to large

datasets. Unfortunately, both of these techniques can cause a significant loss in accuracy [3].

The decision-tree classifiers SLIQ and SPRINT have been shown to achieve good accuracy,
compactness and efficiency for very large datasets [15, 17|, although the latter has substantially
superior computational characteristics. Deriving a typical decision tree classifier from the training

set consists of two phases:

e Construction phase: The initial decision tree is constructed in this phase based on the entire
training set. It requires recursively partitioning the training set into two or more subpartitions
using a splitting criteria until a stopping criteria is met. A hierarchical tree structure is

generated with the root representing the entire dataset.

e Pruning phase: The tree constructed in the previous phase may not result in the best gen-

eralization due to overfitting. The pruning phase removes some of the lower branches and



nodes to improve the generalization capabilities (accuracy) of the classifier. Some techniques

might replace a node by one of its child nodes [14].

CART and SPRINT use the gini index to derive the splitting criterion at every internal node of
the tree. The use of the gini index to derive the splitting criterion is computationally challenging.
Efficient methods such as SPRINT require sorting along each of the attributes, which requires the
use of memory-resident hash tables to split the sorted attribute lists at every level. For datasets
that are significantly larger than the available memory, this will require multiple passes over the
entire dataset. In this paper we present a simple scheme that eliminates the need to sort along
each of the attribute lists, by exploiting the following properties of the gini index for a number of

real datasets:

1. The value of the gini index along a given attribute generally increases or decreases slowly.
The number of good local minima is small compared to the size of the entire dataset. This is

especially true for attributes along which the best splitting point is obtained.

2. The minimum value of the gini index for the splitting point along the splitting attribute is
(relatively) significantly lower than most of the other points along the splitting attribute as

well as other attributes.

Figure 1 gives the value of the gini index along each of the nine numeric attributes of the

Shuttle dataset.

We show that the above properties can be used to develop an I/O and computationally efficient
method for estimating the split at every internal node. Experimental results on real and synthetic
datasets using our method show that in most cases the splitting point derived has the same gins

index as the one obtained by sorting along each of the attributes.

Using this new method for splitting at every internal node, we have developed a new decision-
tree classifier called CLOUDS (Classification for Large or OUt-of-core DataSets). It samples the
splitting points for numeric attributes, followed by an estimation step to narrow the search space of
the best split. CLOUDS is shown to have substantially lower computation and I/O requirements as
compared to SPRINT for a number of real and synthetic datasets. The accuracy and compactness

of the decision trees generated is the same or comparable as those of CART, C4, and SPRINT.

The rest of the paper is organized as follows. In Section 2 we briefly describe decision-tree
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Figure 1: The value of gini index along the nine attributes of the Shuttle dataset



classifiers, the gin: index, and related work. Our algorithm for estimating the splitting point with
minimum gini index is presented in Section 3. The CLOUDS algorithms are described in Section 4,

and we present our conclusion in Section 5.

2 Decision Tree Classifiers

The derivation of a decision tree classifier consists of two phases: construction phase and pruning
phase. The former requires substantially more computational time and is the main focus of this
work. The construction phase requires that the training set be recursively partitioned into two or
more subpartitions until a stopping criteria is met, e.g., each subpartition dominantly (or entirely)
consists of examples of one class. This involves applying a splitting criterion to every internal
node of the tree. These splitting criteria are determined by applying some splitting function, e.g.,
the gins function. A decision tree is a hierarchical tree structure that is generated with the root
representing the entire dataset. Figure 2 shows an example of such a decision tree. Similar trees
are constructed using traditional decision tree classifiers such as CART [2] and C4.5 [14]. Figure 3
shows a high-level description of the traditional building phase of a binary (i.e., two partitions),

univariate (i.e., one attribute is used for deriving the splitting criteria) decision tree.

The gini index function can be used to evaluate the goodness of all the potential split points
along all the attributes [2]. Consider a dataset S consisting of n records, each belonging to one of

the c classes. The gini index for set S is defined as:
C
gini(S) = 1- 3" p? 1
j=1
where p; is the relative frequency of class j in S.

If S is partitioned into two subsets S; and Sy, the index of the partitioned data gini? (S, sc)
can be obtained by:
. .D niy .. ng . .
gini~ (S, sc) = —gini(S1) + —gini(Sa) (2)
n n

where n; and ny are the number of examples of S} and S, respectively, and sc is the splitting
criterion. One of the major advantages of the gini index is that its calculation requires only the
class value distribution at each internal node of the tree. The gini index has been shown to be
effective in determining splits that lead to good decision trees [2, 15, 17]. Many other splitting

functions have been proposed in the literature, e.g. the towing criterion [2] and the gain ratio [14].



The Training Set

ID| Age |zip Codé Class
1 30 12033 | C1
2 25 12033 | C1
3 21 23409 | C2
4 43 12033 | C1
5 18 23409 | C2
6 33 23409 | C1
7 29 23409 | C1
8 55 12033 | C2
9 48 12033 | C1
Numeiric Citegorical

A Decision Tree

(Zip Code = 12033)
[1,2,3,4,56,7,89]

(Age<=21)
[ 1516’7]
No

[1,2,4,9] [6,7]

C1

A splitting criteria Records of the right sub-tree

Description of class C1: ((Zip Code != 12033) AND (Age > 21)) OR
((Zip Code = 12033) AND (Age <= 48))

Figure 2: An example of a decision tree

function Decision-Tree-Classifier(Training set T')

if T meet the stopping criteria then

return

for each attribute A; do
Find the value(s) V; of A; which results in the best split

Use the attribute A which gives best split among all the attribute to partition T into 77 and

1

Decision-Tree-Classifier(71)
Decision-Tree-Classifier(7s)

Figure 3: A high-level description of the traditional building phase of decision trees



2.1 Related Work

Many techniques have been proposed to scale up the decision tree classifiers for large datasets. There
are mainly two approaches: ezxact and approzimate. Discretization and sampling are approximate

techniques, whereas SPRINT is an exact technique.

Sampling the dataset randomly is a simple technique, and it will be studied in the next section.
Windowing technique has been used by C4.5 [14], which works as follows. A small sample is drawn
from the dataset, that is used to build an initial tree. This sample is augmented with the examples
that were misclassified to build a new tree. This process is repeated for a number of iterations.
Stratification is a selective sampling method in which the classes have approximately the same
distribution [3]. The above three types of sampling are performed prior to the construction phase.
A simple random-sampling technique has been proposed in [2] and evaluated in [3]. This method
uses a sample for building the top levels of the tree and then switches to an exact algorithm for the

remaining levels.

