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ABSTRACT: The problem of mining sequential patterns was recently introduced in
[AS95]. We are given a database of sequences, where each sequence is a list of transac-
tions ordered by transaction-time, and each transaction is a set of items. The problem is to
discover all sequential patterns with a user-speci�ed minimum support, where the support
of a pattern is the number of data-sequences that contain the pattern. An example of a
sequential pattern is \5% of customers bought `Foundation' and `Ringworld' in one trans-
action, followed by `Second Foundation' in a later transaction". We generalize the problem
as follows. First, we add time constraints that specify a minimum and/or maximum time
period between adjacent elements in a pattern. Second, we relax the restriction that the
items in an element of a sequential pattern must come from the same transaction, instead
allowing the items to be present in a set of transactions whose transaction-times are within
a user-speci�ed time window. Third, given a user-de�ned taxonomy (is-a hierarchy) on
items, we allow sequential patterns to include items across all levels of the taxonomy.

We present GSP, a new algorithm that discovers these generalized sequential patterns.
Empirical evaluation using synthetic and real-life data indicates that GSP is much faster
than the AprioriAll algorithm presented in [AS95]. GSP scales linearly with the number
of data-sequences, and has very good scale-up properties with respect to the average data-
sequence size.

�Also, Department of Computer Science, University of Wisconsin, Madison.



1. Introduction

Data mining, also known as knowledge discovery in databases, has been recognized as a

promising new area for database research. This area can be de�ned as e�ciently discovering

interesting patterns from large databases.

A new data mining problem, discovering sequential patterns, was introduced in [AS95].

The input data is a set of sequences, called data-sequences. Each data-sequence is a list of

transactions, where each transaction is a sets of literals, called items. Typically there is a

transaction-time associated with each transaction. A sequential pattern also consists of a list

of sets of items. The problem is to �nd all sequential patterns with a user-speci�ed minimum

support, where the support of a sequential pattern is the percentage of data-sequences that

contain the pattern.

For example, in the database of a book-club, each data-sequence may correspond to all

book selections of a customer, and each transaction to the books selected by the customer

in one order. A sequential pattern might be \5% of customers bought `Foundation', then

`Foundation and Empire', and then `Second Foundation' ". The data-sequence correspond-

ing to a customer who bought some other books in between these books still contains this

sequential pattern; the data-sequence may also have other books in the same transaction as

one of the books in the pattern. Elements of a sequential pattern can be sets of items, for

example, \ `Foundation' and `Ringworld', followed by `Foundation and Empire' and `Ring-

world Engineers', followed by `Second Foundation' ". However, all the items in an element

of a sequential pattern must be present in a single transaction for the data-sequence to

support the pattern.

This problem was motivated by applications in the retailing industry, including attached

mailing, add-on sales, and customer satisfaction. But the results apply to many scienti�c

and business domains. For instance, in the medical domain, a data-sequence may correspond

to the symptoms or diseases of a patient, with a transaction corresponding to the symptoms

exhibited or diseases diagnosed during a visit to the doctor. The patterns discovered using

this data could be used in disease research to help identify symptoms/diseases that precede

certain diseases.

However, the problem de�nition as introduced in [AS95] has the following limitations:

1. Absence of time constraints. Users often want to specify maximum and/or min-
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imum time gaps between adjacent elements of the sequential pattern. For example,

a book club probably does not care if someone bought \Foundation", followed by

\Foundation and Empire" three years later; they may want to specify that a cus-

tomer should support a sequential pattern only if adjacent elements occur within a

speci�ed time interval, say three months. (So for a customer to support this pattern,

the customer should have bought \Foundation and Empire" within three months of

buying \Foundation".)

2. Rigid de�nition of a transaction. For many applications, it does not matter if

items in an element of a sequential pattern were present in two di�erent transactions,

as long as the transaction-times of those transactions are within some small time

window. That is, each element of the pattern can be contained in the union of the

items bought in a set of transactions, as long as the di�erence between the maximum

and minimum transaction-times is less than the size of a sliding time window. For

example, if the book-club speci�es a time window of a week, a customer who or-

dered the \Foundation" on Monday, \Ringworld" on Saturday, and then \Foundation

and Empire" and \Ringworld Engineers" in a single order a few weeks later would

still support the pattern \ `Foundation' and `Ringworld', followed by `Foundation and

Empire' and `Ringworld Engineers' ".

3. Absence of taxonomies. Many datasets have a user-de�ned taxonomy (is-a hi-

erarchy) over the items in the data, and users want to �nd patterns that include

items across di�erent levels of the taxonomy. An example of a taxonomy is given

in Figure 1. With this taxonomy, a customer who bought \Foundation" followed by

\Perfect Spy" would support the patterns \ `Foundation' followed by `Perfect Spy' ",

\ `Asimov' followed by `Perfect Spy' ", \ `Science Fiction' followed by `Le Carre' ", etc.

In this paper, we generalize the problem de�nition given in [AS95] to incorporate time

constraints, sliding time windows, and taxonomies in sequential patterns. We present

GSP (Generalized Sequential Patterns), a new algorithm that discovers all such sequential

patterns. Empirical evaluation shows that GSP scales linearly with the number of data-

sequences, and has very good scale-up properties with respect to the number of transactions

per data-sequence and number of items per transaction.
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Figure 1: Example of a Taxonomy

1.1. Related Work

In addition to introducing the problem of sequential patterns, [AS95] presented three

algorithms for solving this problem, but these algorithms do not handle time constraints,

sliding windows, or taxonomies. Two of these algorithms were designed to �nd only maxi-

mal sequential patterns; however, many applications require all patterns and their supports.

