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Abstract

Discovery of association rules from large databases has been a focused topic
recently in the research into database mining. Previous studies discover associ-
ation rules at a single concept level, however, mining association rules at multi-
ple concept levels may lead to finding more informative and refined knowledge
from data. In this paper, we study efficient methods for mining multiple-level
association rules from large transaction databases. A top-down progressive
deepening method is proposed by extension of some existing (single-level) asso-
ciation rule mining algorithms. In particular, a group of algorithms for mining
multiple-level association rules are developed and their relative performance are
tested on different kinds of transaction data. Relaxation of the rule conditions
for finding flexible multiple-level association rules is also discussed. Our study
shows that efficient algorithms can be developed for the discovery of interesting
and strong multiple-level association rules from large databases.

1 Introduction

With wide applications of computers and automated data collection tools in business
transaction processing (such as banking, shopping, etc.), massive amounts of trans-
action data have been collected and stored in databases. Discovery of interesting
association or sequential patterns among huge amounts of transaction data will help
marketing, decision making, and business management. Therefore, mining associ-
ation rules or sequential patterns from large data sets has been a focused topic in

recent research into knowledge discovery in databases [17, 2, 1, 3, 4, 13].

Studies on mining association rules have evolved from techniques for discovery
of functional dependencies [12], strong rules [17], classification rules [18, 8], causal
rules [14], clustering [7], inductive logic programming [15], etc. to disk-based, efficient
methods for mining association rules in large sets of transaction data [2, 1, 3, 4]. How-
ever, previous work has been focused on mining association rules at a single concept
level. There are applications which need to find association rules at multiple concept
levels as well. For example, one may find that 80% of customers that purchase milk
may also purchase bread. However, it could be more informative to also show that
45% of people buy Wonder wheat bread if they buy Dairyland 2% milk. Obviously,
the association relationship in the latter statement is expressed at a lower concept
level but often carries more specific and concrete information than that in the for-
mer. Such a process of discovering association relationships at multiple concept levels
represents a process which progressively deepens the knowledge mining process for

finding refined knowledge from data. The necessity for mining multiple level associ-



ation rules or using taxonomy information at mining association rules has also been

observed by other researchers, e.g., [3].

For finding interesting association rules, the concepts of minimum support and
minimum confidence have been introduced to confine the search space [2, 3]. Infor-
mally, the support of a pattern A in a set of transactions S is the probability that a
transaction in S contains pattern A; and the confidence of A — B in S is the prob-
ability that pattern B occurs in S if pattern A occurs in S. A user or an expert
may specify a minimum support threshold and a minimum confidence threshold to
confine the rules to be discovered to be strong ones, that is, the patterns which occur
relatively frequently and the rules which demonstrate relatively strong implication

relationships.

To extend the work of mining single-level association rules to multiple-level ones,
concept taxonomy should be provided and be used for generalizing primitive level
concepts to high level ones. This should not be a problem in many applications since
such taxonomy information either is already implicitly stored in the database, such
as “Wonder wheat bread is a wheat bread which is in turn a bread”, or can be easily
obtained elsewhere, such as “Vancouver is a part of B.C. which is in turn a part of
Canada” (from a map or a database). Thus, data items in the transactions can be
generalized to multiple concept levels. However, direct application of the existing
association rule mining methods to mining multiple-level associations may lead to

some undesirable results as presented below.

First, strong support is more likely to exist at high concept levels, such as milk
and bread, rather than at low concept levels, such as a particular brand of milk
and bread. Therefore, if one wants to find strong associations at relatively low con-
cept levels, the minimum support threshold must be reduced substantially. However,
reducing the minimum support may lead to the generation of many uninteresting as-
sociations, such as “toy — 2% milk” before the discovery of some interesting ones,
such as “Dairyland 2% milk — Wonder wheat bread”, because the former may

occur more frequently and thus have stronger support than the latter.

Second, it is unlikely to find many strong association rules at a primitive concept
level, such as the associations among particular bar codes, because of the tiny average
support for each primitive data item in a very large item set. Therefore, mining
strong associations should be performed at a rather high concept level, which is
actually the case in many studies as shown in their reported results, such as “milk

— bread”, or “tire A auto_accessories — automotive services” [2, 3], in



which each concept is at a level much higher than the bar code level. However, mining
association rules at high concept levels may often lead to the rules corresponding to
prior knowledge and expectations[10], such as “milk — bread” (which could be
common sense), or lead to some uninteresting attribute combinations, such as “toy

— milk” (which seems just happening together by chance).

In order to remove uninteresting rules generated in knowledge mining processes,
researchers have proposed some measurements to quantify the “usefulness” or “in-
terestingness” of a rule [16] or suggested to “put a human in the loop” and provide
tools to allow human guidance [5, 11]. Nevertheless, automatic generation of rela-
tively focused, informative association rules will be obviously more efficient than first

generating a large mixture of interesting and uninteresting rules.

These observations lead us to examine the methods for mining interesting associ-
ation rules at multiple concept levels, which may not only discover rules at different
levels but also have high potential to find nontrivial, informative association rules be-
cause of its flexibility at focusing the attention to different sets of data and applying
different thresholds at different levels.

In this study, issues for mining multiple-level association rules from large databases
are examined, with a top-down, progressive deepening method developed by extension
of some existing algorithms for mining single-level association rules. The method first
finds large data items at the top-most level and then progressively deepens the min-
ing process into their large descendants at lower concept levels. Some data structures
and intermediate results generated at mining high level associations can be shared for
mining lower level ones, and different sharing schemes lead to different variant algo-
rithms. The performance study on those variant algorithms identifies the conditions

that certain algorithms could be best suited for certain kinds of data distributions.

The paper is organized as follows. In Section 2, the concepts related to multiple-
level association rules are introduced. In Section 3, a method for mining multiple-level
association rules in large data sets is studied. In Section 4, a set of variant algorithms
for mining multiple-level association rules are introduced, with their relative efficiency
analyzed. In Section 5, the performance study of the set of proposed algorithms is
performed on different kinds of data distributions, which identifies the conditions for
the selection of algorithms. Section 6 is a discussion on concept hierarchies, mining
different kinds of multiple-level association rules, and user interface issues. The study

is concluded in Section 7.



2 Multiple level association rules

To study the mining of association rules from a large set of transaction data, we
assume that the database contains (1) a transaction data set, 7, which consists of a
set of transactions (75, {A,,..., As}), where T} is a transaction identifier, A; € Z (for
it =p,...,q), and T is the set of all the data items in the item data set; and (2) the
description of the item data set, D, which contains the description of each item in Z

in the form of (A;, description;), where A; € T.

Furthermore, to facilitate the management of large sets of transaction data, our
discussion adopts an extended relational model which allows an attribute value to be
either a single or a set of values (i.e., in non-first-normal form). Nevertheless, the
method developed here is applicable (with minor modifications) to other represen-
tations of data, such as a data file, a relational table, or the result of a relational

expression.

Definition 2.1 A pattern, A, is one item A; or a set of conjunctive items A;A---AAj,
where A;, ..., A; € Z. The support of a pattern A in a set S, 0(A/S), is the number
of transactions (in S) which contain A versus the total number of transactions in S.

The confidence of A — B in S, o(A — B/S), is the ratio of o(A A B/S) versus
o(A/S), i.e., the probability that pattern B occurs in S when pattern A occurs in S.