Discretization is the process of transforming the numeric attribute into an order discrete at-
tribute (with a small number of values), by which the sorting operation is avoided in the construc-
tion phase. The static discretization techniques perform the discretization prior to building the
tree. Three such techniques have been studied in [3], two of which are class-blind methods that
perform the discretization using only the values of the continuous attribute. The first is based
on an equal-width histogram that divides the range into an approximately equal widths, and the
other is based on an equal-depth histogram (quantiling) that divides the range into sub-ranges of
an approximately equal number of elements. A discretization algorithm, D-2, which discretizes the
numeric attributes using the class distributions and the values, has been proposed in [3]. It entails
sorting all the continuous attributes. ChiMerge and Chi2 algorithms use X? statistics to perform
the discretization [9] and [10], respectively. Both of these algorithms use a merging technique in a

bottom-up fashion.

Peepholing method has been proposed to scale up the decision tree for large datasets [3]. It
iterates several times to reduce the number of attributes that are considered for deriving the split
point. Further, it narrows the range of the numeric attributes to which the optimal split point is
presumed to lie. Peepholing uses a sample of the dataset at each iteration to perform the above

process. The sample is enlarged as the algorithm iterates. This algorithm requires several passes



to derive the split point. It has been incorporated into C4.5 for, and evaluated for large in-memory

datasets.

The SPEC algorithm is an approximation technique designed to deal with disk-resident data.

It uses a clustering technique to derive the split point of the numeric attributes [18].

The SPRINT algorithm is an exact technique that has been proposed to scale up the decision
tree for disk-resident data [17]. This algorithm is used to compare the performance of our algorithm
(Section 4). A high-level description of the algorithm for building the initial tree using SPRINT is

given in Figure 4.

function Decision-Tree-Classifier (Level 1)

for each node node in level [ do

if the stopping criteria is not met then
for each attribute a do
for each value v in attribute list do
Update the class histogram
if a is an numeric attribute then
Compute gini?(S,a < v)
if a is a categorical attribute then
Apply the hybrid algorithm to find subset of a which gives the best split
Find the value(s) v of a which results in the best split
if there is at least one split then partition the records among the child nodes using
the best split

if a node at level [ has been partitioned then
Decision-Tree-Classifier(1+1)

Figure 4: A high-level description of the building phase of SPRINT

The SPRINT algorithm employs a pre-sorting technique to avoid the sorting operation at every
node of the tree. Initially, SPRINT creates an attribute list for each attribute. Each row of an
attribute list corresponds to a unique record; it contains the record number (or rid), the attribute
value (for the attribute in question), and the class label of the record. For numeric attributes, the
attribute lists are sorted by attribute values. SPRINT builds the tree in a breadth-first manner.
The construction phase of the SPRINT algorithm for each internal node consists of two steps. The
first step requires that the split points be evaluated and that attribute lists corresponding to the
internal node be read. SPRINT assumes that the split can be performed along one of the attribute
dimensions, i.e., the univariate split. The splitting attribute a is determined using the gins index.

The splitting criterion of an attribute depends on the attribute type:



1. For a numeric attribute, SPRINT uses a binary split of the form a < v, where v is a real
number and a is an attribute. For numeric attribute a with n distinct values, there are n — 1
possible splits. The gins index is calculated at each of these n — 1 points and the minimum
value is chosen. Since the original attribute list is sorted at the root, subsequent subsets at

lower levels can maintain this sorted property without additional sorting.

2. For categorical attributes, SPRINT uses a split of the form b € D, where D C D and D is
the domain of the categorical attribute b; for an attribute with m possible values, there are
2™ possible splits. A hybrid algorithm is used to evaluate splits for categorical attributes.
In this hybrid algorithm a brute-force method of exhaustive search is used if the number of
possible values is less than some threshold. This method evaluates all possible splits of the
form b € D to find the split that gives the minimum gin: value. If the value 2™ is very large,
a greedy algorithm is used that does not evaluate all possible splits [4, 15]. This algorithm
starts with an empty set as D and a candidate set C. Initially, C' is set to D. It proceeds
by moving one candidate from C to D until no more suitable candidates can be found. The

added candidate should satisfy the following:
(a) Adding this candidate to D yields a smaller value of the gini index, and

(b) it has the smallest gini index value among all the other candidates.

If there is no such candidate, the algorithm stops evaluating splits.

The second step requires partitioning the data using the splitting criterion, which requires
reading the attribute list of the splitting attribute and partitioning it into two subsets based on the
splitting criterion. While reading the attribute list, a hash table is created with two fields rid and
subset. The rid field is used as the key for hashing. This hash table is used to partition the other
attribute lists by hashing each rid of the current record and determining the destination subset
(right or left). The hash table is required, because the ordering of the data in different attribute
lists is different (since they are sorted with different attributes). The partitioning process requires
at least one read and one write for each of the attribute lists. If the size of the hash table is larger
than the available memory, this process has to be staged and may require several reads and writes

(equal to the number of stages used) of the hash table.

The pruning phase uses an algorithm based on the Minimum Description Length (MDL) prin-
ciple for pruning nodes [16]. This algorithm was proposed in [15].



The main drawbacks of the SPRINT algorithm are the following:

1. The initial training dataset is transformed into another representation. The size of the new
dataset is expected to be at least twice as large as the initial dataset for most datasets (see

Section 4).
2. It requires sorting the entire training dataset.
3. It evaluates the gini index for each distinct value along all numeric attributes.

4. For cases where the hash table cannot fit in the main memory, the partitioning process will

requires several passes over the datasets.

3 Estimating the Splitting Point for Numeric Attributes

In this section we present two new methods for estimating the splitting point of the numeric
attributes. These methods are used by CLOUDS at each node of the tree. We compare the new

methods with a direct method and a simple sampling method.

Direct Method (DM) This method sorts the values of each numeric attribute, and evaluates
the gini index at each possible split point to find the splitting point with the minimum gins index.
The sorting operation requires O(nlgn) time, where n is the number of values. It also requires
several passes of I/O for disk-resident data. Evaluating the gini index at each possible split point

is very expensive.

Dataset Sampling (DS) This method draws a random subset of the whole dataset. The DM
method is applied to this sample to build the classifier. In order to study the quality of this method,
the gini index of the splitter (the point used to partition the data) is obtained using the whole

dataset.

Sampling the Splitting Points In this work we present two such methods, the first of which,
Sampling the Splitting points (SS), derives the splitter from a limited number of splitting points.
The second method, SSE (Sampling the Splitting points with Estimation), improves upon the SS

10



by estimating the gini values in order to narrow the search space of the best split, and it is designed
to derive the best or near-best splitter with respect to the gini index. Both methods evaluate the

gini index at only a subset of splitting points along each numeric attribute.

3.1 Sampling the Splitting points

In the SS method the range of each numeric attribute is divided into ¢ intervals using a quantiling-
based technique. Each interval contains approximately the same number of points. For each
numeric attribute the gini index is evaluated at the interval boundaries to determine the minimum
gini value (ginipyi,) among all interval boundaries of the numeric attributes and across all the
categorical attributes. The split point with giné,;, will be used as a splitter. The SS method

requires one pass over the dataset to derive the splitting point.

