DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS C
REPORT C-1997-15

Discovery of frequent episodes in event sequences

Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo

UNIVERSITY OF HELSINKI
FINLAND



Discovery of frequent episodes in event sequences
Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo

University of Helsinki, Department of Computer Science
PO Box 26, FIN-00014 University of Helsinki, Finland
Email: Heikki.Mannila, Hannu.Toivonen, Inkeri.Verkamo@cs.helsinki.fi

Report C-1997-15, February 1997, 45 pages

Abstract

Sequences of events describing the behavior and actions of users or systems
can be collected in several domains. We consider the problem of discovering
frequently occurring episodes in such sequences. An episode is defined to
be a collection of events that occur relatively close to each other in a given
partial order. Omnce such episodes are known, one can produce rules for
describing or predicting the behavior of the sequence. We give efficient
algorithms for the discovery of all frequent episodes from a given class of
episodes, and present extensive experimental results. The methods are in
use in telecommunication alarm management.
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1 Introduction

Most data mining and machine learning techniques are adapted towards the
analysis of unordered collections of data. However, there are important ap-
plication areas where the data to be analyzed consists of a sequence of events.
Examples of such data are alarms in a telecommunication network, user in-
terface actions, crimes committed by a person, occurrences of recurrent ill-
nesses, etc. Recently, interest in knowledge discovery from sequential data
has increased: see, e.g., [5, 8, 17, 19, 24].

Abstractly, such data can be viewed as a sequence of events, where each
event has an associated time of occurrence. An example of an event sequence
is represented in Figure 1. Here A, B,C, D, F, and F are event types, e.g.,
different types of alarms from a telecommunication network, or different types
of user actions, and they have been marked on a time line.

One basic problem in analyzing such a sequence is to find frequent epis-
odes, 1.e., collections of events occurring frequently together. For example,
in the sequence of Figure 1, the episode “E is followed by 7 occurs several
times, even when the sequence is viewed through a narrow window. Epis-
odes, in general, are partially ordered sets of events. From the sequence in
the figure one can make, for instance, the observation that whenever A and
B occur (in either order), C' occurs soon.

When discovering episodes in a telecommunication network alarm log,
the goal is to find relationships between alarms. Such relationships can then
be used in an on-line analysis of the incoming alarm stream, e.g, to better
explain the problems that cause alarms, to suppress redundant alarms, and
to predict severe faults.

In this paper we consider the following problem. Given a class of epis-
odes and an input sequence of events, find all episodes that occur frequently

in the event sequence. We describe the framework and formalize the know-
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Figure 1: A sequence of events.

ledge discovery task in Section 2. Algorithms for discovering all frequent
episodes are given in Section 3. Thery are based on the idea of first finding
small frequent episodes, and then progressively looking for larger frequent
episodes. Additionally, the algorithms use some simple pattern matching
ideas to speed up the recognition of occurrences of single episodes. Section 4
outlines an alternative way of approaching the problem, based on locating
minimal occurrences of episodes. Experimental results using both approaches
and with various data sets are presented in Section 5. We discuss extensions

and review related work in Section 6. Section 7 is a short conclusion.

2 Event sequences and episodes

Our overall goal is to analyze sequences of events, and to discover recurrent
combinations of events, which we call frequent episodes. We first formulate

the concept of event sequence, and then look at episodes in more detail.

2.1 Event sequences

We consider the input as a sequence of events, where each event has an
associated time of occurrence. Given a set F of event types, an event is a
pair (A, 1), where A € E is an event type and ¢ is an integer, the (occurrence)
time of the event. The event type can actually contain several attributes; for
simplicity we consider here the event type as a single value.

An event sequence s on F is a triple (s, Ts, T, ), where

s = ((A, 1), (Az,la), .o, (A, 1))
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Figure 2: The example event sequence and two windows of width 5.

is an ordered sequence of events such that A; € F for all = 1,...,n, and
t; < tipq forall s = 1,...,n — 1. Further on, Ty < T. are integers, T} is
called the starting time and 7. the ending time, and T, < t; < T, for all

1=1,...,n.

Example 1 Figure 2 presents graphically the event sequence s = (s, 29, 68),

where
s=((F,31),(D,32),(F,33),(A,35),(B,37),(C,38),...,(D,67)) .