The third algorithm, AprioriAll, �nds all patterns; its performance was better than or com-

parable to the other two algorithms. We review AprioriAll in Section 4.1. Briey, AprioriAll

is a three-phase algorithm. It �rst �nds all itemsets with minimum support (frequent item-

sets), transforms the database so that each transaction is replaced by the set of all frequent

itemsets contained in the transaction, and then �nds sequential patterns. There are two

problems with this approach. First, it is computationally expensive to do the data trans-

formation on-the-y during each pass while �nding sequential patterns. The alternative, to

transform the database once and store the transformed database, will be infeasible or unre-

alistic for many applications since it nearly doubles the disk space requirement which could

be prohibitive for large databases. Second, while it is possible to extend this algorithm to

handle time constraints and taxonomies, it does not appear feasible to incorporate sliding

windows. For the cases that the extended AprioriAll can handle, our empirical evaluation

reported in Section 4 shows that GSP is upto 20 times faster.

Somewhat related to our work is the problem of mining association rules [AIS93]. As-

sociation rules are rules about what items are bought together within a transaction, and

are thus intra-transaction patterns, unlike inter-transaction sequential patterns. The prob-

lem of �nding association rules when there is a user-de�ned taxonomy on items has been

addressed in [SA95] [HF95].

A problem of discovering similarities in a database of genetic sequences, presented in
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[WCM+94], is relevant. However, the patterns they wish to discover are subsequences made

up of consecutive characters separated by a variable number of noise characters. A sequence

in our problem consists of list of sets of characters (items), rather than being simply a list

of characters. In addition, we are interested in �nding all sequences with minimum support

rather than some frequent patterns.

A problem of discovering frequent episodes in a sequence of events was presented in

[MTV95]. Their patterns are arbitrary DAG (directed acyclic graphs), where each vertex

corresponds to a single event (or item) and an edge from event A to event B denotes

that A occurred before B. They move a time window across the input sequence, and �nd

all patterns that occur in some user-speci�ed percentage of windows. Their algorithm is

designed for counting the number of occurrences of a pattern when moving a window across

a single sequence, while we are interested in �nding patterns that occur in many di�erent

data-sequences.

Discovering patterns in sequences of events has been an area of active research in AI

(see, for example, [DM85]). However, the focus in this body of work is on �nding the

rule underlying the generation of a given sequence in order to be able to predict a plausible

sequence continuation (e.g. the rule to predict what number will come next, given a sequence

of numbers). We on the other hand are interested in �nding all common patterns embedded

in a database of sequences of sets of events (items).

Our problem is related to the problem of �nding text subsequences that match a given

regular expression (c.f. the UNIX grep utility). There also has been work on �nding text

subsequences that approximately match a given string (e.g. [CR93] [WM92]). These tech-

niques are oriented toward �nding matches for one pattern. In our problem, the di�culty is

in �guring out what patterns to try and then e�ciently �nding out which of those patterns

are contained in enough data sequences.

Techniques based on multiple alignment [Wat89] have been proposed to �nd entire text

sequences that are similar. There also has been work to �nd locally similar subsequences

[AGM+90] [Roy92] [VA89]. However, as pointed out in [WCM+94], these techniques apply

when the discovered patterns consist of consecutive characters or multiple lists of consecutive

characters separated by a �xed length of noise characters.
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1.2. Organization of the Paper

We give a formal description of the problem of mining generalized sequential patterns

in Section 2. In Section 3, we describe GSP, an algorithm for �nding such patterns. In

Section 4, we compare the performance of GSP to the AprioriAll algorithm, show the scale-

up properties of GSP, and study the performance impact of time constraints and sliding

windows. We conclude with a summary in Section 5.

2. Problem Statement

De�nitions Let I = fi1; i2; : : : ; img be a set of literals, called items. Let T be a directed

acyclic graph on the literals. An edge in T represents an is-a relationship, and T represents

a set of taxonomies. If there is an edge in T from p to c, we call p a parent of c and c a child

of p. (p represents a generalization of c.) We model the taxonomy as a DAG rather than a

tree to allow for multiple taxonomies. We call bx an ancestor of x (and x a descendant of bx)

if there is an edge from bx to x in transitive-closure(T ).

An itemset is a non-empty set of items. A sequence is an ordered list of itemsets. We

denote a sequence s by h s1s2:::sn i, where sj is an itemset. We also call sj an element of

the sequence. We denote an element of a sequence by (x1; x2; :::; xm), where xj is an item.

An item can occur only once in an element of a sequence, but can occur multiple times in

di�erent elements. An itemset is considered to be a sequence with a single element. We

assume without loss of generality that items in an element of a sequence are in lexicographic

order.

A sequence h a1a2:::an i is a subsequence of another sequence h b1b2:::bm i if there exist

integers i1 < i2 < ::: < in such that a1 � bi1 , a2 � bi2 , ..., an � bin . For example, the

sequence h (3) (4 5) (8) i is a subsequence of h (7) (3, 8) (9) (4, 5, 6) (8) i, since (3) � (3, 8),

(4, 5) � (4, 5, 6) and (8) � (8). However, the sequence h (3) (5) i is not a subsequence of

h (3, 5) i (and vice versa).

Input We are given a database D of sequences called data-sequences. Each data-sequence

is a list of transactions, ordered by increasing transaction-time. A transaction has the

following �elds: sequence-id, transaction-id, transaction-time, and the items present in the

transaction. While we expect the items in a transaction to be leaves in T , we do not require

this.
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For simplicity, we assume that no data-sequence has more than one transaction with

the same transaction-time, and use the transaction-time as the transaction-identi�er. We

do not consider quantities of items in a transaction.

Support The support count (or simply support) for a sequence is de�ned as the fraction

of total data-sequences that \contain" this sequence. (Although the word \contains" is

not strictly accurate once we incorporate taxonomies, it captures the spirt of when a data-

sequence contributes to the support of a sequential pattern.) We now de�ne when a data-

sequence contains a sequence, starting with the de�nition as in [AS95], and then adding

taxonomies, sliding windows, and time constraints:

� as in [AS95]: In the absence of taxonomies, sliding windows and time constraints, a

data-sequence contains a sequence s if s is a subsequence of the data-sequence.