3.2 Sampling the Splitting points with Estimation

The SSE method divides the range of each numeric attribute and finds the minimum gini value

(gimimin), as in the SS method. Further, it estimates a lower bound gini®

of the gini value for
each interval. All the intervals with gini®*" > ginim., are eliminated (prune) to derive a list of
potential candidate intervals (alive intervals). For an alive interval we evaluate the gini index at
every distinct point in the interval to determine the splitter. This may require another pass over

the entire dataset.

The performance of the SSE method depends on the quality of the estimated lower bound of
the gini index and on the fraction of elements in the alive intervals; this fraction is given by the
survival ratio. Since the gini index is calculated for each of the splitting points in these intervals, the
computational cost of this phase is directly proportional to the survival ratio. The SSE method
estimates the minimum value of the gini index in a given interval [v;,v,] using the statistics of
the interval endpoints. In the following we describe our estimation heuristic. We use the following

notation:

x; — the number of elements of class 7 that are less than or equal to v,
y; — the number of elements of class ¢ that are less than or equal to v,

¢; — the total number of elements of class 7
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n; — the number of elements that are less than or equal to v; (= >°5_; z;)
n, — the number of elements that are less than or equal to v, (= > 51 ¥i)
n — the size of the dataset

¢ — the number of classes

The gini® at point v; of a numeric attribute a for dataset S is given by:

c c

gini®(S,a <v) = (1 -3 (E)) + 1 - (Y (3)

n = ) —n—mn

We use a hill-climbing algorithm to estimate the lower bound of the gini index in the given
interval. This algorithm makes a series of decisions to estimate the lower bound, with each decision
based on the values of gradient along a subset of the ¢ classes. Gradients along a subset of these
c classes are calculated and the direction along the minimum gradient is chosen. The value of the

gradient along z; is given by!:

8giniD (S’ a< 'Ul) 92 n 1 1 c , 1 £ ,
a.’L'Z' nl(’l’L - nl) (Cz n IE’L) n((n — nl)2 i:ZI(Cz f[»'z) ’an ;.’I)Z) ( )

We calculate gini®? for interval [v;,v,] from left to right as well as right to left. Let class j give

the minimum gradient at v;. Then,

2 ny 2 ny .
— % (gt -z)< —2 (- V1<i< 5
nl(n—nl)(cjn %)_nl(n—nl)(cln ) =t=C (5)
From formula (5), we obtain :
n ny )
Cj;—mjgci;—mi Vi<i<ec (6)
Thus,
1 1
Cjnl+ —(:vj+1)§c,~nl+ — Vi<i<ce (7
n

Assuming that all the points for the class with the minimum gradient appear consecutively, the

gradient of the class with the minimum value will remain the minimum for the next splitting point;

!Since the gini®” is a function in a (left-hand side), the derivative should be performed with respect to a. However,
the gini” is defined in terms of ;’s (right-hand side). Mathematically speaking, the gini” defines x;’s, which are
the input to an implicit function defined by the right-hand side of formula (3). For the sake of simplicity, we derive

the derivative directly with respect to z;’s (formula (4)).
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we do not need to evaluate formula (4) for each point in the interval. Our assumption is based on
the intuition that the impurity of the potential partitions will decrease the most (assuming that
all the points for the class with the minimum gradient appear consecutively) by which the gini
value will decrease the most. Thus, the time requirements are proportional to the number of classes
rather than the number of split points in the interval. Figure 5 gives a high-level description of our
hill-climbing algorithm, Est-GiniLR, for determining gini®’ from left to right.? It starts from the
left boundary and finds the class with the minimum gradient. Then it evaluates the gini index at a
new splitting point, which is at the old splitting point (left boundary) plus the number of elements
in the interval with the class with the minimum gradient. If the new gini value is less than the

rest

1¢5t it becomes the new gini

cuurent ging and the process is repeated for the remaining classes
(and smaller interval). The estimation function for the other direction, Est-GiniRL, is similar to the
Est-GiniLR function except that we need to exchange y;’s by z;’s, and use the maximum instead

of the minimum (in step 4).

We determine ¢ini®? as follows:

gini®" = min(Est-GiniLR, Est-GiniRL, gini” (S, a < v)), gini? (S,a < vy,)) (8)

The SSE method can be modified to further prune the intervals (from the alive intervals) as
we update the global minimum gini based on computation of alive intervals processed at a given
point. Further, it can prioritize the evaluation of the alive intervals such that we start with the
intervals with the estimated least gini value. These optimizations have been incorporated in the

SSE method.

One advantage of the SSE method is that it dynamically performs feature selection. Real
datasets generally contain irrelevant attributes that affect the overall performance of the learning
system. It is desirable to remove these irrelevant attributes prior to deriving the splitter. Our
method would prune all the intervals of the irrelevant attributes. The SS method is simpler to
implement and it requires less computation and I/O times for determining the splitter than the
SSE method. On the other hand, the SSE method should generate more accurate splitters with
respect to the gini index. Clearly, there is a trade-off between quality and computational and
I/O requirements. We will study the effect of the two algorithms on the overall performance in

Section 4.

2The second term for the gradient along a given class (formula 4) is the same for all the classes. Thus only the

first term (ci™ — ®;), can be used to determine the class with minimum gradient.

2
> np(n—ng)
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function Est-GiniLR(n, n;,C,T,y)

Step 1: Set the candidate set CS = {1,2,...,c}
Step 2: Set gini®*t =1
Step 3: Evaluate Formula (4) for all classes € C'S. Let the value along class i be given by d;
Step 4: Let d; be the minimum among all d;’s
Step 5: Evaluate the gini index on vector = replacing x; by y;.
Step 6: if the new gini value is less than gini®** then:
Step 6.1: Set gini®*’ to the new gini value

Step 6.2: Remove class j from CS

Step 6.3: Go to Step 3

Figure 5: A high-level description of the Est-GiniLR function
3.3 Experimental Results

We experimentally evaluated the three methods for a number of real and synthetic datasets. Table 1
gives the characteristics of these datasets. The first four datasets are taken from the STATLOG
project, which has been a widely used benchmark in classification.> The “Abalone,” “Waveform,”
and “Isolet” datasets can be found in [13]. The “Synthl1” and “Synth2” datasets have been used
in [15, 17] for evaluating SLIQ and SPRINT; they have been referred to as the “Function2” dataset.

The main parameter of our algorithm is the number of intervals used along each of the numeric
attributes. We studied the following characteristics of our algorithms for different numbers of

intervals:

1. We compare the value of the gini index of the splitters generated by the SS and SSE methods
to the gini index of the splitting point using the DS and DM methods.