Observations of the event sequence have been made from time 29 to just
before time 68. For each event that occurred in the time interval [29, 68), the

event type and the time of occurrence have been recorded. a

In the analysis of sequences we are interested in finding all frequent epis-
odes from a class of episodes. To be considered interesting, the events of
an episode must occur close enough in time. The user defines how close is
close enough by giving the width of the time window within which the epis-
ode must occur. We define a window as a slice of an event sequence, and
we then consider an event sequence as a sequence of partially overlapping
windows. In addition to the width of the window, the user specifies in how
many windows an episode has to occur to be considered frequent.

Formally, a window on event sequence s = (s, Ty, T.) is an event sequence
w = (w,ts,1.), where t; < T.,t. > T, and w consists of those pairs (A,1)
from s where t; <t < t.. The time span {. — {; is called the width of the

window w, and it is denoted width(w). Given an event sequence s and an
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integer win, we denote by W(s, win) the set of all windows w on s such that
width(w) = win.

By the definition the first and last windows on a sequence extend outside
the sequence, so that the first window contains only the first time point of
the sequence, and the last window contains only the last time point. With
this definition an event close to either end of a sequence is observed in equally
many windows to an event in the middle of the sequence. Given an event
sequence s = (s,Ts,T.) and a window width win, the number of windows in

W(s, win)is T, — Ts + win — 1.

Example 2 Figure 2 shows two windows of width 5 on the sequence s of
the previous example. A window starting at time 35 is shown in solid line,
and the immediately following window, starting at time 36, is depicted with

a dashed line. The window starting at time 35 is
({(4,35),(B,37),(C,38), (F,39)) , 35,40).

Note that the event (F,40) that occurred at the ending time is not in the
window. The window starting at 36 is similar to this one; the difference is
that the first event (A, 35) is missing and there is a new event (F,40) at the
end.

The set of the 43 partially overlapping windows of width 5 constitutes
W(s,5); the first window is (0,25,30), and the last is (((D,67)),67,72).
Event (D, 67) occurs in 5 windows of width 5, as does, e.g., event (C,50). O

2.2 Episodes

Informally, an episode is a partially ordered collection of events occurring
together. Episodes can be described as directed acyclic graphs. Consider,
for instance, episodes «, 3, and v in Figure 3. Episode « is a serial episode:

it occurs in a sequence only if there are events of types F and F' that occur
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Figure 3: Episodes a, 3, and ~.

in this order in the sequence. In the sequence there can be other events
occurring between these two. The alarm sequence, for instance, is merged
from several sources, and therefore it is useful that episodes are insensitive
to intervening events. Episode 3 is a parallel episode: no constraints on the
relative order of A and B are given. Episode 7 is an example of non-serial
and non-parallel episode: it occurs in a sequence if there are occurrences of
A and B and these precede an occurrence of C'; no constraints on the relative
order of A and B are given. We mostly consider the discovery of serial and
parallel episodes.

We now define episodes formally. An episode « is a triple (V, <, g) where
V' is a set of nodes, < is a partial order on V', and g : V — F is a mapping
associating each node with an event type. The interpretation of an episode
is that the events in g(V') have to occur in the order described by <. The
size of «, denoted |a|, is |V|]. Episode « is parallel if the partial order < is
trivial (i.e., z £ y for all z,y € V such that = # y). Episode « is serial if the
relation < is a total order (i.e., z <y ory < z for all z,y € V). Episode a
is injective if the mapping ¢ is an injection, i.e., no event type occurs twice

in the episode.

Example 3 Consider episode a = (V, <, ¢) in Figure 3. The set V' contains
two nodes; say = and y. The mapping g labels these nodes with the event
types that are seen in the figure: g(z) = F and g(y) = F. An event of type

E is supposed to occur before an event of type F', i.e., x precedes y, and we



have = < y. Episode « is injective, since it does not contain duplicate event
types; in a window where « occurs there may, however, be multiple events

of types I/ and F'. a

We next define when an episode is a subepisode of another; this relation
is used extensively in the algorithms for discovering all frequent episodes. An
episode 8 = (V',<' ¢') is a subepisode of a = (V,<,g), denoted § < «, if
there exists an injective mapping f : V' — V such that ¢'(v) = g(f(v)) for
all v € V', and for all v,w € V' with v <"w also f(v) < f(w). An episode
a is a superepisode of 3 if and only if 3 < a. We write § < a if § < a and

a A pB.