� plus taxonomies: We say that a transaction T contains an item x 2 I if x is in

T or x is an ancestor of some item in T . We say that a transaction T contains an

itemset y � I if T contains every item in y. A data-sequence d = h d1:::dm i contains a

sequence s = h s1:::sn i if there exist integers i1 < i2 < ::: < in such that s1 is contained

in di1 , s2 is contained in di2 , ..., sn is contained in din . If there is no taxonomy, this

degenerates into a simple subsequence test.

� plus sliding windows: The sliding window generalization relaxes the de�nition of

when a data-sequence contributes to the support of a sequence by allowing a set

of transactions to contain an element of a sequence, as long as the di�erence in

transaction-times between the transactions in the set is less than the user-speci�ed

window-size. Formally, a data-sequence d = h d1:::dm i contains a sequence s =

h s1:::sn i if there exist integers l1 � u1 < l2 � u2 < ::: < ln � un such that

1. si is contained in [ui
k=li

dk, 1 � i � n, and

2. transaction-time(dui)� transaction-time(dli) � window-size, 1 � i � n.

� plus time constraints: Time constraints restrict the time gap between sets of

transactions that contain consecutive elements of the sequence. Given user-speci�ed

window-size, max-gap and min-gap, a data-sequence d = h d1:::dm i contains a se-

quence s = h s1:::sn i if there exist integers l1 � u1 < l2 � u2 < ::: < ln � un such

that
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1. si is contained in [ui
k=li

dk, 1 � i � n,

2. transaction-time(dui)� transaction-time(dli) � window-size, 1 � i � n,

3. transaction-time(dli)� transaction-time(dui�1
) > min-gap, 2 � i � n, and

4. transaction-time(dui)� transaction-time(dli�1
) � max-gap, 2 � i � n.

The �rst two conditions are the same as in the earlier de�nition of when a data-

sequence contains a pattern. The third condition speci�es the minimum time-gap

constraint, and the last the maximum time-gap constraint.

We will refer to transaction-time(dli) as start-time(si), and transaction-time(dui) as

end-time(si). In other-words, start-time(si) and end-time(si) correspond to the �rst

and last transaction-times of the set of transactions that contain si.

Note that if there is no taxonomy, min-gap = 0, max-gap = 1 and window-size = 0

we get the notion of sequential patterns as introduced in [AS95], where there are no time

constraints and items in an element come from a single transaction.

2.1. Problem De�nition

Given a database D of data-sequences, a taxonomy T , user-speci�ed min-gap and max-

gap time constraints, and a user-speci�ed sliding-window size, the problem of mining se-

quential patterns is to �nd all sequences whose support is greater than the user-speci�ed

minimum support. Each such sequence represents a sequential pattern, also called a frequent

sequence.

Given a frequent sequence s = h s1:::sn i, it is often useful to know the \support relation-

ship" between the elements of the sequence. That is, what fraction of the data-sequences

that support h s1:::si i support the entire sequence s. Since h s1:::si i must also be a frequent

sequence, this relationship can easily be computed.

2.2. Example

Consider the data-sequences shown in Figure 2. For simplicity, we have assumed that

the transaction-times are integers; they could represent, for instance, the number of days

after January 1, 1995. We have used an abbreviated version of the taxonomy given in

Figure 1. Assume that the minimum support has been set to 2 data-sequences.

With the [AS95] problem de�nition, the only 2-element sequential patterns are:
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Database D

Sequence-Id Transaction Items
Time

C1 1 Ringworld
C1 2 Foundation
C1 15 Ringworld Engineers, Second Foundation

C2 1 Foundation, Ringworld
C2 20 Foundation and Empire
C2 50 Ringworld Engineers

Taxonomy T

Foundation
and Empire
Foundation

Foundation

NivenAsimov

Ringworld
Engineers

RingworldSecond

Figure 2: Example

h (Ringworld) (Ringworld Engineers) i, h (Foundation) (Ringworld Engineers) i

Setting a sliding-window of 7 days adds the pattern

h (Foundation, Ringworld) (Ringworld Engineers) i

since C1 now supports this pattern. (\Foundation" and \Ringworld" are present within a

period of 7 days in data-sequence C1.)

Further setting a max-gap of 30 days results in all three patterns being dropped, since

they are no longer supported by customer C2.

If we only add the taxonomy, but no sliding-window or time constraints, one of the

patterns added is:

h (Foundation) (Asimov) i

Observe that this pattern is not simply a replacement of an item with its ancestor in an

existing pattern.
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3. Algorithm \GSP"

The basic structure of the GSP algorithm for �nding sequential patterns is as follows.

The algorithm makes multiple passes over the data. The �rst pass determines the support of

each item, that is, the number of data-sequences that include the item. At the end of the �rst

pass, the algorithm knows which items are frequent, that is, have minimum support. Each

such item yields a 1-element frequent sequence consisting of that item. Each subsequent

pass starts with a seed set: the frequent sequences found in the previous pass. The seed set

is used to generate new potentially frequent sequences, called candidate sequences. Each

candidate sequence has one more item than a seed sequence; so all the candidate sequences

in a pass will have the same number of items. The support for these candidate sequences

is found during the pass over the data. At the end of the pass, the algorithm determines

which of the candidate sequences are actually frequent. These frequent candidates become

the seed for the next pass. The algorithm terminates when there are no frequent sequences

at the end of a pass, or when there are no candidate sequences generated.

We need to specify two key details:

1. Candidate generation: how candidates sequences are generated before the pass

begins. We want to generate as few candidates as possible while maintaining com-

pleteness.

2. Counting candidates: how the support count for the candidate sequences is deter-

mined.

Candidate generation is discussed in Section 3.1, and candidate counting in Section 3.2.

We incorporate time constraints and sliding windows in this discussion, but do not consider

taxonomies. Extensions required to handle taxonomies are described in Section 3.3. Our

algorithm is not a main-memory algorithm; we discuss memory management in Section 3.4.