It is easily to verify the validity of the following properties related to the support

measurement.

1. o(AABJS) = o(BAA/S).

2. o(ANB/S) < o(A)S).

The first property indicates that commutative patterns have the same support, and
the second one shows that the support of multiple patterns (occurring together) can-

not be larger than any of their component ones.

To find relatively frequently occurring patterns and reasonably strong rule im-
plications, a user or an expert may specify two thresholds: minimum support, o',
and minimum confidence, p’. Notice that for finding multiple-level association rules,
different minimum support and/or minimum confidence can be specified at different

levels.



Definition 2.2 A pattern A is large in set S at level [ if the support of A is no
less than its corresponding minimum support threshold o;. The confidence of a rule
“A— B/S” is high at level [ if its confidence is no less than its corresponding

minimum confidence threshold ;.

Definition 2.3 A rule “A — B/S” is strong if, for a set S, each ancestor (i.e.,
the corresponding high level item) of every item in A and B, if any, is large at its

corresponding level, “A A B/S” is large (at the current level), and the confidence of
“A — B/S” is high (at the current level).

The definition indicates that if “A — B/S” is strong, then (1) c(AA B/S) > o',
(and thus, o(A/S) > o', and o(B/S) > o¢'), and (2) (A — B/S) > ¢, at its
corresponding level. The definition also represents a filtering process which confines
the patterns to be examined at the lower levels to be only those with large supports at
their corresponding high levels (and thus avoids the generation of many meaningless
combinations formed by the descendants of the small patterns). For example, in a
sales_transaction data set, if milk is a large pattern (item), its lower level patterns
such as 2% milk will be examined. However, if fish is a small pattern, its descendants

such as salmon will not be examined further.

Based on this definition, the following example illustrates the idea of mining

multiple-level association rules.

Example 2.1 Suppose that a shopping transaction database consists of two rela-
tions: (1) a sales_item (description) relation, which consists of a set of attributes:
bar_code, category, brand, producer, content_spec, size, storage_period, price, as shown
in Table 1, and (2) a sales_transaction table, which registers for each transaction the

transaction number and the set of items purchased, as shown in Table 2.

Let the query be to find multiple-level strong associations in the database for the
purchase patterns related to the foods which can only be stored for less than 3 weeks.

The query can be expressed as follows in an SQL-like data mining language [8].

discover association rules
from sales transactions T and sales_item I
where T.bar code = I.bar_code and
I.category = ‘‘food’’ and I.storage period < 21

with interested attributes category, content_spec, brand



bar_code | category brand producer content_spec size storage_period | price
17325 milk Foremost | Foremost Farm 2% 1 gallon 14 (days) $3.89
Table 1: A sales_item (description) relation
transaction_id bar_code _set
351428 {17325, 92108, 55349, 88157, 77493, 30816}
982510 {92458, 77451, 60395, 88144, 42316, 35672, 29563}
Table 2: A sales_transaction table
Notice that the category “food” is a generalized concept which covers high level
concepts: beverage, fruit, vegetable, bread, milk, meat, fish, cereal, etc. The query is
first transformed into a standard SQL query which retrieves all the data items with
the category belonging to “food” and the storage period being less than 21 days.
generalized item_id bar_code_set category | content_spec brand
112 {17325, 31414, 91265} milk 2% Foremost
141 {29563, 77454, 89157} milk skim Dairyland
171 {73295, 99184, 79520} milk chocolate Dairyland
212 {88452, 35672, 98427, 31205} bread wheat Wonder
711 {32514, 78152} fruit_juice orange Minute_maid

Table 3: A generalized item description table

Each tuple in a generalized item description table represents a generalized item

which is the merge of a group of tuples which share the same values in the interested

attributes. For example, the tuples with the same category, content-spec and brand in

Table 1 are merged into one, with their bar codes replaced by a bar_code set, as shown

in Table 3. Each group is then treated as an atomic item in the generation of the

lowest level association rules. For example, the association rule generated regarding

to milk will be in relevance only to brand (such as Dairyland) and content-spec (such

as 2%) but not to size, producer, etc.




food

white

2% .. chocalate

Dairyland Foremost Old Mills  Wonder

Figure 1: A taxonomy for the relevant data items

Notice that the taxonomy information is provided implicitly in Table 3, in which
category (such as “milk”) represents the first-level concept, content_spec (such as

“2%”) for the second level one, and brand (such as “Foremost”) for the third level

one, which implies a concept tree like Figure 1.

The process of mining association rules is expected to first discover large patterns
and strong association rules at the top-most concept level. Let the minimum sup-
port at this level be 5% and the minimum confidence be 50%. One may find the
following: a set of single large items (each called a large 1-itemset, with the support
ratio in parentheses): “bread (25%), meat (10%), milk (20%), ..., vegetable
(30%)7, a set of pair-wised large items (each called a large 2-itemset): “(vegetable,
bread (19%)), (vegetable, milk (15%)), ..., (milk, bread (17%))”, etc. and
the strong association rules, such as “bread — vegetable (78%), ..., milk — bread
(85%)7.

At the second level, only the transactions which contain the large items at the first
level are examined. Let the minimum support at this level be 2% and the minimum
confidence be 40%. One may find the following large 1-itemsets: “lettuce (10%),
wheat bread (15%), white bread (10%), 2% milk (10%), chicken (5%), ...,
beef (5%)7, and the following large 2-itemsets: “(2% milk, wheat bread (6%)),
(lettuce, 2% milk (4%)), (chicken, beef (2.1%))”, and the strong association
rules: “2% milk — wheat bread (60%), ..., beef — chicken (42%)7, etc.

The process repeats at even lower concept levels until no large patterns can be
found. a



3 A method for mining multiple level association rules

A method for mining multiple level association rules is introduced in this section. To
simplify our discussion, an abstract example which simulates the real life example of

Example 2.1 is analyzed as follows.

Example 3.1 To facilitate our discussion, the taxonomy information for each (grouped)
item in Example 2.1 is encoded as a sequence of digits in the transaction table 7[1]
(Table 4). For example, the item ‘2% Foremost milk’ is encoded as ‘112’ in which
the first digit, ‘17, represents ‘milk’ at level-1, the second, ‘1’, for ‘2% milk’ at level-2,
and the third, ‘2’, for the brand ‘Foremost’ at level-3. Similar to [3], repeated items
(i.e., items with the same encoding) at any level will be treated as one item in one

transaction.

TID | Items

Ty | {111, 121, 211, 221}

T, | {111, 211, 222, 323}

Ts | {112, 122, 221, 411}

Ty | {111, 121}

Ts | {111, 122, 211, 221, 413}
Te | {211, 323, 524}

T: | {323, 411, 524, 713}

Table 4: Encoded transaction table: 7[1]

The derivation of the large item sets at level 1 proceeds as follows. Let the
minimum support be 4 transactions (i.e., minsup[l] = 4). (Notice since the total
number of transactions is fixed, the support is expressed in an absolute value rather
than a relatively percentage for simplicity). The level-1 large 1-itemset table £[1,1]
can be derived by scanning 7 [1], registering support of each generalized item, such as
Lok, ..., 4%, if a transaction contains such an item (i.e., the item in the transaction
belongs to the generalized item 1, ..., 4%, respectively), and filtering out those
whose accumulated support count is lower than the minimum support. L[1,1] is
then used to filter out (1) any item which is not large in a transaction, and (2)
the transactions in 7[1] which contain only small items, which results in a filtered

transaction table 7 [2] of Figure 2. Moreover, since there are only two entries in £[1,1],



the level-1 large-2 itemset table £[1,2] may contain only 1 candidate item {1#x, 24x},
which is supported by 4 transactions in 7[2].