Example 4 From Figure 3 we see that 3 < v since 8 is a subgraph of 7.
In terms of the definition, there is a mapping f that connects the nodes

labeled A with each other and the nodes labeled B with each other, i.e

both nodes of 3 have (disjoint) corresponding nodes in . Since the nodes in

*9

episode 3 are not ordered, the corresponding nodes in v do not need to be

ordered, either. a

Consider now what it means that an episode occurs in a sequence. The
nodes of the episode need to have corresponding events in the sequence such
that the event types are the same and the partial order of the episode is

respected. An episode a = (V, <, g) occurs in an event sequence

s= (A, 1), (A2, 12), o (Any 10)) T, T,

if there exists an injective mapping b : V' — {1,...,n} from nodes to events,
such that g(z) = Ay for all 2 € V, and for all z,y € V with = # y and
r <y we have L) < thy).

Example 5 The window (w,35,40) of Figure 2 contains events A, B, C,
and F. Episodes 3 and v of Figure 3 occur in the window, but « does not.
E[



Algorithm 1
Input: A set I of event types, an event sequence s over F, a set &£ of epis-
odes, a window width win, a frequency threshold min_ fr, and a confidence
threshold min_ conf.
Output: The episode rules that hold in s with respect to win, min_ fr, and
min__ conf.
Method:
/* Find frequent episodes (Algorithm 2): */
compute F (s, win, min_ fr);
/* Generate rules: */
for all & € F(s, win, min_ fr) do

for all § < a do

if fr(a)/fr(B) > min_ conf then
output the rule 5 — o and the confidence fr(a)/fr(5);

IO O WN =

We define the frequency of an episode as the fraction of windows in
which the episode occurs. That is, given an event sequence s and a win-
dow width win, the frequency of an episode a in s is
_ {w € W(s, win) | o occurs in w}|

Jr(a,s, win) = W(s, win)]

Given a frequency threshold min_fr, o is frequent if fr{a,s, win) >

min_ fr. The task we are interested in is to discover all frequent episodes
from a given class &€ of episodes. The class could be, e.g., all parallel epis-
odes or all serial episodes. We denote the collection of frequent episodes with
respect to s, win and min_ fr by F(s, win, min_ fr).

Once the frequent episodes are known, they can be used to obtain rules
that describe connections between events in the given event sequence. For
example, if we know that the episode 3 of Figure 3 occurs in 4.2 % of the
windows and that the superepisode v occurs in 4.0 % of the windows, we can
estimate that after seeing a window with A and B, there is a chance of about
0.95 that C follows in the same window. Such rules show the connections
between events more clearly than frequent episodes alone. Algorithm 1 shows

how rules and their confidences can be computed from the frequencies of



Algorithm 2

Input: A set K of event types, an event sequence s over F, a set & of
episodes, a window width win, and a frequency threshold min_ fr.

Output: The collection F(s, win, min_ fr) of frequent episodes.

Method:

compute Cy :={a € & | |a|=1};

2. =1,

3. while C; # 0 do

4 /* Database pass (Algorithms 4 and 5): */

5. compute F; := {a € C; | fr(e, s, win) > min_ fr};
6. l:i=1+1;
7

8

9

0

—_

/* Candidate generation (Algorithm 3): */
compute C; := {a € £ | |a| =1 and for all § € £ such that 3 < « and
18] < 1 we have 8 € Fig};

1 for all [ do output Fj;

episodes. Note that indentation is used in the algorithms to specify the

extent of loops and conditional statements.

3 Algorithms

Given all frequent episodes, the rule generation is straightforward. We now
concentrate on the following discovery task: given an event sequence s, a
set £ of episodes, a window width win, and a frequency threshold min_ fr,
find F(s, win, min_fr). We give first a specification of the algorithm and
then exact methods for its subtasks. We call these methods collectively the

WINEPT algorithm.

3.1 Main algorithm

Algorithm 2 computes the collection F(s, win, min_ fr) of frequent episodes
from a class € of episodes. The algorithm performs a levelwise (breadth-first)
search in the episode lattice spanned by the subepisode relation. The search

starts from the most general episodes, i.e., episodes with only one event. On



each level the algorithm first computes a collection of candidate episodes,
and then checks their frequencies from the event sequence database. The
crucial point in the candidate generation is given by the following immediate

lemma.

Lemma 6 If an episode a is frequent in an event sequence s, then all subepis-

odes # < a are frequent.

The collection of candidates is specified to consist of episodes such that
all smaller subepisodes are frequent. This criterion safely prunes from con-
sideration episodes that can not be frequent. More detailed methods for the
candidate generation and database pass phases are given in the following

subsections.

3.2 Generation of candidate episodes

We present now a candidate generation method in detail. The method can
be easily adapted to deal with the classes of parallel episodes, serial episodes,
and injective parallel and serial episodes.