3.1. Candidate Generation

We refer to a sequence with k items as a k-sequence. (If an item occurs multiple times

in di�erent elements of a sequence, each occurrence contributes to the value of k.) Let Lk

denote the set of all frequent k-sequences, and Ck the set of candidate k-sequences.

Given Lk�1, the set of all frequent (k�1)-sequences, we want to generate a superset of

the set of all frequent k-sequences. We �rst de�ne the notion of a contiguous subsequence.
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De�nition Given a sequence s = h s1s2:::sn i and a subsequence c, c is a contiguous

subsequence of s if any of the following conditions hold:

1. c is derived from s by dropping an item from either s1 or sn.

2. c is derived from s by dropping an item from an element si which has at least 2 items.

3. c is a contiguous subsequence of c0, and c0 is a contiguous subsequence of s.

For example, consider the sequence s = h (1, 2) (3, 4) (5) (6) i. The sequences h (2) (3,

4) (5) i, h (1, 2) (3) (5) (6) i and h (3) (5) i are some of the contiguous subsequences of s.

However, h (1, 2) (3, 4) (6) i and h (1) (5) (6) i are not.

As we will show in Lemma 1 below, any data-sequence that contains a sequence s will

also contain any contiguous subsequence of s. If there is no max-gap constraint, the data-

sequence will contain all subsequences of s (including non-contiguous subsequences). This

property provides the basis for the candidate generation procedure.

Candidates are generated in two steps:

1. Join Phase. We generate candidate sequences by joining Lk�1 with Lk�1. A sequence

s1 joins with s2 if the subsequence obtained by dropping the �rst item of s1 is the

same as the subsequence obtained by dropping the last item of s2. The candidate

sequence generated by joining s1 with s2 is the sequence s1 extended with the last

item in s2. The added item becomes a separate element if it was a separate element

in s2, and part of the last element of s1 otherwise. When joining L1 with L1, we need

to add the item in s2 both as part of an itemset and as a separate element, since

both h (x) (y) i and h (x y) i give the same sequence h (y) i upon deleting the �rst item.

(Observe that s1 and s2 are contiguous subsequences of the new candidate sequence.)

2. Prune Phase. We delete candidate sequences that have a contiguous (k�1)-subsequence

whose support count is less than the minimum support. If there is no max-gap con-

straint, we also delete candidate sequences that have any subsequence without mini-

mum support.

The above procedure is reminiscent of the candidate generation procedure for �nding

association rules [AS94]; however details are quite di�erent.
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Frequent Candidate 4-Sequences
3-Sequences after join after pruning

h (1, 2) (3) i h (1, 2) (3, 4) i h (1, 2) (3, 4) i
h (1, 2) (4) i h (1, 2) (3) (5) i
h (1) (3, 4) i
h (1, 3) (5) i
h (2) (3, 4) i
h (2) (3) (5) i

Figure 3: Candidate Generation: Example

Example Figure 3 shows L3, and C4 after the join and prune phases. In the join

phase, the sequence h (1, 2) (3) i joins with h (2) (3, 4) i to generate h (1, 2) (3, 4) i and with

h (2) (3) (5) i to generate h (1, 2) (3) (5) i. The remaining sequences do not join with any

sequence in L3. For instance, h (1, 2) (4) i does not join with any sequence since there is no

sequence of the form h (2) (4 x) i or h (2) (4) (x) i. In the prune phase, h (1, 2) (3) (5) i is

dropped since its contiguous subsequence h (1) (3) (5) i is not in L3.

Correctness We need to show that Ck � Lk. We �rst prove the following lemma.

Lemma 1. If a data-sequence d contains a sequence s, d will also contain any contiguous

subsequence of s. If there is no max-gap constraint, d will contain any subsequences of s.

Proof: Let c denote any contiguous subsequence of s obtained by dropping just one item

from s. If we show that any data-sequence that contains s also contains c, we can use

induction to show that the data-sequence will contain any contiguous subsequence of s.

Let s have n elements, that is, s = h s1::sn i. Now, c either has n elements or n � 1

elements. Let us �rst consider the case where c has n elements; so c = h c1::cn i. Let

l1; u1; :::; ln; un de�ne the transactions in d that supported s; that is, si is contained in

[ui
k=li

dk, 1 � i � n. In other words, li; ui together de�ne the set of transactions in d

that contain si. Now, since ci � si, ci is also contained in [ui
k=li

dk, 1 � i � n. Since

l1; u1; :::; ln; un satis�ed min-gap, max-gap and window-size constraints for s, they also sat-

isfy the constraints for c. Thus d contains c.

If c has n � 1 elements, either the �rst or the last element of s consisted of a single

item and was dropped completely. In this case, we use a similar argument to show that d
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contains c, except that we just look at the transactions corresponding to l1; u1; :::; ln�1; un�1

or those corresponding to l2; u2; :::; ln; un. 2

Theorem 1. Given Lk�1, the set of all frequent (k�1)-sequences, the candidate generation

procedure produces a superset of Lk , the set of all frequent k-sequences.

Proof: From Lemma 1, if we extended each sequence in Lk�1 with every frequent item and

then deleted all those whose contiguous (k�1)-subsequences were not in Lk�1, we would

be left with a superset of the sequences in Lk. The join is equivalent to extending Lk�1

with each frequent item and then deleting those sequences for which the (k�1)-subsequence

obtained by deleting the �rst item is not in Lk�1. Note that the subsequence obtained by

deleting the �rst item is a contiguous subsequence. Thus, after the join step, Ck � Lk. By

similar reasoning, the prune step, where we delete from Ck all sequences whose contiguous

(k�1)-subsequences are not in Lk�1, also does not delete any sequence that could be in Lk.

2

3.2. Counting Candidates

While making a pass, we read one data-sequence at a time and increment the support

count of candidates contained in the data-sequence. Thus, given a set of candidate sequences

C and a data-sequence d, we need to �nd all sequences in C that are contained in d. We

use two techniques to solve this problem:

1. We use a hash-tree data structure to reduce the number of candidates in C that are

checked for a data-sequence.