Level-1 minsup = 4

Level-1 large 1-itemsets: £[1,1] Filtered transaction table: 7 [2]
Itemset | Support TID | Items
) 5 T, | {111, 121, 211, 221}
(24 5 7, | {111, 211, 222}
Ty | {112, 122, 221)
Level-1 large 2-itemsets: L[1,2] Ty | {111, 121}
Itemset | Support Ts | {111, 122, 211, 221}
{ Tk, 24} 4 Te | {211}

Figure 2: Large item sets at level 1 and filtered transaction table: 7[2]

Level-2 minsup = 3 Level-2 large 3-itemsets: £[2,3]
Level-2 large 1-itemsets: £[2,1] Ttemset Support
Itemset | Support 1%, 12%, 22+) 3
{11%} 5
{12x} 4 Level-3 minsup = 3
{21} 4 Level-3 large 1-itemsets: £[3,1]
{22} 4 Itemset | Support
. {111} 4
Level-2 large 2-itemsets: £[2,2] 211} 4
[temset Support {221} 3
{11%, 12x} 4
{11, 21} 3 Level-3 large 2-itemsets: £[3,2]
{11%, 22x} 4 Itemset | Support
{12+, 224} | 3 i, 2117 | 3
{21%, 22x} 3

Figure 3: Large item sets at levels 2 and 3

According to the definition of MIL-association rules, only the descendants of the
large items at level-1 (i.e., in L[1,1]) are considered as candidates in the level-2 large
l-itemsets. Let minsup[2] = 3. The level-2 large 1-itemsets £[2,1] can be derived from
the filtered transaction table 7[2] by accumulating the support count and removing
those whose support is smaller than the minimum support, which results £[2,1] of
Figure 3. Similarly, the large 2-itemset table £[2,2] is formed by the combinations of
the entries in £[2,1], together with the support derived from 7 [2], filtered using the

10



corresponding threshold. The large 3-itemset table £[2,3] is formed by the combina-
tions of the entries in £[2,2] (which has only one possibility {11*, 12, 22x}), and a

similar process.

Finally, £[3,1] and £[3,2] at level 3 are computed in a similar process, with the
results shown in Figure 3. The computation terminates since there is no deeper level

requested in the query 1. a

The above discussion leads to the following algorithm for mining strong ML asso-
ciation rules. Notice that it is assumed that the encoded transaction table 7[1] has
been derived and serves as an input of the algorithm. In the real application, it can
be derived efficiently by first generating (based on the knowledge discovery query)
a generalized item table with each tuple associated with its hierarchy encoding (as
Table 3 of Example 2.1) and then generating 7 [1] and L[1,1] at the same scan of the
original transaction table (replacing bar codes by encoded items and accumulating

the support for the top-level generalized items).

Algorithm 3.1 (ML-T2) Finding (mulliple level) large item sets for mining strong

multiple level association rules defined by Definition 2.3 in a large transaction database.

Input: The input consists of

1. ahierarchy-information encoded transaction database 7[1], with the schema:
Transaction(T1D, Itemset), in which each item in the [temset contains

encoded concept hierarchy information, and
2. the minimum support threshold (minsup[l]) for each concept level .

Output: Large item sets for mining strong ML association rules for the relevant set

of transaction data.

Method: A top-down, progressively deepening process which collects large item sets

at different concept levels as follows.

Starting at level 1, derive for each level [, the large k-items sets, L[l, k], for
each k, and the large item set, LL[I] (for all k’s), as follows (in the syntax
similar to C and Pascal, which should be self-explanatory).

lthe derivation also terminates when an empty large 1-itemset table is generated at any level.

11



[u—y

for (I:=1; L]I,1] # 0 and [ < mazx_level; [++) do begin
if [ =1 then begin
L[, 1] := getlarge_1 itemsets(T[1],1);
T[2] := get_filtered_transaction_table(T[1], L1, 1]);
end
else L[I,1] := getlarge_1_itemsets(T[2],1);
for (k:=2; LI,k — 1] # 0; k++) do begin
Cy := get_candidate_set(L[l, k — 1]);
foreach transaction ¢ € 7[2] do begin

O =~J O T =~ W o
O — O e e e N e e

AAAAAAAA/—\/—\/—\/—\/—\/—\A/—\
Ne)

10) Cy := gel_subsets(Cy,1); // Candidates contained in ¢
1) foreach candidate ¢ € C do c.support++;

12) end

13) L[l k] :=={c € Cy|e.support > minsup[l]}

14) end

15) LL[I] .= U, L[, k]

16) end O

Explanation of Algorithm 3.1.
According to Algorithm 3.1, the discovery of large support items at each level [

proceeds as follows.

1. Atlevel 1, the large 1-itemsets L[I, 1] is derived from 7 [1] by “get_large_1_itemsets(T[1],1)”.
At any other level [, L[l, 1] is derived from T [2] by “get_large_1_itemsets(T[2],1)”.
This is implemented by scanning the items of each transaction ¢ in 7[1] (or
7[2]), incrementing the support count of an item ¢ in the itemset if ¢’s count
has not been incremented by ¢. After scanning the transaction table, filter out

those items whose support is smaller than minsupl[l].

2. After computing L£[1,1], the filtered transaction table 7[2] is derived by “get_
filtered_transaction_table(T[1], L[1,1])”, which uses L[1,1] as a filter to filter
out (1) any item which is not large at level 1, and (2) the transactions which

contain no large items.
3. The large k (for k > 1) item set table at level [ is derived in two steps:

(a) Compute the candidate set from L[, k—1], as done in the apriori candidate

generalion algorithm [3], apriori-gen, i.e., it first generates a set Cy in which

12



each item set consists of k items, derived by joining two (k — 1) items in
L[l, k] which share (k — 2) items, and then removes a k-itemset ¢ from Cj
if there exists a ¢’s (k — 1) subset which is not in L[l, k — 1].

(b) For each transaction ¢ in 7[2], for each of ¢’s k-item subset ¢, increment
¢’s support count if ¢ is in the candidate set Cy. Then collect into L[, k]

each ¢ (together with its support) if its support is no less than minsupll].

4. The large itemsets at level [, LL]I], is the union of L]I, k] for all the k’s. 0

After finding the large itemsets, the set of association rules for each level [ can
be derived from the large itemsets LL[{] based on the minimum confidence at this
level, muncon f[l]. This is performed as follows [3]. For every large itemset r, if
a is a nonempty subset of r, the rule “a — r — a” is inserted into rule_set[l] if
support(r)/support(a) > minconf[l], where minconf[l] is the minimum confidence

at level .

Rationale of Algorithm 3.1.

The following reasoning shows that Algorithm 3.1 discovers the complete set of
multiple-level large item sets used by Definition 2.3 for derivation of strong association
rules in a large transaction database. The algorithm starts with the top-most level,
[ = 1, and progressively deepens the mining process to lower levels, until either an
empty large 1-itemset table is derived at some level (thus no more large items can be
used for deeper levels according to the definition), or the maximum (defined) level is
reached. For each level [, it first derives the large 1-itemsets and then derives large k-
itemsets for £ > 1 using a method similar to Algorithm Apriori [3] whose correctness

has been shown in [3].