2. For SSE, we obtained the percentage of intervals for which the estimated value was higher
than the actual value. These are measured by the number of misses with our method. For the

missed intervals, we also measured the maximum and the average difference in the estimated

3For more details about the STATLOG datasets, the reader is referred to http://www.kdnuggets.com/.

14



Dataset No of No. of No. of numeric | No. of | Max. no. of
examples | attributes attributes classes | distinct values
Letter 20,000 16 16 26 16
Satimage 6,435 36 36 6 256
Segment 2,310 19 19 7 1,769
Shuttle 58,000 9 9 7 260
Abalone 4,177 8 7 29 2,062
Waveform-21 5,000 21 21 3 884
Waveform-40 5,000 40 40 3 889
Isolet 7,797 617 617 26 4,471 *
Synthl 400,000 9 6 2 310,968
Synth2 800,000 9 6 2 523,639

Table 1: Description of the datasets

value and the actual minimum for that interval. Further, we obtained the fractional number

of elements that survived for the next pass (survival ratio).

Table 2 shows the results of the estimated gini index using the DS method. The exact gini
value was derived using the DM method. We used datasets for three random samples chosen from
the dataset and have reported the minimum and the maximum gins index obtained. These results
show that the DS method, in the worst case, may obtain splitters with relatively larger values of
gint index as compared to a direct calculation. This may be partly due to the small size of the
datasets. One may expect better accuracy for large datasets. Our results, described in the next

section, show that this can have a negative impact on the overall classification error.

Table 3 shows the estimated gin¢ index using the SS method and the DM method. These
results show that the SS method usually missed the ezxact gini index for the test datasets; the
difference between the exact and estimated gini was not substantial. The “Letter” dataset has 16
distinct values along each of the numeric attributes. The SS method, with number of intervals
greater than 16, should work well for such a dataset. The same holds true for the “Satimage” and
“Shuttle” datasets, as they have a small number of distinct values. These results show that the

accuracy of the S.S method decreases with the decrease in the number of intervals.
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Dataset Exact 10% 15% 20%
ging Min Max Min Max Min Max

Letter 0.940323 0.940323 | 0.942294 | 0.940323 | 0.942326 | 0.940323 | 0.942326
Satimage 0.653167 0.653167 | 0.659033 | 0.653167 | 0.659033 | 0.653167 | 0.659033
Segment 0.714286 0.714286 | 0.717774 | 0.714286 | 0.714788 | (.714286 | 0.721099
Shuttle 0.175777 0.175777 0.175777 0.175777 0.175777 0.175777 0.175777
Abalone 0.862017 || 0.862579 | 0.866956 | 0.862579 | 0.867807 | 0.862114 | 0.866992

Waveform-21 | 0.546150 || 0.547439 | 0.552724 | 0.547083 | 0.548120 | 0.548144 | 0.550018
Waveform-40 | 0.541134 || 0.548980 | 0.554132 | 0.543133 | 0.554132 | 0.542480 | 0.550520
Isolet 0.926344 || 0.926552 | 0.932994 | 0.926344 | 0.926883 | 0.926344 | 0.927038

Table 2: Exact and estimated gini using DS for different sampling ratios (3 runs)

The results in Table 4 show the estimated gini index using the SSE method and the DM
method. These results show that the SSE method missed the exact gini index only for a few
cases. Further, the estimated gini generated by the SSE method is more accurate than those of
the SS method (for the missed ones). Tables 3 and 4 show that the accuracy of the SS method
is more sensitive to the number of intervals, which makes the SSFE method more scalable. This

experiment shows that the SSFE method is a definite improvement, more scalable, and robust than

the SS method.

The results in Table 5 show that the SSE method can estimate the lower bound accurately. In
all cases the fraction of misses was small. Further, for the missed intervals, the difference between
the actual minimum and estimated minimum was extremely small (Tables 6 and 7). From these

results, 50-200 intervals are sufficient for achieving a very good performance in all the test datasets.

The results in Table 8 show that the survival ratio of the SSE method is less than 10% for
all the test datasets using more than 10 intervals, and less than a few percent using more than
100 intervals. For three datasets, ” Abalone,” “Waveform-21,” and “Waveform-40,” and a very
small number of intervals, the survival ratio is very large. As expected, the survival ratio generally
decreased with an increase in the number of intervals. For a large number of intervals, the number
of data points in the alive intervals is around two orders of magnitude smaller than the points in

all the intervals.

The above results clearly demonstrate the effectiveness of the SSE method; it can achieve a
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Dataset Exact gini Number of Intervals

200 100 50 25 10 5
Letter 0.940323 0.940323 0.940323 0.940323 0.940323 | 0.941751 | 0.941751
Satimage 0.653167 0.653167 0.653167 | 0.654601 | 0.654601 | 0.654601 | 0.682317
Segment 0.714286 0.714286 0.714286 | 0.717774 | 0.714286 | 0.721154 | 0.740018
Shuttle 0.175777 0.175777 0.175777 0.175777 0.175777 | 0.181001 | 0.238166
Abalone 0.862017 0.862477 | 0.862697 | 0.862752 | 0.862907 | 0.862724 | 0.865768

Waveform-21 0.546150 0.547003 | 0.547464 | 0.547353 | 0.547424 | 0.548090 | 0.550608
Waveform-40 0.541134 0.541680 | 0.541943 | 0.542257 | 0.542894 | 0.543224 | 0.543224
Isolet 0.926344 0.927403 | 0.927290 | 0.927424 | 0.927403 | 0.929721 | 0.930125

Table 3: The exact gini and estimated gini based on the SS method using a different number of

intervals
Dataset Exact ging Number of Intervals
200 100 50 25 10 5

Letter 0.940323 0.940323 0.940323 | 0.940323 | 0.940323 | 0.941751 | 0.940323
Satimage 0.653167 0.653167 0.653167 | 0.653167 | 0.653167 0.653167 0.653167
Segment 0.714286 0.714286 0.714286 | 0.714286 0.714286 0.715799 | 0.721099
Shuttle 0.175777 0.175777 0.175777 | 0.175777 | 0.175777 0.175777 0.175777
Abalone 0.862017 0.862017 0.862017 | 0.862017 | 0.862017 0.862017 0.862017
Waveform-21 0.546150 0.546150 0.546150 | 0.546150 | 0.546150 0.546150 0.546150
Waveform-40 0.541134 0.541134 0.541134 | 0.541134 | 0.541134 0.541134 0.541134
Isolet 0.926344 0.926807 | 0.926807 | 0.926344 | 0.927138 | 0.926344 0.926344

Table 4: The exact gini and estimated gini based on the §SE method using a different number of

intervals
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Dataset Number of Intervals
200 | 100 | 50 | 25 | 10 | 5

Letter 0.095 | 0.038 | 0.061 | 0.100 | 0.132 | 0.021
Satimage 0.006 | 0.005 | 0.002 | 0.000 | 0.025 | 0.006
Segment 0.055 | 0.051 | 0.042 | 0.044 | 0.080 | 0.195