Algorithm 3 computes candidates for parallel episodes. In the algorithm,
an episode oo = (V, <, g) is represented as a lexicographically sorted array of
event types. The array is denoted by the name of the episode and the items
in the array are referred to with the square bracket notation. For example,
a parallel episode a with events of types A, C,C, and F is represented as an
array o with o[l] = A,a[2] = C,a[3] = C, and a[4] = F. Collections of
episodes are also represented as lexicographically sorted arrays, i.e., the ith
episode of a collection F is denoted by Fli].

Since the episodes and episode collections are sorted, all episodes that
share the same first event types are consecutive in the episode collection. In
particular, if episodes F[i] and F;[j] of size [ share the first [ — 1 events,
then for all k& with ¢« < k < j we have that F[k] shares also the same



Algorithm 3

Input: A sorted array F; of frequent parallel episodes of size [.
Output: A sorted array of candidate parallel episodes of size [ 4 1.
Method:

1 Cl+1 = @;

2. k:=0;

3. if [ =1 then for h:=1 to |F| do Fj.block_start[h] := 1;

4. fori:=1to |F| do

5. current_ block_start := k + 1;

6 for (j := 4; Fr.block_start[j] = Fi.block_start[i];j:= 7+ 1) do
7 /* Fili] and F[j] have [ — 1 first event types in common,
8

9

build a potential candidate a as their combination: */
for z := 1 to [ do a[z] := F[i][z];

10. Oil + 1] := A 5][1);

11. Build and test subepisodes 8 that do not contain afy]: */
12. fory:=1tol—-1do

13. for z :=1to y — 1 do f[z] := a[z];

14. for z :=y to [ do f[z] := afz + 1];

15. if 3 is not in F; then continue with the next j at line 6;
16. /* All subepisodes are in Fj, store a as candidate: */

17. k:=k+1;

18. Ciy1[k] == a;

19. Cig1.block_start[k] := current_ block_ start;

20. output Cry1;

events. A maximal sequence of consecutive episodes of size [ that share the
first [ — 1 events is called a block. Potential candidates can be identified by
creating all combinations of two episodes in the same block. For the efficient
identification of blocks, we store in Fj.block_start[j] for each episode F[j]
the 7 such that F[:] is the first episode in the block.

Algorithm 3 can be easily modified to generate candidate serial episodes.
Now the events in the array representing an episode are in the order imposed
by a total order <. For instance, a serial episode 3 with events of types
C,A,F, and C, in that order, is represented as an array § with 3[1] = C,
B2] = A, B[3] = F, and ([4] = C. By replacing line 6 by

6. for (j := Fi.block_start[i]; Fi.block _start[j] = Fi.block _start[i];j:=j+ 1) do

Algorithm 3 generates candidates for serial episodes.

10



There are further options with the algorithm. If the desired episode class
consists of parallel or serial injective episodes, i.e., no episode should contain

any event type more than once, simply insert line
6b. if 7 = 7 then continue with the next j at line 6;

after line 6.
The time complexity of Algorithm 3 is polynomial in the size of the col-
lection of frequent episodes and it is independent of the length of the event

sequence.

Theorem 1 Algorithm 3 (with any of the above variations) has time com-

plexity O(12 |F|? log | 7).

Proof The initialization (line 3) takes time O(|F;|). The outer loop (line 4)
is iterated O(|F;|) times and the inner loop (line 6) O(|F;|) times. Within the
loops, a potential candidate (lines 9 and 10) and [ —1 subcandidates (lines 12
to 14) are built in time O(l + 1 + (I — 1)I) = O(I*). More importantly, the
[ — 1 subsets need to be searched for in the collection F; (line 15). Since
JFi is sorted, each subcandidate can be located with binary search in time
O(llog |Fi]). The total time complexity is thus O(|F| + |F||F| (1* + (I —
1)1 log [Fi])) = O(E |7 og | 7). o

In practical situations the time complexity is likely to be close to

O(I* |Fi| log |F]), since the blocks are typically small.

3.3 Recognizing episodes in sequences

Let us now consider the implementation of the database pass. We give al-
gorithms which recognize episodes in sequences in an incremental fashion.
For two windows w = (w, {5, 1, + win) and w' = (w', t, + 1,1, + win+ 1), the

sequences w and w’ of events are similar to each other. We take advantage of

11



this similarity: after recognizing episodes in w, we make incremental updates
in our data structures to achieve the shift of the window to obtain w’.