The filtered transaction table 7[2] is sufficient for the derivation of LI, k] for (1)
I =1and k > 1, and (2) [ > 1 and all the k’s, based on the following reasoning.
According to the construction of 7[2] described in the algorithm, 7[2] contains all
the large items at level-1. Definition 2.3 indicates that (1) only the descendants of
the items in the large 1-itemsets will need to be examined at the lower levels; and (2)
at any level, only the items in the large 1-itemsets may have a chance to form large
k-itemsets for k > 1 at that level. Since 7[2] preserves all of the large items in 7[1]
in each transaction, the support count of each transaction will be correctly registered

at each level. O

13



Algorithm 3.1 inherits several important optimization techniques developed in
previous studies at finding association rules [2, 3]. For example, get_candidate_set
of the large k-itemsets from the known large (k — 1)-itemsets follows apriori-gen
of Algorithm Apriori [3]. Function get_subsets(Cy,t) is implemented by a hashing
technique from [3]. Moreover, to accomplish the new task of mining multiple-level
association rules, some interesting optimization techniques have been developed in
Algorithm 3.1, as illustrated below.

1. Generalization is first performed on a given item description relation to derive
a generalized item table in which each tuple contains a set of item identifiers

(such as bar_codes) and is encoded with concept hierarchy information.

2. The transaction table 7 is transformed into 7[1] with each item in the itemset

replaced by its corresponding encoded hierarchy information.

3. A filtered transaction 7 [2] which filters out small items at the top level of 7[1]
using the large 1-itemsets £[1,1] is derived and used in the derivation of large
k-items for any k (k > 1) at level-1 and for any k (k > 1) for level [ (I > 1).

4. From level [ to level ({4 1), only large items at L[/, 1] need to be checked against
72] for L[I 4 1,1].

Notice that in the processing, 7[1] needs to be scanned twice, whereas 7 [2] needs
to be scanned p times where p = > ; k; — 1, and k; is the maximum & such that the

k-itemset table is nonempty at level [.

4 Variations of the Algorithm for potential performance
improvement

Potential performance improvements of Algorithm ML-T2 are considered by explo-
ration of the sharing of data structures and intermediate results and maximally gen-
eration of results at each database scan, etc. which leads to the following variations of
the algorithm: (1) using only one encoded transaction table (ML-T1), (2) using mul-
tiple encoded transaction tables (ML-Tmax), and (3) refined two encoded transaction

tables (ML-T2+4),

14



4.1 Using single encoded transaction table: Algorithm ML-
T1

The first variation is to use only one encoded transaction table 7[1], that is, no filtered

encoded transaction table 7 [2] will be generated in the processing.

At the first scan of T[1], large 1-itemsets L[I, 1] for every level [ can be generated
in parallel, because the scan of an item 7 in each transaction ¢ may increase the count
of the item in every L[, 1] if its has not been incremented by ¢. After the scanning
of T[1], each item in L[l, 1] whose parent (if [ > 1) is not a large item in the higher
level large 1-itemsets or whose support is lower than minsup[l] will be removed from
L[l,1]. This process is performed in the function “get_all large_1_itemsets(T[1])” of
Algorithm 4.1.

After the generation of large 1-itemsets for each level [, the candidate set for large
2-itemsets for each level [ can be generated by the apriori-gen algorithm [3]. The
getl _subsets function will be processed against the candidate sets at all the levels at
the same time by scanning 7 [1] once, which calculates the support for each candidate
itemset and generates large 2-itemsets L£[{,2]. Similar processes can be processed for

step-by-step generation of large k-item-sets L[l, k] for k > 2.

This algorithm avoids the generation of a new encoded transaction table. More-
over, it needs to scan 7 [1] once for generation of each large k-itemset table. Since
the total number of scanning of 7[1] will be k times for the largest k-itemsets, it is a
potentially efficient algorithm. However, 7[1] may consist of many small items which
could be wasteful to be scanned or examined. Also, it needs a large space to keep all

C[l] which may cause some page swapping.

The algorithm is briefly summarized as follows.

Algorithm 4.1 (ML-T1) A variation to Algorithm ML-T2: using only one encoded
transaction table T [1].

The input and output specifications are the same as Algorithm ML-T2. The

procedure is described as follows.

{L[1,1],...,Llmazx 1, 1]} := get_all large_1_aitemsets(T[1]);
more_results := true;
for (k := 2; more_results; k++) do begin

more_results := false;

15



) for (I:=1; 1 < max.l; [++) do

) if L]1,k] # 0 then begin
) Cll] := get_candidate_set(L[l, k — 1]);

8) foreach transaction ¢ € 7[1] do begin
) D[l] := get_subsets(C|l],t); // Candidates contained in ¢
0 foreach candidate ¢ € D[l] do c.support++;

11 end

12 L[l k] :={c € C[l]|e.support > minsup[l]}
13 more _results := true;

14 end

15
16

end

(
(
(
(
(
(
(
(
(
(
(
( for (I:=1;l <max.l; [++4) do LL[I] := U, L[l k]; O

e e e N N N N

Example 4.1 The execution of the same data mining query on the same database
with the same thresholds as in Example 3.1 using Algorithm 4.1 will generate the
same large item sets L[l, k] for all the I’s and k’s but in difference sequences (without
generating and using 7[2]). It first generates large 1-itemsets L[l, 1] for all the I’s
from T[1]. Then it generates the candidate sets from L[l, 1], and then derives large
2-itemsets L[l,2] by passing the candidate sets through 7[1] to obtain the support
count and filter those smaller than minsup[l]. This process repeats to find k-itemsets

for larger k until all the large k-itemsets have been derived. a

4.2 Using multiple encoded transaction tables: Algorithm
ML-Tmax

The second variation is to generate multiple encoded transaction tables 7[1], 7[2],
.., Tlmaxz_1+ 1], where maz_ is the maximal level number to be examined in the

processing.

Similar to Algorithm ML-T2, the first scan of 7 [1] generates the large 1-itemsets
L[1,1] which then serves as a filter to filter out from 7[1] any small items or transac-
tions containing only small items. 7[2] is resulted from this filtering process and is

used in the generation of large k-itemsets at level 1.

Different from Algorithm ML-T2, 7T[2] is not repeatedly used in the processing
of the lower levels. Instead, a new table 7|l 4 1] is generated at the processing of
each level [, for [ > 1. This is done by scanning 7 [{] to generate the large 1-itemsets

L[l,1] which serves as a filter to filter out from 7[l] any small items or transactions
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containing only small items and results in 7 [[+1] which will be used for the generation
of large k-itemsets (for & > 1) at level [ and table T[l + 2] at the next lower level.
Notice that as an optimization, for each level [ > 1, 7[l] and L[, 1] can be generated

in parallel (i.e., at the same scan).

The algorithm derives a new filtered transaction table, 7]l + 1], at the processing
of each level [. This, though seems costly at generating several transaction tables,
may save a substantial amount of processing if only a small portion of data are large
items at each level. Thus it may be a promising algorithm at this circumstance,
however, it may not be so effective if only a small number of the items will be filtered

out at the processing of each level.

The algorithm is briefly summarized as follows.