2. We transform the representation of the data-sequence d so that we can e�ciently �nd

whether a speci�c candidate is a subsequence of d.

3.2.1. Reducing the number of candidates that need to be checked We adapt

the hash-tree data structure of [AS94] for this purpose. A node of the hash-tree either

contains a list of sequences (a leaf node) or a hash table (an interior node). In an interior

node, each non-empty bucket of the hash table points to another node. The root of the

hash-tree is de�ned to be at depth 1. An interior node at depth p points to nodes at depth

p+1.
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Adding candidate sequences to the hash-tree When we add a sequence s, we start

from the root and go down the tree until we reach a leaf. At an interior node at depth p, we

decide which branch to follow by applying a hash function to the pth item of the sequence.

Note that we apply the hash function to the pth item, not the pth element. All nodes are

initially created as leaf nodes. When the number of sequences in a leaf node exceeds a

threshold, the leaf node is converted to an interior node.

Finding the candidates contained in a data-sequence Starting from the root node,

we �nd all the candidates contained in a data-sequence d. We apply the following procedure,

based on the type of node we are at:

� Interior node, if it is the root: We apply the hash function to each item in d, and

recursively apply this procedure to the node in the corresponding bucket. For any

sequence s contained in the data-sequence d, the �rst item of s must be in d. By

hashing on every item in d, we ensure that we only ignore sequences that start with

an item not in d.

� Interior node, if it is not the root: Assume we reached this node by hashing on an item

x whose transaction-time is t. We apply the hash function to each item in d whose

transaction-time is in [t�window-size; t+max(window-size;max-gap)] and recursively

apply this procedure to the node in the corresponding bucket.

To see why this returns the desired set of candidates, consider a candidate sequence

s with two consecutive items x and y. Let x be contained in a transaction in d

whose transaction-time is t. For d to contain s, the transaction-time corresponding

to y must be in [t�window-size; t+window-size] if y is part of the same element

as x, or in the interval (t; t+max-gap] if y is part of the next element. Hence if

we reached this node by hashing on an item x with transaction-time t, y must be

contained in a transaction whose transaction-time is in the interval [t�window-size; t+

max(window-size;max-gap)] for the data-sequence to support the sequence. Thus we

only need to apply the hash function to the items in d whose transaction-times are in

the above interval, and check the corresponding nodes.

� Leaf node: For each sequence s in the leaf, we check whether d contains s, and add

s to the answer set if necessary. (We will discuss below exactly how to �nd whether
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d contains a speci�c candidate sequence.) Since we check each sequence contained in

this node, we don't miss any sequences.

3.2.2. Checking whether a data-sequence contains a speci�c sequence Let d

be a data-sequence, and let s = h s1:::sn i be a candidate sequence. We �rst describe the

algorithm for checking if d contains s, assuming existence of a procedure that �nds the �rst

occurrence of an element of s in d after a given time, and then describe this procedure.

Contains test The algorithm for checking if the data-sequence d contains a candidate

sequence s alternates between two phases. The algorithm starts in the forward phase from

the �rst element.

� Forward phase: The algorithm �nds successive elements of s in d as long as the

di�erence between the end-time of the element just found and the start-time of the

previous element is less than max-gap. (Recall that for an element si, start-time(si)

and end-time(si) correspond to the �rst and last transaction-times of the set of trans-

actions that contain si.) If the di�erence is more than max-gap, the algorithm switches

to the backward phase. If an element is not found, the data-sequence does not contain

s.

� Backward phase: The algorithm backtracks and \pulls up" previous elements. If

si is the current element and end-time(si) = t, the algorithm �nds the �rst set of

transactions containing si�1 whose transaction-times are after t � max-gap. The

start-time for si�1 (after si�1 is pulled up) could be after the end-time for si. Pulling

up si�1 may necessitate pulling up si�2 because the max-gap constraint between si�1

and si�2 may no longer be satis�ed. The algorithm moves backwards until either the

max-gap constraint between the element just pulled up and the previous element is

satis�ed, or the �rst element has been pulled up. The algorithm then switches to

the forward phase, �nding elements of s in d starting from the element after the last

element pulled up. If any element cannot be pulled up (that is, there is no subsequent

set of transactions which contain the element), the data-sequence does not contain s.

This procedure is repeated, switching between the backward and forward phases, until all

the elements are found. Though the algorithm moves back and forth among the elements
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Transaction-Time Items

10 1, 2
25 4, 6
45 3
50 1, 2
65 3
90 2, 4
95 6

Figure 4: Example Data-Sequence

Item Times

1 ! 10 ! 50 ! NULL
2 ! 10 ! 50 ! 90 ! NULL
3 ! 45 ! 65 ! NULL
4 ! 25 ! 90 ! NULL
5 ! NULL
6 ! 25 ! 95 ! NULL
7 ! NULL

Figure 5: Alternate Representation

of s, it terminates because for any element si, the algorithm always checks whether a later

set of transactions contains si; thus the transaction-times for an element always increase.

Example Consider the data-sequence shown in Figure 4. Consider the case when max-

gap is 30, min-gap is 5, and window-size is 0. For the candidate-sequence h (1, 2) (3) (4) i,

we would �rst �nd (1, 2) at transaction-time 10, and then �nd (3) at time 45. Since the gap

between these two elements (35 days) is more than max-gap, we \pull up" (1, 2). We search

for the �rst occurrence of (1, 2) after time 15, because end-time((3)) = 45 and max-gap is

30, and so even if (1, 2) occurs at some time before 15, it still will not satisfy the max-gap

constraint. We �nd (1, 2) at time 50. Since this is the �rst element, we do not have to check

to see if the max-gap constraint between (1, 2) and the element before that is satis�ed. We

now move forward. Since (3) no longer occurs more than 5 days after (1, 2), we search

for the next occurrence of (3) after time 55. We �nd (3) at time 65. Since the max-gap

constraint between (3) and (1, 2) is satis�ed, we continue to move forward and �nd (4) at

time 90. The max-gap constraint between (4) and (3) is satis�ed; so we are done.