The algorithms start by considering the empty window just before the
input sequence, and they end after considering the empty window just after
the sequence. This way the incremental methods need no other special ac-
tions at the beginning or end. When computing the frequency of episodes,

only the windows correctly on the input sequence are, of course, considered.

3.3.1 Parallel episodes

Algorithm 4 recognizes candidate parallel episodes in an event sequence. The
main ideas of the algorithm are the following. For each candidate parallel
episode @ we maintain a counter a.event count that indicates how many
events of a are present in the window. When a.event count becomes equal
to |a|, indicating that « is entirely included in the window, we save the
starting time of the window in a.inwindow. When a.event count decreases
again, indicating that « is no longer entirely in the window, we increase the
field a.freq_count by the number of windows where a remained entirely in
the window. At the end, a.freq  count contains the total number of windows
where a occurs.

To access candidates efficiently, they are indexed by the number of events
of each type that they contain: all episodes that contain exactly a events of
type A are in the list contains(A,a). When the window is shifted and the
contents of the window change, the episodes that are affected are updated.
If, for instance, there i1s one event of type A in the window and a second
one comes in, all episodes in the list contains(A,2) are updated with the

information that both events of type A they are expecting are now present.
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Algorithm 4

Input: A collection C of parallel episodes, an event sequence s = (s, T, T.),
a window width win, and a frequency threshold min_ fr.

Output: The episodes of C that are frequent in s with respect to win
and min_ fr.

Method:

1. /* Initialization: */

2. for each ain C do

3 for each A in o do

4. A.count := 0;

5. for i := 1 to |a| do contains(A, 1) := 0;

6. for each ain C do

7 for each A in « do

8 a := number of events of type A in «;

9. contains(A, a) == contains(A, a) U {a};
10. a.event  count = 0;
11. a.freq count := 0;
12.  /* Recognition: */
13. for start := T, — uin+1 to T, do

14. /* Bring in new events to the window: */

15. for all events (A,t) in s such that ¢t = start + win— 1 do
16. A.count := A.count + 1;

17. for each a € contains(A, A.count) do

18. a.event_ count := «.event_ count + A.count;

19. if a.event_ count = |a| then a.inwindow := start;
20. /* Drop out old events from the window: */

21. for all events (A,t) in s such that t = start — 1 do

22. for each a € contains(A, A.count) do

23. if a.event_ count = |a| then

24, a.freq count := a.freq count — a.inwindow + start;
25. a.event_ count := «.evenl_ count — A.count;

26. A.count := A.count — 1;

27.  /* Output: */
28. for all episodes a in C do
29. if a.freq_count/(T. — Ts + win — 1) > mun_ fr then output o;

3.3.2 Serial episodes

Serial candidate episodes are recognized in an event sequence by using state
automata that accept the candidate episodes and ignore all other input. The
idea is that there is an automaton for each serial episode «, and that there

can be several instances of each automaton at the same time, so that the
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active states reflect the (disjoint) prefixes of a occurring in the window.
Algorithm 5 implements this idea.

We initialize a new instance of the automaton for a serial episode a every
time the first event of o comes into the window; the automaton is removed
when the same event leaves the window. When an automaton for « reaches
its accepting state, indicating that « is entirely included in the window, and
if there are no other automata for « in the accepting state already, we save
the starting time of the window in a.inwindow. When an automaton in the
accepting state is removed, and if there are no other automata for « in the
accepting state, we increase the field a.freq_ count by the number of windows
where a remained entirely in the window.

It is useless to have multiple automata in the same state, as they would
only make the same transitions and produce the same information. It suffices
to maintain the one that reached the common state last since it will be
also removed last. There are thus at most |a| automata for an episode a.
For each automaton we need to know when it should be removed. We can
thus represent all the automata for a with one array of size |a|: the value
of a.initialized[1] is the latest initialization time of an automaton that has
reached its ¢th state. Recall that « itselfis represented by an array containing
its events; this array can be used to label the state transitions.

To access and traverse the automata efficiently they are organized in the
following way. For each event type A € FE, the automata that accept A
are linked together to a list waits(A). The list contains entries of the form
(o, ) meaning that episode « is waiting for its xth event. When an event
(A, ) enters the window during a shift, the list waits(A) is traversed. If an
automaton reaches a common state 7 with another automaton, the earlier
entry a.initialized|[i] is simply overwritten.

The transitions made during one shift of the window are stored in a list

transitions. They are represented in the form («,z,t) meaning that episode

14



Algorithm 5
Input: A collection C of serial episodes, an event sequence s = (s, 75, T.), a

window width win, and a frequency threshold min_ fr.