Algorithm 4.2 (ML-Tmax) A variation to Algorithm ML-T2: using mulliple en-

coded transaction tables.

The input and output specifications are the same as Algorithm ML-T2. The

procedure is described as follows.

) for (1:=1; L[I,1] # 0 and | < maz_level; I4+4) do begin
) if { =1 then L[, 1] := get_large_1_itemsets(T[1],1);
) {TI+ 1], LI+ 1,1]} := get_filtered T table_and_large_1_itemsets(T[l], L[, 1]);
) for (k:=2; LI,k — 1] # 0; k++) do begin
) Cy 1= get_candidate_set(L[l, k — 1]);
6) foreach transaction t € 7[l + 1] do begin
) Cy := get_subsets(Cy,1); // Candidates contained in ¢
)
)
0

8 foreach candidate ¢ € C; do c.support++;
9 end

10) L[l k] :={ec € Cyl|e.support > minsupl[l]}
11) end

12) LL[I] := U L[L, K;

13) end

Notice that on line 3, the procedure “get_filtered T table_and_large_1 itemsets(T[l], L[I,1])”
scans 7T [I], collects only the large items for each transaction containing large items,
which generates 7 [l 4+ 1], and accumulates the support count for each item for the

preparation of L[l + 1,1]. After the scan, it removes small items from the prepared
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L[l + 1,1] based on minsup[l + 1]. Thus it generates both 7[l + 1] and L[l + 1,1] in
the same scan of 7[]]. 0

Example 4.2 The execution of the same data mining query on the same database
with the same thresholds as in Example 3.1 using Algorithm 4.2 will generate the
same large itemsets L[l, k] for all the I’s and k’s but in difference sequences, with the
generation and help of the filtered transaction tables 7[2], ..., 7 [maxzd + 1], where
maz_l is the maximum level explored in the algorithm. It first generates the large
1-itemsets L[1,1] for level 1. Then for each level [ (initially [ = 1), it generates the
filtered transaction table 7[l 4 1] and the level-(I 4+ 1) large 1-itemsets L[] 4 1, 1] by
scanning 7 [I] using L[/, 1], and then generates the candidate 2-itemsets from L[I, 1],
calculates the supports using 7 [l + 1], filter those with support less than minsupl[l],
and derives L[l,2]. The process repeats for the derivation of L[,3], ..., L[I,k]. O

4.3 Refined technique using two encoded transaction ta-
bles: Algorithm ML-T2+

The third variation uses the same two encoded transaction tables 7[1] and 7[2] as in

Algorithm ML-T2 but it integrates some optimization techniques considered in the

algorithms ML-T1 and ML-Tmax.

The scan of 7[1] first generates large 1-itemsets £[1, 1]. Then one more scan of 7[1]
using L[1, 1] will generate a filtered transaction table 7 [2] and all the large 1-itemset
tables for all the remaining levels, i.e., L[l, 1] for 1 < [ < maz_l by incrementing the
count of every L[, 1] at the scan of each transaction and removing small items and

the items whose parent is small from L[l 1] at the end of the scan of 71].
Then the candidate set for the large 2-itemsets at each level [ can be generated by

the apriori-gen algorithm [3], and the get_subsets routine will extract the candidate
sets for all the level [ (I > 1) at the same time by scanning 7 [2] once. This will
calculate the support for each candidate itemset and generate large 2-item-sets L[{, 2]
for [ > 1.

Similar processes proceed step-by-step which generates large k-item-sets L[{, k] for
k > 2 using the same 7 [2].

This algorithm avoids the generation of a group of new filtered transaction tables.
It scans 7[1] twice to generate 7[2] and the large 1-itemset tables for all the levels.

Then it scans 7 [2] once for the generation of each large k-itemset, and thus scans
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7[2] in total & —1 times for the generation of all the k-itemsets, where k is the largest
such k-itemsets available. Since k-itemsets generation for k& > 1 is performed on 7 [2]
which may consist of much less items than 7[1], the algorithm could be a potentially

efficient one.

The algorithm is briefly summarized as follows.

Algorithm 4.3 (ML-T24) A variation to Algorithm ML-T2: refined technique us-

ing two encoded transaction tables.

The input and output specifications are the same as Algorithm ML-T2. The

procedure is described as follows.

~—~
[u—
~—

L[1,1] := get_large_1_aitemsets(T[1],1);
{T2],L[2,1],...,Llmax 1, 1]} :=
get_filtered_transaction_table_and large_1_itemsets(T[1], L[1,1]);
more_results := true;
for (k := 2; more_results; k+4) do begin
more_results := false;
for (I:=1; 1 < max.l; [++) do
if LI,k — 1] # 0 then begin
Cll] := get_candidate_set(L[l, k — 1]);
foreach transaction ¢ € 7[2] do begin
D[l] := get_subsets(C|l],t); // Candidates contained in ¢

—~
(VS (S
~—

e

-~ (&4
O — e e N N
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end

o~~~ o~ o~ o~ o~ o~
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)
11) foreach candidate ¢ € D[l] do c.support++;
12) more_results := true;
13) end
14) end
15) L[l k] :={c € C[l]|e.support > minsup[l]}
)
)

—
-3

for (I:=1; 1l <max.l; [++4) do LL[I] := U, L[l k]; O

Example 4.3 The execution of the same data mining query on the same database
with the same thresholds as in Example 3.1 using Algorithm 4.3 will generate the
same large itemsets L[, k| for all the I’s and k’s. It first generates large 1-itemsets
L[l,1] from T [1], then T[2] and all the large 1-itemsets L[2,1], ..., L[maz_, 1], where
mazx_l is the maximum level to be explored. Then it generates the candidate sets from
L[l,1], and derives large 2-itemsets L[, 2] by testing the candidate sets against 7 [2]
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to obtain the support count and filter those with count smaller than mensup[l]. This
process repeats to find k-itemsets for larger k£ until all the large k-itemsets have been
derived. O

5 Performance study

To study the effectiveness and efficiency of the algorithms proposed in the above two
sections for the discovery of multiple-level association rules in large databases, we
implemented all the four algorithms (M L_T2, ML_T1, ML -Tmax, and ML_T2+)
in C and tested them on a SUN/SPARC-2 UNIX workstation with 16 megabytes of

main memory.

The testbed consists of a set of synthetic transaction databases generated using a

randomized item set generation algorithm similar to the algorithm described in [3].

The following are the basic parameters of the generated synthetic transaction
databases: (1) the total number of items, I, is 1000; (2) the total number of trans-
actions is 100,000; and (3) 2000 potentially large itemsets are generated and put into
the transactions based on some distribution. Table 5 shows the database used, in
which S is the average size (# of items in an itemset) of these itemsets, and T' is the

average size (# of items in a transaction) of a transaction.

Database | S | T' | # of transactions | Size in Bytes
DB1 215 100,000 2.7TMB
DB2 4110 100,000 4.7TMB

Table 5: Transaction databases

Each transaction database is converted into an encoded transaction table, denoted
as T [1], according to the information about the generalized items in the item descrip-
tion (hierarchy) table. The maximal level of the concept hierarchy in the item table
is set to 4. The number of the top level nodes keeps increasing until the total number
of items reaches 1000. The fan-outs at the lower levels are selected based on the
normal distribution with mean value being M2, M3, and M4 for the levels 2, 3, and

4 respectively, and a variance of 2.0. These parameters are summarized in Table 6.