Finding a single element To describe the procedure for �nding the �rst occurrence

of an element in a data sequence, we �rst discuss how to e�ciently �nd a single item. A

straightforward approach would be to scan consecutive transactions of the data-sequence

until we �nd the item. A faster alternative is to transform the representation of d as follows.

Create an array that has as many elements as the number of items in the database.

For each item in the data-sequence d, store in this array a list of transaction-times of

the transactions of d that contain the item. To �nd the �rst occurrence of an item after

time t, the procedure simply traverses the list corresponding to the item till it �nds a
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transaction-time greater than t. Assuming that the dataset has 7 items, Figure 5 shows the

tranformed representation of the data-sequence in Figure 4. This transformation has a one-

time overhead of O(total-number-of-items-in-dataset) over the whole execution (to allocate

and initialize the array), plus an overhead of O(no-of-items-in-d) for each data-sequence.

Now, to �nd the �rst occurrence of an element after time t, the algorithm makes one

pass through the items in the element and �nds the �rst transaction-time greater than t for

each item. If the di�erence between the start-time and end-time is less than or equal to the

window-size, we are done. Otherwise, t is set to the end-time minus the window-size, and

the procedure is repeated.1

Example Consider the data-sequence shown in Figure 4. Assume window-size is set to 7

days, and we have to �nd the �rst occurrence of the element (2, 6) after time t = 20. We

�nd 2 at time 50, and 6 at time 25. Since end-time((2,6)) � start-time((2,6)) > 7, we set

t to 43 (= end-time((2,6)) � window-size) and try again. Item 2 remains at time 50, while

item 6 is found at time 95. The time gap is still greater than the window-size, so we set t

to 88, and repeat the procedure. We now �nd item 2 at time 90, while item 6 remains at

time 95. Since the time gap between 90 and 95 is less than the window size, we are done.

3.3. Taxonomies

The ideas presented in [SA95] for discovering association rules with taxonomies carry

over to the current problem. The basic approach is to replace each data-sequence d with

an \extended-sequence" d0, where each transaction d0i of d
0 contains the items in the corre-

sponding transaction di of d, as well as all the ancestors of each item in di. For example,

with the taxonomy shown in Figure 1, a data-sequence h (Foundation, Ringworld) (Second

Foundation) i would be replaced with the extended-sequence h (Foundation, Ringworld, Asi-

mov, Niven, Science Fiction) (Second Foundation, Asimov, Science Fiction) i. We now run

GSP on these \extended-sequences".

There are two optimizations that improve performance considerably. The �rst is to pre-

compute the ancestors of each item and drop ancestors which are not in any of the candidates

being counted before making a pass over the data. For instance, if \Ringworld", \Second

1An alternate approach would be to \pull up" previous items as soon as we �nd that the transaction-time

for an item is too high. Such a procedure would be similar to the algorithm that does the contains test for

a sequence.
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Foundation" and \Niven" are not in any of the candidates being counted in the current pass,

we would replace the data-sequence h (Foundation, Ringworld) (Second Foundation) i with

the extended-sequence h (Foundation, Asimov, Science Fiction) (Asimov, Science Fiction) i

(instead of the extended-sequence h (Foundation, Ringworld, Asimov, Niven, Science Fic-

tion) (Second Foundation, Asimov, Science Fiction) i). The second optimization is to not

count sequential patterns with an element that contains both an item x and its ancestor y,

since the support for that will always be the same as the support for the sequential pattern

without y. (Any transaction that contains x will also contain y.)

A related issue is that incorporating taxonomies can result in many redundant sequential

patterns. For example, let the support of \Asimov" be 20%, the support of \Foundation"

10% and the support of the pattern h (Asimov) (Ringworld) i 15%. Given this information,

we would \expect" the support of the pattern h (Foundation) (Ringworld) i to be 7.5%, since

half the \Asimov"s are \Foundation"s. If the actual support of h (Foundation) (Ringworld) i

is close to 7.5%, the pattern can be considered \redundant". The interest measure intro-

duced in [SA95] also carries over and can be used to prune such redundant patterns. The

essential idea is that given a user-speci�ed interest-level I , we display patterns that have

no ancestors, or patterns whose actual support is at least I times their expected support

(based on the support of their ancestors).

3.4. Memory Management

At low levels of support, Ck , the set of all candidate sequences with k items may not �t in

memory. Without memory management, this means that the algorithm has to make a disk

access to retrieve a candidate before checking whether it is contained in a data-sequence,

resulting in extremely poor performance. We now discuss how to handle this.

Observe that in the candidate generation phase of pass k, we need storage for frequent

sequences Lk�1 and the candidate sequences Ck. In the counting phase, we need storage

for Ck and at least one page to bu�er the database transactions.

First, assume that Lk�1 �ts in memory but that the set of candidates Ck does not. The

candidate generation function is modi�ed to generate as many candidates of Ck as will �t

in the memory and the data is scanned to count the support of these candidates. Frequent

sequences resulting from these candidates are written to disk, while those candidates without

minimum support are deleted. This procedure is repeated until all of Ck has been counted.
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If Lk�1 does not �t in memory either, we use the relational merge-join techniques to

generate candidates during the join phase of candidate generation. Unfortunately, we can

no longer prune those candidates whose contiguous subsequences are not in Lk�1, as the

whole of Lk�1 is not available in memory and accessing the disk to retrieve the relevant

portions of Lk�1 would be expensive. Fortunately, this does not a�ect correctness, although

it adds some redundant counting e�ort.