Shuttle 0.045 | 0.083 | 0.068 | 0.059 | 0.081 | 0.111
Abalone 0.017 | 0.009 | 0.009 | 0.000 | 0.043 | 0.029

Waveform-21 || 0.017 | 0.017 | 0.009 | 0.004 | 0.000 | 0.000
Waveform-40 || 0.020 | 0.015 | 0.009 | 0.003 | 0.000 | 0.000
Isolet 0.208 | 0.168 | 0.110 | 0.076 | 0.068 | 0.057

Table 5: The fractional misses of the SSE method using a different number of intervals

Dataset Number of Intervals
200 100 50 25 10 5
Letter 0.002587 | 0.002587 | 0.006108 | 0.008234 | 0.009153 | 0.000022

Satimage 0.000551 | 0.000551 | 0.000882 | 0.000882 | 0.010371 | 0.006121
Segment 0.002355 | 0.002355 | 0.002121 | 0.005901 | 0.040869 | 0.067179
Shuttle 0.000175 | 0.001892 | 0.007662 | 0.007397 | 0.008198 | 0.115875
Abalone 0.000094 | 0.000018 | 0.000050 | 0.000050 | 0.000342 | 0.000588
Waveform-21 || 0.000966 | 0.000966 | 0.000275 | 0.000664 | 0.000664 | 0.000664
Waveform-40 || 0.000867 | 0.000241 | 0.000285 | 0.000217 | 0.000217 | 0.000217
Isolet 0.002592 | 0.002592 | 0.003889 | 0.006350 | 0.009310 | 0.010187

Table 6: The maximum value of the fractional difference between the estimated (generated by the

SSE method) and exact minimum gins for the missed intervals
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Dataset Number of Intervals

200 100 50 25 10 5
Letter 0.001299 | 0.002587 | 0.003096 | 0.002566 | 0.004067 | 0.000022
Satimage 0.000301 | 0.000338 | 0.000882 - 0.005459 | 0.006121
Segment 0.000240 | 0.000318 | 0.000602 | 0.001490 | 0.017226 | 0.026430
Shuttle 0.000085 | 0.000392 | 0.001433 | 0.001635 | 0.003010 | 0.046172
Abalone 0.000034 | 0.000013 | 0.000047 - 0.000268 | 0.000588

Waveform-21 || 0.000137 | 0.000119 | 0.000080 | 0.000374 - -
Waveform-40 || 0.000071 | 0.000045 | 0.000053 | 0.000130 - -
Isolet 0.000022 | 0.000031 | 0.000052 | 0.000116 | 0.000290 | 0.000743

Table 7: The average value of the fractional difference between the estimated (generated by the

SSE method) and exact minimum ging for the missed intervals

Dataset Number of Intervals
200 | 100 | 50 | 25 | 10 | 5
Letter 0.000 | 0.000 | 0.000 | 0.002 | 0.029 | 0.174

Satimage 0.000 | 0.000 | 0.001 | 0.006 | 0.022 | 0.092
Segment 0.000 | 0.000 | 0.003 | 0.000 | 0.011 | 0.011
Shuttle 0.000 | 0.000 | 0.000 | 0.003 | 0.001 | 0.032
Abalone 0.005 | 0.009 | 0.027 | 0.085 | 0.361 | 0.436
Waveform-21 || 0.007 | 0.012 | 0.022 | 0.036 | 0.143 | 0.347
Waveform-40 || 0.001 | 0.002 | 0.005 | 0.014 | 0.062 | 0.175
Isolet 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.019

Table 8: The fractional survival ratio using a different number of intervals with the SSE method
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very good estimate of the splitter with minimum gini index and it requires a limited amount of
memory. Further, it has a better performance than algorithms that utilize only a small subset of

the overall sample for obtaining the splitters.

For each point in an alive interval the class information, as well as the value of the numeric
attribute corresponding to the alive interval, needs to be stored and processed. Assuming that
all categorical and numeric attributes as well as class field are of the same size (in bytes), the
amount of data to be processed for all the alive intervals is proportional to O(2 x Survival Ratio X

NumberO f NumericAttributes X Numberof Records). This corresponds to (2 x Survival Ratio X

NumberO f NumericAttributes
NumberO f All Attributes+1

) fraction of the original dataset.

The size of the domains of the numeric attribute does not have a major impact on the perfor-
mance of algorithm, due the intervals generation method. However, the number of attributes, the
number of distinct values, and the class membership affect the overall performance. The conducted
experiments showed that 50-200 intervals are sufficient to achieve an acceptable performance. How-
ever, we believe that the number of intervals might affect the overall performance for some datasets.
It is not easy to determine the optimal value of the number of intervals. Further investigation is
needed to determine a reasonable value for the number of intervals q. We will discuss a method for

determining the value of ¢ in Section 4.

4 The CLOUDS Algorithm

In this section we describe our classifier in more detail. A high-level description of the CLOUDS
algorithm is given in Figure 6. The CLOUDS algorithm uses a breadth-first strategy to build
the decision tree and uses the gini index for evaluating the numeric attributes. It uses either the
SS method or the SSE method to derive the splitter at each node of the tree. The processing
of categorical attributes (Step 1) and numeric attributes (Steps 2, 4, and 5) are different, since
they have different splitting criteria. Below, we describe the details of the processing required to
derive the splitting criterion for both types of attributes. We also describe the partitioning step for

decomposing an internal node (Step 6).

Categorical Attribute CLOUDS evaluates the split points for categorical attributes as in

SPRINT. As described in Section 2, the processing of categorical attributes does not require sort-
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function Decision-Tree-Classifier(Level 1)

for each node node in level [ do

if the stopping criteria is not met then
Step 1:
for each categorical attribute a do
for each value v in attribute list do
Update the count matrix
Find subset of a which gives the best split
Step 2:
for each numeric attribute a do
Divide the range of attribute a into ¢ intervals
for each interval [v;..v,] do
Compute gini® for interval boundary v;
Step 3:
Find the minimum gini (ginim,:,) across all the categorical attributes
and the interval boundaries for numeric attributes.
Step 4: (For the SSE methods only)
for each numeric attribute a do
for each interval do
Estimate a lower bound of the gini index gini®t in this interval
if gini®®t > gini, then prune this interval
Step 5: (For the SSE methods only)
for each numeric attribute a do
for each alive interval I do
Update the class histogram
for each value v € I do
Compute giniP(a < v)
Find the value v of a which results in the best split
Step 6:
if there is at least one split then
Peirtition the records between the child nodes using the best
split
partition node into its child nodes

if all nodes at level | have been partitioned then Decision-Tree-Classifier(1+1)

Figure 6: CLOUDS: A high-level description of the construction phase

21



ing, but it requires the frequency of each pair of (value,class). For the categorical attribute a
with m values, a matrix (CountMatriz) of size m X c is created, where c is the number of classes.
Entry CountMatriz[i, j] gives the number of examples belonging to class j and having value 7 for
attribute a. This matrix is used by the hybrid algorithm (described in Section 2) for deriving the

splitting criterion along attribute a.