Output: The episodes of C that are frequent in s with respect to win

and min_ fr.

Method:

/* Initialization: */
for each ain C do
for i := 1 to || do
a.ainitialized[i] := 0;
waits(a[i]) := 0;
for each o € C do
waits(al1]) = waits (a[1]) U {(a, D}
a.freq count := 0,
for t :=1Ts — win to Ts — 1 do beginsat(t) := 0;
/* Recognition: */
for start := 15, — win+1 to 1, do
/* Bring in new events to the window: */
beginsat (start + win — 1) := (;
transitions := (J;
for all events (A,t) in s such that ¢ = start + win — 1 do
for all (a, ]) € waits(A) do
if j = || and a.initialized[j] = 0 then a.inwindow = start;
if j =1 then
transitions := transitions U {(«, 1, start + win — 1) };
else
transitions := transitions U {( ,J, ceinitialized[j — 1]) };
beginsat(a.initialized[j — 1]) :=
begmsat(a initialized[j — 1)) \ {(e, 5 — 1) };
a. zmtzalzzed[j -1]:=
waits(A) 1= waits(A) \ {( 7}
for all («, j,t) € transitions do
a. zmtzalzzed[]] t;
beginsat(t) := begmsat( U{(a,7)};
if j < |a| then waits(afj + 1]) := waits(a[j + 1]) U {(a, 7+ 1)};
/* Drop out old events from the window: *
for all («a,1) € beginsat(start — 1) do
if [ = |a| then a.freq_ count := a.freq_ count — a.inwindow + start;
else waits(afl + 1]) = waits(a[l + 1)) \ {(a, 1+ 1) };
a.anitialized[l] :=
/* Output: */
for all episodes o in C do
if a.freq_count/(T. — Ts + win — 1) > mun_ fr then output o;

7
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a got its xth event, and the latest initialization time of the prefix of length =
is t. Updates regarding the old states of the automata are done immediately,
but updates for the new states are done only after all transitions have been
identified, in order to not overwrite any useful information. For easy removal
of automata when they go out of the window, the automata initialized at

time ¢ are stored in a list beginsal(t).

3.3.3 Analysis of time complexity

For simplicity, suppose that the class of event types F is fixed, and assume
that exactly one event takes place every time unit. Assume candidate epis-

odes are all of size [, and let n be the length of the sequence.

Theorem 2 The time complexity of Algorithm 4 is O((n 4 [*) |C|).

Proof Initialization takes time O(|C|/?). Consider now the number of the
operations in the innermost loops, 1.e., accesses to a.event count on lines 18
and 25. In the recognition phase there are O(n) shifts of the window. In
each shift, one new event comes into the window, and one old event leaves
the window. Thus, for any episode «, a.event count is accessed at most
twice during one shift. The cost of the recognition phase is thus O(r|C|). O

In practice the size [ of episodes is very small with respect to the size
n of the sequence, and the time required for the initialization can be safely

neglected. For injective episodes we have the following tighter result.

Theorem 3 The time complexity of recognizing injective parallel episodes
in Algorithm 4 (excluding initialization) is O(- |C| [ + n).

Proof Consider win successive shifts of one time unit. During such sequence
of shifts, each of the |C| candidate episodes a can undergo at most 2/ changes:

any event type A can have A.count increased to 1 and decreased to 0 at most
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once. This is due to the fact that after an event of type A has come into the
window, A.count > 1 for the next win time units. Reading the input takes
time n. a

This time bound should be contrasted with the time usage of a trivial
non-incremental method where the sequence is pre-processed into windows,
and then frequent sets are searched for. The time requirement for recognizing
|C| candidate sets in n windows, plus the time required to read in n windows

of size win, is O(n |C|[ + n - win), i.e., larger by a factor of win.

Theorem 4 The time complexity of Algorithm 5 is O(n |C| ).

Proof The initialization takes time O(|C| {4 win). In the recognition phase,
again, there are O(n) shifts, and in each shift one event comes into the
window and one event leaves the window. In one shift, the effort per an
episode a depends on the number of automata accessed; there are a maximum
of | automata for each episode. The worst-case time complexity is thus
O(Cl 1+ win+ n|C|l) = O(n|C|I) (note that win is O(n)). O

In the worst case the input sequence consists of events of only one event
type, and the candidate serial episodes consist only of events of that par-
ticular type. Every shift of the window results now in an update in every
automaton. This worst-case complexity is close to the complexity of the
trivial non-incremental method O(n|C|! + n - win). In practical situations,
however, the time requirement is considerably smaller, and we approach the

savings obtained in the case of injective parallel episodes.
Theorem 5 The time complexity of recognizing injective serial episodes in

Algorithm 5 (excluding initialization) is O(n |C|).