4. Performance Evaluation

We compare the performance of GSP to the AprioriAll algorithm given in [AS95], using

both synthetic and real-life datasets. We also show the scale-up properties of GSP, and

study the e�ect of time constraints and sliding-window transactions on the performance

of GSP. Our experiments were performed on an IBM RS/6000 250 workstation with 128

MB of main memory running AIX 3.2.5. The data resided in the AIX �le system and was

stored on a local 2GB SCSI 3.5" drive, with measured sequential throughput of about 2

MB/second.

4.1. A Brief Review of AprioriAll

In order to explain performance trends, we �rst give essential details of the AprioriAll

algorithm [AS95]. This algorithm splits the problem of �nding sequential patterns into

three phases:

1. Itemset Phase. All itemsets with minimum support are found. These also corre-

spond to the sequential patterns with exactly 1 element. Any of the algorithms for

�nding frequent itemsets (for example, [AS94]) can be used in this phase.

2. Transformation Phase. The frequent itemsets are mapped to integers. The database

is then transformed, with each transaction being replaced by the set of all frequent

itemsets contained in the transaction. This transformation can either be done on-the-

y each time the algorithm makes a pass over the data in the sequence phase, or done

once and cached. The latter option would be infeasible in many real applications,

since the transformed data may be larger than the original database, especially at low

levels of support.
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jDj Number of data-sequences (= size of Database)
jCj Average number of transactions per data-sequence
jT j Average number of items per Transaction
jSj Average length of maximal potentially

frequent Sequences
jIj Average size of Itemsets in maximal

potentially frequent sequences
NS Number of maximal potentially frequent Sequences
NI Number of maximal potentially frequent Itemsets
N Number of items

Table 1: Parameters

Each data-sequence is now a list of sets of integers, where each integer represents a

frequent itemset. Sequential patterns can now be considered lists of integers, rather

than lists of sets of items. (Any element of a sequential pattern with minimum support

must be a frequent itemset.)

3. Sequence Phase. All frequent sequential patterns are found. The basic computa-

tional structure of this phase is similar to the one described for GSP. Starting with

a seed of sequences found in the previous pass (found in the itemset phase for the

�rst pass), the algorithm generates candidates, makes a pass over the data to �nd the

support count of candidates, and uses those candidates with minimum support as the

seed set for generating the next set of candidates. However, the candidates gener-

ated and counted during the kth pass correspond to all candidates with k elements,

rather than candidates with k items. Candidate generation is somewhat similar to

the one for GSP since it is based on the intuition that all subsets/subsequences of an

itemset/sequence with minimum support also have minimum support. However, it is

much simpler since the candidates are lists of integers, rather than a list of sets of

integers.

4.2. Synthetic Datasets

We use the same synthetic datasets as in [AS95], albeit with more data-sequences. The

synthetic data generation program takes the parameters shown in Table 1. We generated

datasets by setting NS = 5000,NI = 25000 and N = 10000. The number of data-sequences,

jDj was set to 100,000. Table 2 summarizes the dataset parameter settings.
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Name jCj jT j jSj jIj

C10-T2.5-S4-I1.25 10 2.5 4 1.25
C10-T5-S4-I1.25 10 5 4 1.25
C10-T5-S4-I2.5 10 5 4 2.5
C20-T2.5-S4-I1.25 20 2.5 4 1.25
C20-T2.5-S4-I2.5 20 2.5 4 2.5
C20-T2.5-S8-I1.25 20 2.5 8 1.25

Table 2: Parameter values for synthetic datasets

4.3. Real-life Datasets

We used the following real-life datasets:

Mail Order: Clothes A transaction consists of items ordered by a customer in a single

mail order. This dataset has 16,000 items. The average size of a transaction is 2.62 items.

There are 214,000 customers and 2.9 million transactions; the average is 13 transactions

per customer. The time period is about 10 years.

Mail Order: Packages A transaction consists of \packaged o�ers" ordered by a customer

in a single mail order. This dataset has 69,000 items. The average size of a transaction

is 1.65 items. There are 570,000 customers and 1.7 million transactions; the average is 1.6

transactions per customer. The time period is about 3 years.

Mail Order: General A transaction consists of items ordered by a customer in a single

mail order. There are 71,000 items. The average size of a transaction is 1.74 items. There

are 3.6 million customers and 6.3 million transactions; the average is 1.6 transactions per

customer. The time period is about 3 months.

4.4. Comparison of GSP and AprioriAll

On the synthetic datasets, we changed minimum support from 1% to 0.25%. The results

are shown in Figure 6. \AprioriAll" refers to the version that does the data transformation

on-the-y. Although it may be practically infeasible to transform the database once and

cache it to disk, we have included this version in the comparison for completeness, referring

to it as \AprioriAll-Cached". We did not include in these experiments those features not

supported by AprioriAll.
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As the support decreases, more sequential patterns are found and the time increases.

GSP is between 30% to 5 times faster than AprioriAll on the synthetic datasets, with the

performance gap often increasing at low levels of minimum support. GSP is also slightly

faster to 3 times faster than AprioriAll-Cached.

The execution times on the real datasets are shown in Figure 7. Except for the Mail

Order: General dataset at 0.01% support, GSP runs 2 to 3 times faster than AprioriAll,

with AprioriAll-Cached coming in between. These match the results on synthetic data. For

the Mail Order: General dataset at 0.01% support, GSP is around 20 times faster than

AprioriAll and around 9 times faster than AprioriAll-Cached. We explain this behavior

below.

There are two main reasons why GSP does better than AprioriAll.

1. GSP counts fewer candidates than AprioriAll. AprioriAll prunes candidate sequences

by checking if the subsequences obtained by dropping an element have minimum

support, while GSP checks if the subsequences obtained by dropping an item have

minimum support. Thus GSP always counts fewer candidates than AprioriAll. The

di�erence in the number of candidates can be quite large for candidate sequences with

2 elements. AprioriAll has to do a cross-product of the frequent itemsets found in

the itemset phase. GSP �rst counts sequences obtained by doing a cross-product on

the frequent items, and generates 2-element candidates with more than 2 items later.