Numeric Attribute For each node at level [ of the tree, the range of each numeric attribute
is partitioned into ¢ intervals. A random sample S of size s is derived from the dataset. This
step requires one read operation of the whole dataset, which is needed only at the root level. The
samples for the lower levels are obtained using the sample for the higher levels; ¢ — 1 points are
derived from S by regular sampling. This corresponds to ¢ regularly spaced quantiles of the set
S. If g is much smaller than S, we expect that the ¢ intervals have close to % records with high
probability, where n is the total number of records.* The range of interval i is [zj_1..2;); 20 and z,

are the minimum and the maximum value of the attribute, respectively, and z; is the i** quantile

of the sample points.

The dataset is read and the class frequencies are computed for each of the ¢ intervals as follows:

For each value v with class ¢, determine the corresponding interval using binary search

and update the frequency of class 3.

At this stage the gini index is evaluated for each interval boundary using formula (3) and the
minimum value of the gini index among all the intervals and across all the numeric attributes is

found. Let this value be given by gini,.>

The CLOUDS algorithm (with the SSE method) estimates a lower bound for the gini index
gini®? for each interval using the functions Est-GiniLR and Est-GiniRL, which were described in
the previous section. The intervals with gini®*! greater than or equal to ginim, are eliminated.
The remaining (alive) intervals are used in the next step of the algorithm to determine the splitter.
For the alive intervals along each numeric attribute (using the SSE method), the class frequencies

for intervals are computed. We assume that the size of each of the alive intervals is small enough

4Qur algorithm does not require intervals to be of equal size.
SWe also compare the ginim;, of the numeric attributes with the minimum gini value among all the categorical

attributes and use the minimum in the next step.
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that it can fit into the main memory.® Since we are choosing the intervals based on regular sampling
of a random subset, the number of records from the whole dataset in each interval are close to %
with a high probability. Thus each of these intervals will fit into the memory with high probability
when ¢ is O(4;), where M is the size of the main memory. For each alive interval we sort all the
points. Since we know the class frequencies at interval boundaries and the points of a alive intervals
are sorted, the class frequencies at each point in the alive interval can be computed easily. For each

distinct point we evaluate the gini index and keep track of the minimum value, which will be used

to determine the best splitting criterion.

The above operation requires reading the entire dataset corresponding to the internal node and
storing only the points that belong to alive intervals. If all the alive intervals do not fit into the
main memory, they are written to the disk. Another pass is required to read these alive intervals
one at a time. If the survival ratio is small, and all the alive intervals can fit in the main memory,

this extra pass is not required.

Partitioning the Dataset The splitting criterion is applied to each record to determine its
partition (left or right). The number of records read and written is equal to the number of records
represented by the internal node. For node 7 at level [ of the tree, set S is partitioned, using the
splitting criteria, into two sample sets S; and S3. The sample sets S; and S, are used for left and
right subtrees of node i, respectively. While reading the data for splitting a given node the class
frequencies for the interval boundaries are updated. Thus frequency vectors corresponding to S1

and S2 are updated, which avoids a separate pass over the entire data to evaluate these frequencies.

Assuming that all the alive intervals fit in the main memory, we need to read all the records
at most twice and write all the records for each internal node (except the root node). The records
read and written correspond only to the internal node(s) being split. An extra read is required on

the root to create the sample list.

4.1 I/0 and Computational Requirements

We expect that CLOUDS (with the SSE method) and the SPRINT algorithm will build the same

tree for most datasets, which is demonstrated by the results obtained in a later subsection. Hence

80therwise, the processing of the alive intervals needs to be staged.

23



our comparisons of the two algorithms are based solely on the I/O and computational requirements

in the tree construction phase, assuming that similar trees are built by both algorithms.

The following notation is needed for our comparisons.

1. N — the total number of examples

2. n — the number of examples at a node

3. R — the size of each record

4. r — the size of each record in the attribute list (in SPRINT)

5. F — the number of attributes

6. f — the number of the numeric attributes

7. ¢ — the number of classes

8. ¢ — the number of intervals

9. A — the number of alive intervals
10. n; — the number of elements in alive interval 7
11. V — the survival ratio

12. h — the cost of performing hashing for one record of the attribute list (in SPRINT)

We divide our comparison into two parts, one for the preprocessing stage and the other for the
processing required on every node in the tree construction phase. We assume that the record in
each attribute list is of the same size (in SPRINT). The cost of performing I/O is assumed to be
equal to the total amount of data read or written. This model, though simplistic, is sufficient for

our comparison.

The computations required by our algorithm for the root node are slightly different than for the
other nodes of the tree. This includes sampling and updating the class frequencies of the boundaries
of intervals. Each of these steps requires a pass over the whole dataset. We assume that these steps
are part of a preprocessing phase for our algorithm, which makes the processing of root and other

nodes relatively uniform for our algorithm.
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Preprocessing Phase The pre-processing phase in SPRINT partitions the dataset into attribute
lists. This partitioning requires one read operation (of size NR) and one write operation (of size
NFr). External sorting of each numeric attribute list requires at least two reads and two writes.
The total amount of data read as well as written is 4N fr. The computational time for sorting and
splitting is O(f N log N).

Our algorithm requires drawing a random sample that needs at most one read of the whole
dataset (of size NR).” Updating of the class frequencies of the boundaries of intervals for the root
node requires an additional read over the whole dataset (of size NR). The computational cost for
the preprocessing phase of our algorithm is O(s + fNlogq + fsloggq) time, where s is the size of
the sample chosen and ¢ is the number of intervals, for drawing the sample points, deriving the
quantile values (interval boundaries), and updating the class frequencies. The quantile values can

be determined in O(slogq) using an extended median-finding algorithm [1].

We expect the value of Fr to be at least twice as large as R for most datasets, because the
transaction ID rid and the class attribute are repeated once for each of the F' attribute lists. Hence
the I/O requirements of the SPRINT algorithm for the preprocessing phase is larger by a factor of
at least 1.5 + 2%.8 The computational cost for preprocessing using our algorithm is superior to

SPRINT by a factor of O(lﬁ)ggzr).

Processing on each node SPRINT requires one read of all the attribute lists (of size nFr)
to derive the splitting criterion. Another read and write (of size nFr) on all the attribute lists is
required for splitting. One can optimize SPRINT so that the first read (for calculating the splitting
criterion) for the node at the next level can be done along with the reading of the data for splitting

the current node. This optimization has not been described in [17].

The above description assumes that the hash table along the splitting attribute can be stored in
the main memory. For large datasets, splitting may require several stages, which will substantially

increase the number of reads and writes of each of the attribute lists.