Proof FEach of the O(n) shifts can now affect at most two automata for

each episode: when an event comes into the window there can be a state
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Figure 4: Recursive composition of a complex episode.

transition in at most one automaton, and at most one automaton can be

removed because the initializing event goes out of the window. a

3.4 General partial orders

So far we have only discussed serial and parallel episodes. We next discuss
briefly the use of other partial orders in episodes. The recognition of an
arbitrary episode can be reduced to the recognition of a hierarchical com-
bination of serial and parallel episodes. For example, episode v in Figure 4
is a serial combination of two episodes: a parallel episode ¢" consisting of
A and B, and an episode ¢” consisting of C' alone. The occurrence of an
episode in a window can be tested using such hierarchical structure: to see
whether episode v occurs in a window one checks (using a method for serial
episodes) whether the subepisodes ¢’ and 6" occur in this order; to check the
occurrence of ¢’ one uses a method for parallel episodes to verify whether A
and B occur.

There are, however, some complications one has to take into account.
First, it is sometimes necessary to duplicate an event node to obtain a de-
composition to serial and parallel episodes. Duplication works easily with
injective episodes, but non-injective episodes need more complex methods.
Another important aspect is that composite events have a duration, unlike
the elementary events in F.

A practical alternative is to handle all episodes basically like parallel
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episodes, and to check the correct partial ordering only when all events are
in the window. Parallel episodes can be located efficiently; after they have

been found, checking the correct partial ordering is relatively fast.

4 An alternative approach: minimal occur-
rences

4.1 Outline of the approach

In this section we describe an alternative approach to the discovery of epis-
odes. Instead of looking at the windows and only considering whether an
episode occurs in a window or not, we now look at the exact occurrences of
episodes and the relationships between those occurrences. One of the ad-
vantages of this new approach is that focusing on the occurrences of episodes
allows us to more easily find rules with two window widths, one for the left-
hand side and one for the whole rule, such as “if A and B occur within 15
seconds, then (' follows within 30 seconds”.

The approach is based on minimal occurrences of episodes. Besides the
new rule formulation, the use of minimal occurrences gives raise to the follow-
ing new method, called MINEPI, for the recognition of episodes in the input
sequence. For each frequent episode we store information about the locations
of 1ts minimal occurrences. In the recognition phase we can then compute
the locations of minimal occurrences of a candidate episode a as a temporal
join of the minimal occurrences of two subepisodes of . In addition to being
simple and efficient, this formulation has the advantage that the confidences
and frequencies of rules with a large number of different window widths can
be obtained quickly, i.e., there is no need to rerun the analysis if one only
wants to modify the window widths. In the case of complicated episodes,
the time needed for recognizing the occurrence of an episode can be signific-

ant; the use of stored minimal occurrences of episodes eliminates unnecessary
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repetition of the recognition effort.

We identify minimal occurrences with their time intervals in the following
way. Given an episode a and an event sequence s, we say that the interval
[ts,te) is a minimal occurrence of a in s, if (1) « occurs in the window
w = (w,ls,1.) on s, and if (2) « does not occur in any proper subwindow on
W, i.e., not in any window w’ = (w', /1) on s such that ¢, </, <., and
width(w') < width(w). The set of (intervals of ) minimal occurrences of an
episode a in a given event sequence is denoted by mo(a): mo(a) = { [, t.) |

[ts,t.) is a minimal occurrence of a}.

Example 7 Consider the event sequence s in Figure 2 and the episodes in
Figure 3. The parallel episode 3 consisting of event types A and B has
four minimal occurrences in s: mo(3) = {[35, 38), [46,48), [47, 58),[57,60) }.
The partially ordered episode v has the following three minimal occurrences:

[35,39), [46,51), [57, 62). O

An episode rule is an expression (3 [win;] = «a[winy], where 3 and a are
episodes such that # < a, and win; and winy are integers. The informal
interpretation of the rule is that if episode (3 has a minimal occurrence at
interval [t,,t.) with t, — t; < wing, then episode a occurs at interval [ts, 1))
for some ¢/ such that ¢/ —t; < winy. Formally this can be expressed in the
following way. Given winy and 3, denote moy, (3) = {[ts,te) € mo(3) | t. —
ts < wing }. Further, given « and an interval [us, u.), define occ(a, [us, u.)) =
true if and only if there exists a minimal occurrence [u}, u’) € mo(a) such that
us < u' and v, < u.. The confidence of an episode rule 3 [win,] = « [winy]

o [ltas L) € m0uin (9) | 00c( by, Ly + wins))}

|mowin ()]