If the number of large items is much smaller than the number of large itemsets, the

performance gap can be dramatic. This is what happens in the Mail Order: General

dataset at 0.01% support.

2. AprioriAll (the non-cached version) has to �rst �nd which frequent itemsets are

present in each element of a data-sequence during the data transformation, and then

�nd which candidate sequences are present in it. This is typically somewhat slower

than directly �nding the candidate sequences. For the cached version, the procedure

used by AprioriAll to �nd which candidates are present in a data-sequence is either

about as fast or slightly faster than the procedure use by GSP. However, AprioriAll

still has to do the conversion once.
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Figure 6: Performance Comparison: Synthetic Data
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Figure 7: Performance Comparison: Real Data
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4.5. Scaleup

Fig. 8 shows how GSP scales up as the number of data-sequences is increased ten times

from 100,000 to 1 million. We show the results for the dataset C10-T2.5-S4-I1.25 with three

levels of minimum support. The execution times are normalized with respect to the times

for the 100,000 data-sequences dataset. As shown, the execution times scale quite linearly.

We got similar results for the other datasets.

Next, we investigated the scale-up as we increased the total number of items in a data-

sequence. This increase was realized in two di�erent ways: i) by increasing the average

number of transactions per data-sequence, keeping the average number of items per trans-

action the same; and ii) by increasing the average number of items per transaction, keeping

the average number transactions per data-sequence the same. The aim of this experiment

was to see how our data structures scale with the data-sequence size, independent of other

factors like the database size and the number of frequent sequences. We kept the size of the

database roughly constant by keeping the product of the average data-sequence size and

the number of data-sequences constant. We �xed the minimum support in terms of the

number of transactions in this experiment. Fixing the minimum support as a percentage

would have led to large increases in the number of frequent sequences and we wanted to

keep the size of the answer set roughly the same.

The results are shown in Fig. 9. All the experiments had the frequent sequence length
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Figure 9: Scale-up : Number of Items per Data-Sequence

set to 4 and the frequent itemset size set to 1.25. The average transaction size was set to

2.5 in the �rst graph, while the number of transactions per data-sequence was set to 10 in

the second. The numbers in the key (e.g. 800) refer to the minimum support.

As shown, the execution times usually increased with the data-sequence size, but only

gradually. There are two reasons for the increase. First, �nding the candidates present in

a data-sequence took a little more time. Second, despite setting the minimum support in

terms of the number of data-sequences, the number of frequent sequences increased with

increasing data-sequence size.

4.6. E�ects of Time Constraints and Sliding Windows

To see the e�ect of the sliding window and time constraints on performance, we ran

GSP on the three real datasets, with the min-gap, max-gap, sliding-window, and max-

gap+sliding-window constraints.2 The sliding-window was set to 1 day, so that the e�ect

on the number of sequential patterns would be small. Similarly, the max-gap was set to

more than the total time-span of the transactions in the dataset, and the min-gap was set

to 1 day. Figure 10 shows the results.

The min-gap constraint comes for \free"; there was no performance degradation. The

reason is that the min-gap constraint does not a�ect candidate generation, e�ectiveness of

2We could not study the performance impact of running with and without the taxonomy. For a �xed

minimum support, the number of sequential patterns found will be much higher when there is a taxonomy.

If we try to �x the number of sequential patterns found, other factors such as the number of passes di�er

for the two runs.
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the hash-tree in reducing the number of candidates that need to be checked, or the speed

of the contains test. However, there was a performance penalty of 5% to 30% for running

the max-gap constraint or sliding windows. There are several reasons for this:

1. The time for the contains test increases when either the max-gap or sliding window

option is used.

2. The number of candidates increases when the max-gap constraint is speci�ed, since

we can no longer prune non-contiguous subsequences.

3. When a sliding-window option is used, the e�ect of the hash-tree in pruning the num-

ber of candidates that we have to check against the data-sequence decreases somewhat.

If we reach a node by hashing on item x, rather than just applying the hash func-

tion to the items after x and checking those nodes, we also have to apply the hash

function to the items before x whose transaction-times are within window-size of the

transaction-time for x.

For realistic values of max-gap, GSP will usually run signi�cantly faster with the con-

straint than without, since there will be fewer candidate sequences. However, specifying a

sliding window will increase the execution time, since both the overhead and the number of

sequential patterns will increase.

5. Summary

We are given a database of sequences, where each sequence is a list of transactions

ordered by transaction-time, and each transaction is a set of items. The problem of mining

sequential patterns introduced in [AS95] is to discover all sequential patterns with a user-

speci�ed minimum support, where the support of a pattern is the number of data-sequences

that contain the pattern.

We addressed some critical limitations of the earlier work in order to make sequential

patterns useful for real applications. In particular, we generalized the de�nition of sequential

patterns to admit max-gap and min-gap time constraints between adjacent elements of a

sequential pattern. We also relaxed the restriction that all the items in an element of

a sequential pattern must come from the same transaction, and allowed a user-speci�ed

window-size within which the items can be present. Finally, if a user-de�ned taxonomy
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Figure 10: E�ects of Extensions on Performance
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over the items in the database is available, the sequential patterns may include items across

di�erent levels of the taxonomy.

We presented GSP, a new algorithm that discovers these generalized sequential patterns.

It is a complete algorithm in that it guarantees �nding all patterns that have a user-speci�ed

minimum support. Empirical evaluation using synthetic and real-life data indicates that

GSP is much faster than the AprioriAll algorithm presented in [AS95]. GSP scales linearly

with the number of data-sequences, and has very good scale-up properties with respect to

the average data-sequence size.

The GSP algorithm has been implemented as part of the Quest data mining prototype

at IBM Research, and is incorporated in the IBM data mining product. It runs on several

platforms, including AIX and MVS at �les, DB2/CS and DB2/MVS. It has also been

parallelized for the SP/2 shared-nothing multiprocessor. Further information on the Quest

project can be found at http://www.almaden.ibm.com/cs/quest/.
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