The computational time required to calculate the gini index is O(nc) for each numeric attribute.

The cost of partitioning the dataset is O(nFh).

"There are approximate techniques available for random sampling that do not require reading the whole dataset.

81t should be noted that SPRINT might perform random I/0, whereas CLOUDS performs a sequential I/O.
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Our method requires two reads (each of size nR) and one write (of size nR). If the alive intervals

do not fit in the main memory, an extra read and write (each of size 2V x FLHnR) may be required.

The computation time required for each numeric attribute using our method is as follows:

1. O(sloggq) to derive the g — 1 interval boundaries.

2. O(nlogq) to compute the class frequencies for the interval boundaries,

3. O(qc) to evaluate the gini at the interval boundaries

4. O(qc?) to estimate the lower bound for all the intervals (For the SSE methods),

5. O(nlog g+ 2 (n;logn;+nic)) to determine all the elements belonging to the alive intervals,
sort the elements in each of the alive intervals, and compute the exact gini index (For the

SSE methods).?

The cost of partitioning the dataset for each node is O(n).

The computational cost of evaluating the splitting criterion for a categorical attribute is the
same for both algorithms. Assuming that logq is a small constant and ¢ < n, and the number
of alive intervals is a small fraction of the whole dataset, the computational requirements of our
method per element are comparable or better than with the SPRINT algorithm. SPRINT requires
hashing for each record of the attribute list, and for numeric attributes it requires that the gin:
index be calculated at all the points. Also, the I/O requirements of the SPRINT algorithm for the
processing phase on each node is larger than those of CLOUDS (with the SSE method).

We expect the relative performance to be much better for larger datasets where the hash table
used in SPRINT does not fit the main memory; the number of passes over the entire data set in this

case will be proportional to the size of the hash table, divided by the amount of available memory.

4.2 Experimental Results

In this section we describe the accuracy, compactness, and efficiency of the CLOUDS classifier and

compare (with corresponding results) for SLIQ and/or SPRINT, IND-C4, IND-CART and the DM

°If the width of an alive interval is not large, we could use the direct-address table instead of sorting. The cost of

using the direct-address table is O(n; + width) (O(n; log n;) for sorting).
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method. The first two are identical in terms of the accuracy and size of the tree generated, differing
only in time requirements for constructing the decision tree. SPRINT is shown to be substantially
superior computationally to SLIQ for large datasets, but underperforms for smaller datasets. The

results for the first four algorithms have been derived from the literature [15, 17].

Table 9 gives the average accuracy and tree size of the classifiers generated by the DS method.
These results show that one can potentially lose a significant amount of accuracy if the whole
dataset is not used for building the decision tree. This observation has also been made in [3, 5].
However, we would like to note that this may be a manifestation of the size of the dataset. It is

not clear whether this will be the case for larger datasets.

Dataset 5% 20% 40% 100%
Accuracy | Tree size || Accuracy | Tree size || Accuracy | Tree size || Accuracy | Tree size
Letter 53.6 115.0 69.1 335.0 76.7 592.3 83.4 881
Satimage 75.9 17.0 81.7 45.7 83.6 69.7 86.4 127
Shuttle 99.5 9.0 99.9 21.0 99.9 25.7 99.9 27
Abalone 241 15.0 24.0 39.0 24.2 85.7 26.3 137
Isolet 55.6 57.7 73.1 107.0 78.0 169.0 82.9 261

Table 9: The average (of three trials) pruned tree size and accuracy for a number of datasets using

the DS method

Dataset Accuracy Pruned-tree size
SS | SSE SS SSE

Letter 83.3 | 83.3 893 893
Satimage 85.9 | 85.9 135 135
Segment 94.0 | 94.7 47.0 55.2

Shuttle 99.9 | 99.9 41 41
Abalone 25.5 | 264 175 147

Waveform-21 || 76.5 | 76.8 || 169.6 172.8
Waveform-40 || 76.5 | 76.0 || 188.8 189.8
Isolet 81.9 | 82.6 285 255

Table 10: Comparison between the two methods, using 200 intervals at the root. The DM method

was applied for nodes with dataset sizes smaller than (roughly) 2.5% of the original dataset
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There are two main parameters for the new algorithm (the number of intervals at the root level
and the size of the main memory), which may affect the overall accuracy and performance. As
soon as the size of the dataset is small enough that it fits in the main memory the DM method is

applied to compute the exact gini index.

We wanted to study the quality of results obtained by CLOUDS based on the size of the main
memory. Our current implementation recursively decomposes the number of intervals into two
subsets weighted-assignment strategy. The number of intervals assigned to each of the datasets is
proportional to the size of the dataset. Since the size of the datasets available is reasonably small,
we achieve the effects of having limited memory by using a stopping criterion based on the number
of intervals assigned to a given data subset. The DM method is used when the stopping criterion

1s met.

We conducted a set of experiments to evaluate the SS and SSE methods based on the overall
results. Table 10 shows the overall results of using the two methods for nodes of sizes larger
than (roughly) 2.5% of original datasets. The pruned-tree sizes generated by the SS method are
comparable to those of the SSE method. However, the SSE method achieved slightly better
accuracy for most of the cases. Although, the SSE method generally requires an extra pass to
process the alive intervals at each node, it requires at most 30% more time than the SS algorithm
(see Table 15). These results show that the overhead of using SSE over SS is not very large. Given
that the SSE method is more scalable and less sensitive to the number of intervals, it may be the
better option for most datasets. The results presented in the rest of this section assume that SSE

method was used.

We conducted experiments assuming 5 and 10 intervals as a stopping criterion. Tables 11,
12, 13 and 14 give the quality of decision trees in terms of accuracy and size (after FULL MDL-
based pruning [15, 16, 11]) using CLOUDS for different number of intervals at the root. The
corresponding results for CART, C4, SPRINT and the DM method are also presented.'® These
results show that the quality of results obtained is similar or comparable to those of CART, C4,
SPRINT and DM method both in terms of accuracy and the size of the decision tree obtained.
Further, the accuracy obtained is relatively independent of the number of intervals chosen for the

root level and the number of intervals after which the DM method was used. Assuming that we

"The DM and SPRINT should generate the same results. However, they generated different trees because (prob-

ably) of different implementation choices.
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started with 200 intervals and divided the datasets into approximately equal datasets at each node,
a stopping criterion based on 10 intervals will correspond to application of the heuristic method

for around 4 levels.