The testing results presented in this section are on two synthetic transaction

databases: one, T'10 (D B2), has an average transaction size (# of item in a transac-
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[tem Table | # nodes at level-1 | M2 | M3 | M4
11 8 5 5 5
12 15 6 3 4

Table 6: Parameters settings of the item description (hierarchy) tables

tion) of 10; while the other, 5 (DB1), has an average transaction size of 5.

Two item tables are used in the testing: the first one, 71, has 8, 5, 5 and 5 branches
at the levels 1, 2, 3, and 4 respectively; whereas the second, 72, has 15, 6, 3 and 4

branches at the corresponding levels.

Figure 4 shows the running time of the four algorithms in relevance to the number
of transactions in the database. The test uses the database 710 and the item set 71,
with the minimum support thresholds being (50,10,4,2), which indicates that the
minimum support of level 1 is 50%, and that of levels 2, 3 and 4 are respectively 10%,
4%, and 2%.

The four curves in Figure 4 show that M L_T'2+ has the best performance, while
the ML_T1 has the worst among the four algorithms under the current threshold
setting. This can be explained as follows: since the first threshold filters out many
small 1-itemsets at level 1 which results in a much smaller filtered transaction table
7 [2], but the later filter is not so strong and parallel derivation of L[l, k] without
derivation of 7[3] and 7[4] will be more beneficial, thus leads M L_T2+ to be the
best algorithm. On the other hand, M L_T'1 will be the worst since it consults a large
T[1] at every level.

Figure 5 shows the running time of the four algorithms with respect to the number
of transactions in the database, using a different test database T'5 and the same item
set 1. Its minimum support thresholds are (20,8, 2, 1) (following the same notational
convention). The four curves show that ML_T'1 is the best whereas M L_Tmax the
worst among the four algorithms under the current threshold setting. We have the
following explanation. Since the first threshold filters out few small 1-itemsets at
level 1 which results in almost the same sized transaction table 7[2]. Thus the
generation of multiple filtered transaction tables is largely wasted, which leads the
worst performance of M L_Tmazx. Parallel derivation of L[l k] without derivation of

any filtered transaction tables applied in M L_T'1 leads to the best performance.

Figure 6 shows the running time of the four algorithms with respect to the number
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Figure 5: Threshold (20, 8, 2, 1)
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of transactions in the database, using a test database 710 and an item set 2. Its
minimum support thresholds are (50, 10,5,2) (following the same notational conven-
tion). The four curves show that M L_T2 and M L_Tmaz are closely the best whereas
ML T2+ and ML_T1 the worst under the current threshold setting. We have the
following explanation. Since the first threshold filters out relatively more 1-itemsets
at level 1 which results in small transaction table 7[2]. Thus the generation of mul-
tiple filtered transaction tables is relatively beneficial. Meanwhile, the generation of
multiple level large 1-itemsets may not save much because one may still obtain rea-
sonably good sized itemsets in the current setting, which leads M L_T2 to be the best

performance algorithm.

12T10

Relative Time

10k 25k 50k 75k 100k
# of transactions

Figure 6: Threshold (50, 10, 5, 2)

Figure 7 shows the running time of the four algorithms with respect to the number
of transactions in the database, using a test database T'5 and an item set 2. Its min-
imum support thresholds are (30,15,5,2). The four curves show that M L_Tmax is
the best whereas M L_T'1 the worst under the current setting. We have the following
explanation. Since the every threshold filters out relatively many 1-itemsets at each
level which results in much smaller transaction tables at each level. Thus the gener-
ation of multiple filtered transaction tables is beneficial, which leads to M L_T'max is
the best, and then ML_T2, ML_T2+ and M L_T'1 in sequence.

The above four figures show two interesting features. First, the relative perfor-
mance of the four algorithms under any setting is relatively independent of the number

of transactions used in the testing, which indicates that the performance is highly rel-
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Figure 7: Threshold (30, 15, 5, 2)

evant to the threshold setting (i.e., the power of a filter at each level). Thus based on
the effectiveness of a threshold, a good algorithm can be selected to achieve good per-
formance. Second, all the algorithms have relatively good “scale-up” behavior since
the increase of the number of transactions in the database will lead to approximately
the linear growth of the processing time, which is desirable in the processing of large

transaction databases.

Figure 8 shows the running time of the four algorithms in relevance to the mini-
mum support thresholds. The test uses the database T'10 and the item set 12, with a
sequence of threshold settings: threl, ..., thre6. The setting of threl is (60,15,5,2)
(with the same notational convention). The remaining threshold settings are as fol-
lows: thre2: (55,15,5,2), thre3: (55,10,5,2), thre4: (50,10,5,2), thres: (50,10,5,1),
thre6: (50,5,2,1). The value-decreasing sequence of minimum support thresholds in-

dicates that weaker filtering mechanism is applied to the later portion of the sequence.

The relative performance of the four algorithms shows the interesting trend of
growth as indicated by the four curves in Figure 8. The stronger the filtering mech-
anism, the more l-itemsets are filtered out at each level, and the smaller large 1-
itemsets are resulted in. Thus M L_Tmaz, which generates a sequence of filtered
transaction tables, has the lowest cost at threl, thre2 and also (but marginally) thre3,
but the highest cost at thred and thre6 (since few items are filtered out). On the
contrary, M L_T'1, which uses only one encoded transaction table but generates the

large 1-itemsets for each level at the beginning has the highest cost at threl, thre2
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and thre3, but the lowest cost at thre6. The other two algorithms stand in the middle
with M L_T2+ performs the best at thres when the threshold is reasonable small, es-
pecially at the lower levels, and M L_T2 performs the best at thre/ when the threshold

is reasonable small but the lowest level is not as small as thres.

Support-Time
1500 T T T T

1200

900

600

Running Time(seconds)

300

0 &=
Threl Thre2 Thre3 Thre4d Thre5 Thre6
Support Threshold

Figure 8: Different thresholds

Another observation from this study is that our multiple-level algorithms are
slower than the fast single-level algorithm such as the Apriori algorithm implemented
in [3], which, based on our analysis, is caused by two factors. First, mining multiple-
level association rules needs to generate and maintain large k-itemsets at each level,
which is inherently more complex than the single-level association rule mining, and
thus leads to an inherently costlier algorithm than its single-level counterpart, al-
though the sharing of structures and intermediate results across levels have been
explored in the algorithms. Second, our testing uses a machine with smaller main
memory (16 megabytes) than that reported in [3] (64 megabytes). The limited size of
main memory may cause substantial page swapping when the table size grows large,
which will contribute significantly to the performance degradation. In the future,
we plan to test these two sets of algorithms in the similar main memory setting to

quantify the performance differences between the two sets of algorithms.
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6 Discussion

6.1 Concept hierarchies: generation and adjustment

In the previous discussions, we have assumed that desired concept hierarchies ex-
ist and are presented in the form of relational tables (e.g., sales_item in Table 1).
However, there are applications in which some portions of concept hierarchies may
not be explicitly and uniformly presented in the form of relational tables. For ex-
ample, the hierarchy relationship such as “peanuts, pistachios, ..., walnuts C
nuts”, etc. may not be explicitly stored in the sales_item relation. Therefore, it is
sometimes necessary for experts or users to specify certain portions of hierarchies to
facilitate mining multiple-level association rules. Specified hierarchies can be mapped
into relations with the paths from high-level general concepts to low-level specific ones
registered in tuples. Null values should be allowed in the mapped relational entries

if there exist unbalanced nodes in a hierarchy.