Dataset IND-CART | IND-C4 | SPRINT | DM || CLOUDS with SSE
g=200| ¢=100

Letter 84.7 86.8 84.6 83.4 83.1 83.5
Satimage 85.3 85.2 86.3 86.4 85.5 85.2
Segment 94.9 95.9 94.6 94.4 94.5 95.0
Shuttle 99.9 99.9 99.9 99.9 99.9 99.9
Abalone - - - 26.3 26.1 25.4
Waveform-21 - - - 77.3 77.0 77.6
Waveform-40 - - - 76.4 76.1 77.0
Isolet - - - 82.9 82.2 82.7

Table 11: Accuracy obtained for different datasets. The DM method was applied in CLOUDS for

nodes with dataset sizes smaller than (roughly) g of the original dataset

Dataset IND-CART | IND-C4 | SPRINT | DM || CLOUDS with SSE
g=200| ¢=100

Letter 84.7 86.8 84.6 83.4 83.3 83.4
Satimage 85.3 85.2 86.3 86.4 85.9 84.9
Segment 94.9 95.9 94.6 94.4 94.7 95.0
Shuttle 99.9 99.9 99.9 99.9 99.9 99.9
Abalone - - - 26.3 26.4 25.9
Waveform-21 - - - 77.3 76.8 7.7
Waveform-40 - - - 76.4 76.0 77.2
Isolet - - - 82.9 82.6 82.7

Table 12: Accuracy obtained for different datasets. The DM method was applied in CLOUDS for

nodes with dataset sizes smaller than (roughly) % of the original dataset

Table 15 gives the time requirements of our algorithms for different datasets and a different
number of intervals at the root level. These results assume that the survival ratios are small
enough that the alive intervals can be processed in the main memory. The results are presented for

CLOUDS using the two estimation methods. These timing were obtained from the IBM RS/6000
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Dataset IND-CART | IND-C4 | SPRINT | DM | CLOUDS with SSE
g=200 | ¢=100
Letter 1199.5 3241.3 1141 881 895 903
Satimage 90 563 159 127 129 113
Segment 52 102 18.6 41.0 54.6 53.6
Shuttle 27 57 29 27 41 35
Abalone - 137 137 147
Waveform-21 - 168.4 176.2 172.8
Waveform-40 - 187.4 188.8 189.4
Isolet - 261 247 255

Table 13: Pruned tree sizes obtained for different datasets. The DM method was applied in

CLOUDS for nodes with dataset sizes smaller than (roughly) % of the original dataset

Dataset IND-CART | IND-C4 | SPRINT | DM | CLOUDS with SSE
g=200 | ¢=100
Letter 1199.5 3241.3 1141 881 893 881
Satimage 90 563 159 127 135 111
Segment 52 102 18.6 41.0 55.2 51.2
Shuttle 27 57 29 27 41 33
Abalone - - 137 147 135
Waveform-21 - - 168.4 172.8 172.8
Waveform-40 - - - 187.4 189.8 184.6
Isolet - - 261 255 255

Table 14: Pruned tree sizes obtained for different datasets. The DM method was applied in

CLOUDS for nodes with dataset sizes smaller than (roughly) % of the original dataset

30



Model 590 workstation running AIX 4.1.4. It is based on the Power2 architecture with 256 KB data

cache and a 32KB instruction cache.

This table assumes that the DM method is applied when the size of the data is small enough
that less than 10 intervals are assigned to it. CLOUDS with the SSE method requires roughly (at
most) 30% more time than the SS method. This extra time can be attributed to the processing of

the alive intervals in the SSE method.

SPRINT spent around 1,000 and 2,000 seconds in classifying Synthl and Synth2 datasets,
respectively [17]. These timings may not be directly comparable due to somewhat different exper-

imental setups.

Dataset SSE SS
g=200 | ¢=100 || ¢g=200 | ¢ =100
Letter 8.76 8.30 8.43 8.26
Satimage 5.40 4.57 5.43 4.60
Segment 1.06 0.9 0.97 0.87
Shuttle 3.98 3.44 3.97 3.41
Abalone 2.89 2.52 2.40 2.25
Waveform-21 4.86 4.48 4.34 4.27
Waveform-40 9.07 8.69 8.53 8.26
Isolet 377.63 | 331.14 289.13 | 270.72
Synth1l 35.74 34.86 35.43 34.76
Synth2 73.35 72.06 74.09 71.79

Table 15: The time requirements (in seconds) of CLOUDS using the SS and SSE methods for
different datasets. The DM method was applied for nodes with dataset sizes smaller than (roughly)

% of the original dataset

The number of intervals The number of intervals ¢ affects the computational requirements for
determining and processing the alive intervals. A large value of ¢ will increase the computational
time for determining the alive intervals, and has a higher probability of reducing the survival ratio,
which decreases the computational time for processing the alive intervals. A small value of ¢
will have the opposite effect. Since CLOUDS starts with some ¢ intervals at the root node and

divides these intervals to the child nodes using weighted-assignment strategy, the value of ¢ must be
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determined only once. The preprocessing phase of the CLOUDS can be extended to dynamically
determine an appropriate value of g for the root node of the tree as follows. Choose a set of values
for ¢ (determined based on the memory size and the dataset parameters, e.g., the size, number
of classes and the number of attributes), and determine the survival ratio for each of them. An
appropriate value of ¢ is chosen based on the survival ratios. This process does not require any
extra I/O; however, it requires extra computational requirements that would be considered small
compared to the overall execution time for large datasets which generally produce a large unpruned
tree. We are not able to evaluate this method experimentally due to the lack of very large, real

datasets.

5 Conclusion

The main goal of developing an effective classifier is to have good generalization properties. The
methods described in this work implicitly achieve this by choosing splitters with a minimum gins
index. There are several options for developing efficient algorithms to perform such data-mining
techniques on large datasets. One option is to develop algorithms that reduce computational and
I/O requirements, but perform essentially the same operations. Another option is to develop
algorithms that reduce computational and I/O requirements by performing an approximation of
the actual operation without significant loss (or no loss) of accuracy. The CLOUDS classifier falls in
the latter category, while SPRINT falls in the former category. However, CLOUDS has been shown
to be as accurate as SPRINT and to have substantially superior computational characteristics. We
believe that such approaches may provide attractive alternatives to direct methods for other data-

mining applications, especially for cases in which an implicit optimization needs to be performed.

It will be interesting to derive heuristics that will guarantee that the estimate is always lower
than the actual value. However, this value should be close enough to the actual minimum for
the survival ratio to be small. The new algorithms can potentially be extended to other splitting

functions, e.g., the towing function and the gain ratio.

Further investigation is needed to study the behavior of the proposed methods on very large
real datasets, and to study the effect of the size of the intervals on the overall performance of the

proposed methods.

Further investigation is needed to deal with a large survival ratio, i.e., all the alive intervals do
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not fit in the main memory. Three potential techniques for dealing with a large survival ratio are:

1. Process a subset of the alive intervals to derive the splitter. This subset can be generated
using the values of the estimated gin: for the alive intervals. Our preliminary results suggest

that this technique is a promising one.
2. Apply the SSE method on each alive interval to further reduce the survival ratio.

3. Process a (good) subset of the alive intervals and apply the SSE method on the remaining

ones.
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