Notice that there may often exist more than one possible way of mapping a relation
into a concept hierarchy. For example, “2% Foremost milk C 2% milk C milk”
and “2% Foremost milk C Foremost milk C milk” are both meaningful hierar-
chies, but “2% Foremost milk C 2% Foremost C Foremost” may be not. An ex-
pert or a user may provide mapping rules at the schema level (i.e., meta-rules) to indi-
cate meaningful or desired mappings, such as “{content-spec, brand, category}

C {content-spec, category} C category”, etc.

Concept hierarchies may not exist for numerical valued attributes but can be
automatically generated according to data distribution statistics [9, 6]. For example,
a hierarchy for the price range of sales items can be generated based on the distribution
of price values. Moreover, a given concept hierarchy for numerical or nonnumerical
data can be dynamically adjusted based on data distribution [9]. For example, if
there are many distinct country names in the attribute “place_made”, countries can
be grouped into continents, such as Asia, Furope, South_America, etc. Moreover,
if most fresh food products are from B.C. and Northwest America, the geographic
hierarchy should be adjusted to reflect this distribution when studying fresh food

products.
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6.2 Generation of flexible association rules

The study of mining multiple-level association rules in the last two sections is confined
to mining association relationships level-by-level in a fixed hierarchy. However, it
is often necessary or desirable to find flexible association rules not confined to a
strict level-by-level pre-arranged concept hierarchies. Methods for mining such flexible

multiple-level association rules are examined in this subsection.

6.2.1 Mining association rules in mixed hierarchies

One may relax the restriction of finding associations within the same hierarchy to
allow concepts to be associated with alternative, multiple hierarchies. For example,
following a given hierarchy, one may only be able to find relationship such as “2%
milk — wheat bread” (if the hierarchy for food is as shown in Example 2.1) or
“Foremost milk — Wonder bread” (if brand is taken as a higher level structure
than content-spec) but not “2% milk — Wonder bread” since there exists no such
hierarchy which associates the brands of bread and content-specs of milk together.
However, since it is sometimes desirable to find such association rules, the algorithms

proposed in Sections 3 and 4 can be modified accordingly to provide such flexibility.

Example 6.1 (Mining association rules in mixed hierarchies) For the same transac-
tion and item databases as that of Example 3.1, find multiple-level association rules

between brands and content specifications of different categories.

Let minimum support at each level be the same as Example 3.1, i.e., minsup = 4

at level-1, and minsup = 3 at levels 2 and 3.

The derivation of the large itemsets at level 1 proceeds in the same way as Example
3.1, which generates the same large itemsets tables £[1,1] and L[1,2] at level 1 and

the same filtered transaction table 7[2], as shown in Figure 2.

However, the level-2 large itemsets are different from those in Example 3.1 be-
cause our method first generates large 1-itemsets in the forms of both 11xand 1x1,
i.e., including both hierarchies, then pairs the large 1-items for those from different
categories, such as {11%, 2«1}, and then finds large 3-itemsets with such properties,

etc. Therefore, the large itemset tables at level-2 are £[2,1], £[2,2] and L[2,3], as

shown in Figure 9.
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Finally, large itemset tables at level 3 should be the same since two hierarchies
share the same leaf nodes at level 3. Thus it will generate the same tables £[3,1]
and L[3,2] as shown in Figure 3. Notice since the two hierarchies (category-brand
and category-content_spec) share the same level-3 leaf nodes (brand-content_spec), the
expansions following each hierarchy may lead to redundancy. One may mark the
lower level nodes once explored, and no marked nodes will be checked again, which

avoids redundant exploration.

Level-2 minsup = 3 Level-2 large 2-itemsets: £[2,2]

Level-2 large 1-itemsets: £[2,1] Itemset | Support
Itemset | Support {11, 12} 4
{11%} 5 {11%, 21} 3
{12+} 4 {11%, 22x} 4
{1x1} 4 {11%, 2x1} 4
{21%} 4 {12x, 22x} 3
{22%} 4 {12%, 2x1} 4
{241} 1 {21%, 22x} 3
{21%, 1x1} 3
Level-2 large 3-itemsets: £[2,3]
Itemset Support
{11%, 12, 22} 3

{11%, 12%, 2%1 } 3

Figure 9: Large Item Sets at Level 2

Notice also that the query is to find associations between different categories. If it
were to include associations among the items in the same category, such as “2% milk
— Foremost milk”, more large 2-itemsets would have been found in £[2,2] because
the 2-itemset {11, 1x1} would also form a large 2-itemset as well. Notice that the
rule “2% milk — Foremost milk” indicates that a person who buys 2% milk will
also buy Foremost milk (which, however, may not necessarily be 2% Foremost milk!).
O

6.2.2 Mining associations involving different levels of a hierarchy

Alternatively, one may relax the restriction of mining strong associations among the
concepts at the same level of a hierarchy to allow associating concepts at different

levels. This relaxation may lead to the discovery of associations like “2J Foremost
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milk — Wonder bread” since the two concepts are at different levels of a hierar-
chy. Similarly, Algorithm ML-T2 (or its variations) can be modified to adapt this

extension.

Example 6.2 (Mining association rules at different levels of a hierarchy) For the same
transactions, items and concept hierarchies as in Example 3.1, we examine the mining
of strong multiple-level association rules which includes nodes at different levels in a

hierarchy.

Let minimum support at each level be the same as Example 3.1, i.e., minsup = 4

at level-1, and minsup = 3 at levels 2 and 3.

The derivation of the large itemsets at level 1 proceeds in the same way as Example
3.1, which generates the same large itemsets tables £[1,1] and L[1,2] at level 1 and

the same filtered transaction table 7[2], as shown in Figure 2.

The process of the derivation of level-2 large itemsets is different from Example 3.1.
It first generates the same large 1-itemsets £[2,1] as shown in Figure 10. However,
the candidate items are not confined to pairing only those in £[2, 1] because the items
in £]2,1] can be paired with those in L[1, 1] as well, such as {11%, I**} (for potential
associations like “milk — 2% milk”), or {11%, 2} (for potential associations like
“2% milk — bread”). These candidate large 2-itemsets will be checked against
7 [2] to find large items (for the level-mixed nodes, the minimum support at a lower
level, i.e., minsup[2], can be used as a default). Such a process generates the large
2-itemsets table £]2,2] as shown in Figure 10. Notice that the table does not include
the 2-item pairs formed by an item with its own ancestor such as ({11%, l*x}, 5)
since its support must be the same as its corresponding large 1-itemset in £[2,1], i.e.,
({11%}, 5), based on the set containment relationship: any transaction that contains
{11*} must contain {1+*} as well. Similarly, the level 2 large 3-itemsets £[2,3] can
be computed, with the results shown in Figure 10. Also, the entries which pair
with their own ancestors are not listed here since it is contained implicitly in their
corresponding 2-itemsets. For example, ({11%, 12x}, 4) in £[2,2] implies ({11, 12x,
I#x}, 4) in L][2,3].

Finally, the large 1-itemset table at level 3, £[3,1], should be the same as Figure 3.
The large 2-itemset table includes more itemsets since these items can be paired with
higher level large items, which leads to the large 2-itemsets £[3, 2] and large 3-itemsets

L[3, 3] as shown in Figure 11. Similarly, the itemsets {111, 11%} and {111, 1%} have
the same support as {111} in £[3, 1] and are thus not included in £[3,2].
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Level-2 minsup = 3

Level-2 large 1-itemset: £[2,1] Level-2 large 2-itemset: £[2,2]

Itemset | Support {ﬂimfgi} Supi)ort
}1;:% i {11%, 21} 3
(214} A {11%, 22x} 4
(224} A {12%, 22x} 3

{21%, 22x} 3

{11%, 2%} 4

Level-2 large 3-itemset: £[2,3] {12+, 2%} 3

Itemset Support {21%, 1xx} 3
{21%, 22, 1k} 3

Figure 10: Large Item Sets at Level 2

Since the large k-itemset (for & > 1) tables do not explicitly include the pairs
of items with their own ancestors, attention should be paid to include them at the
generation of association rules. However, since the existence of a special item always
indicates the existence of an item in that class, such as “2% milk — milk (100%)7”,

such trivial rules should be eliminated. Thus, only nontrivial implications, such as

“milk — 2% milk (70%)7, will be considered in the rule generation. O
Level-3 mnsup = 3 Level-3 large 2-itemset: £[3,2]
Level-3 large 1-itemset: L[3,1] Ttemset | Support

Itemset | Support 1111, 2117 3
{111} 4 (111, 21+} | 3
{211} 4 (111, 2241 | 3
{221} 3 (111, 24x) | 4

(1%, 211} | 3
Level-3 large 3-itemset: L£][3,3] {Lsx, 211} 3
[temset Support
{111, 21, 22} 3

Figure 11: Large Item Sets at Level 3

6.3 User interface for mining association rules

In many applications, users are usually only interested in the associations among a
subset of items in a large database (e.g., associations among foods but not between

foods and tires). It is important to provide a flexible interface for users to specify their
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interested set of data, adjust the thresholds, and interactively discover interesting

association relationships.

The query presented in Example 2.1 is an example of specifying association rule
mining tasks. Besides a general claim of mining association rules, a user may also like
to specify the discovery of associations among or between specific groups of data. For
example, the following query indicates that the user is interested only in discovering
the association relationships between milk and bread (note if the query is to find
associations among more than two groups, the keyword between should be replaced

by among).

discover association rules

between I.category = ‘‘milk’’ and I.category = ‘‘bread’’
from sales transactions T and sales_item I

where T.bar code = I.bar_code

with interested attributes category, content_spec, brand

Notice since this query requires to find multiple-level large 2-itemsets only. The
rule mining algorithm needs to be modified accordingly, though it preserves the same

spirit of sharing structures and computations among multiple levels.

Graphical user interface is recommended for dynamic specification and adjust-
ment of a mining task and for level-by-level, interactive, and progressive mining of
interesting relationships. Moreover, graphics-based outputs, such as association of
discovered rules with the corresponding levels of the concept hierarchies may sub-

stantially enhance the clarity of the presentation of multiple-level association rules.

6.4 A re-examination of the definition of strong multiple-
level association rule

Strong multiple-level association rule is introduced in Definition 2.3 for a large class of
applications. Algorithms studied in Sections 3 and 4 follow this definition. However,
different applications may require finding different kinds of multiple-level association
rules. We examine how the variations of the rule definition may influence the rule

mining algorithms.

First, the multiple-level association rules may include multiple concept hierar-
chies, their mixtures, and the associations among the patterns at different levels of a

hierarchy, etc. Such variations have been examined in Section 6.2.
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Second, our definition examines an item at level [ if it parent is a large 1-item at
level [—1. An alternative is to examine the associations among k items at level [ only
if the (k-arity) associations of their k parents are in the large k-itemsets at level [ — 1.
For example, only if “bread A milk” are large 2-itemset patterns, their lower level
combinations of different kinds of milk and bread will be examined. This definition
may exclude many patterns that have been considered previously and reduce the
set of candidate patterns to be examined at lower levels. Its efficient rule mining
algorithms can be worked out accordingly. However, since large single items are
usually interesting enough to warrant detailed examinations, a strict requirement of
examining only those patterns whose parents are large k-itemsets (for & > 1) may

miss many potentially interesting associations.

Third, our definition concerns that minimum support threshold in relevance to
a specified set of data instead of the whole database. The minimum support can
be specified as a ratio, such as the number of transactions containing particular
patterns versus the total number of transactions within a specified domain. The
flexible definition of domains at different levels, especially the confinement of the
domains be a smaller one at lower levels, not only clarifies the concept of a rule but
also reduces the search effort. For example, for the top-level, the support of a pattern
could be the ratio of the set of transactions containing the pattern versus either
the whole set of transactions in the transaction database or the set of transactions
in relevance only to the data mining query (e.g., the transactions containing fresh
food items). For level two, the support of a pattern could be the ratio of set of the
transactions containing the pattern versus the set of transactions containing large
items (instead of the whole set of transactions), etc. As long as the support is well
defined and fixed at each level (for different large k-itemsets), the computation will

be the same as those outlined in the algorithms.

Notice that it is natural to consider using a larger minimum support when deriving
large 1-itemsets and substantially reduce the minimum support at the derivation of
large 2-itemsets, etc. However, based on our observation, the restriction on the fixed
minimum support threshold at a level for k-itemsets (for all k£’s) may not be easy to
be relaxed. This is because a key optimization technique applied in both single-level
and multiple-level association rule mining algorithms is to use only the entries in the
large k-itemsets to derive the candidate large (k + 1)-itemsets. This optimization
is not applicable if the minimum support changes on different k’s. A compromise

is to derive intermediate large k-itemsets for all the k’s by first taking the smallest
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minimum support among the k-itemsets (if they are allowed to be different) and then
filter out those which are not large for the current k. By doing so, the current large-
itemsets-mining algorithms are still applicable by augmenting an additional filtering
process. It is a research issue on whether there may exist more efficient algorithms

under this restriction.

7 Conclusions

Mining multiple-level association rules from large transaction databases is studied in
this paper, which extends the methods for mining association rules from single level to
multiple levels. Mining multiple-level association rules may lead to progressive mining
of informative and refined knowledge from data and have interesting applications for
knowledge discovery in transaction-based as well as other business or engineering

databases.

A top-down progressive deepening technique is developed for mining multiple-level
association rules, which extends the existing single-level association rules mining al-
gorithms and explores techniques for sharing data structures and intermediate results
across levels. Based on different sharing techniques, a group of algorithms, notably,
ML-T2, ML-T1, ML-Tmax and ML-T24, have been developed. Our performance
study shows that different algorithms may have the best performance for different

distributions of data.

Related issues, including concept hierarchy handling, methods for mining flexible
multiple-level association rules, and adaptation to difference mining requests are also
discussed in the paper. Our study shows that mining multiple-level association rules
from databases has wide applications and efficient algorithms can be developed for

discovery of interesting and strong such rules in large databases.

Extension of methods for mining single-level knowledge rules to multiple-level
ones poses many new issues for further investigation. For example, with the recent
developments on mining single-level sequential patterns [4] and meta-rule guided data
mining [19], mining multiple-level sequential patterns and meta-rule guided mining

of multiple-level association rules are two interesting topics for future study.
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