Example 8 Continuing the previous example, we have, e.g., the fol-

lowing rules and confidences.  For the rule B[3] = ~[4] we have
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1{[35,38),[46,48),[57,60)}| in the denominator and [{[35,38)}| in the nu-
merator, so the confidence is 1/3. For the rule 3[3] = ~[5] the confidence
is 1. a

Note that since 3 is a subepisode of a, the rule right-hand side « contains
information about the relative location of each event in it, so the “new” events
in the rule right-hand side can actually be required to be positioned, e.g.,
between events in the left-hand side. There is also a number of possible
definitions for the temporal relationship between the intervals. For instance,
rules that point backwards in time can be defined in a similar way. For
brevity, we only consider this one case.

We defined the frequency of an episode as the fraction of windows that
contain the episode. While frequency has a nice interpretation as the prob-
ability that a randomly chosen window contains the episode, the concept is
not very useful with minimal occurrences: (1) there is no fixed window size,
and (2) a window may contain several minimal occurrences of an episode.
Instead of frequency, we use the concept of support, the number of minimal
occurrences of an episode: the support of an episode a in a given event se-
quence s is |mo(a)|. Similarily to the a frequency threshold, we now use a
threshold for the support: given a support threshold min_ sup, an episode o
is frequent if |mo(a)| > min_ sup.

The current episode rule discovery task can be stated as follows. Given
an event sequence s, a class £ of episodes, and a set W of time bounds, find
all frequent episode rules of the form §[wini] = «[winy|, where 3,a € &,

B = a, and win,, winy, € W.

4.2 Finding minimal occurrences of episodes

In this section we describe informally the collection MINEPI of algorithms

that locate the minimal occurrences of frequent serial and parallel episodes.
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Let us start with some observations about the basic properties of episodes.
Lemma 6 still holds: the subepisodes of a frequent episode are frequent. Thus
we can use the main algorithm (Algorithm 2) and the candidate generation
(Algorithm 3) also for MINEPI. We have the following results about the
minimal occurrences of an episode also containing minimal occurrences of its

subepisodes.

Lemma 9 Assume « is an episode and # < a is its subepisode. If [t5,1.) €
mo(a), then 8 occurs in [t,,1.) and hence there is an interval [u,, u.) € mo(3)

such that ¢, < u, < u. <t..

Lemma 10 Let a be a serial episode of size k, and let [t,,t.) € mo(a). Then
there are subepisodes ay and ay of a of size k — 1 such that [t5,t!) € mo(a;)

5y Ye

for some t! < t. and [t2,1.) € mo(ay) for some 12 > ;.

Lemma 11 Let a be a parallel episode of size k, and let [t5,1.) € mo(a).
Then there are subepisodes a; and ay of « of size k — 1 such that [¢},t]) €
mo(aq) and [t2,12) € mo(ay) for some ¢!, ¢l 1212 € [t,,1.], and furthermore

ts = min{t!, 1%} and ¢, = max{¢!, 1%}

The minimal occurrences of a candidate episode « are located in the
following way. In the first iteration of the main algorithm, mo(«) is computed
from the input sequence for all episodes « of size 1. In the rest of the
iterations, the minimal occurrences of a candidate « are located by first
selecting two suitable subepisodes a7 and a3 of «, and then computing a
temporal join between the minimal occurrences of a; and ay, in the spirit of
Lemmas 10 and 11.

To be more specific, for serial episodes the two subepisodes are selected
so that a; contains all events except the last one and ay in turn contains all

except the first one. The minimal occurrences of o are then found with the
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following specification:

mo(a) = { [ts,ue) | there are [ts,t.) € mo(ay) and [us, u.) € mo(az)

such that ¢, < u,,t. < u., and [{,,u.) is minimal}.

For parallel episodes, the subepisodes ay and a3 contain all events except
one; the omitted events must be different. See Lemma 11 for the idea of how
to compute the minimal occurrences of a.

The minimal occurrences of a candidate episode a can be found in a linear
pass over the minimal occurrences of the selected subepisodes a7 and ay. The
time required for one candidate is thus O(|m0(a1)| + |m0(oz2)| + |m0(a)|),
which is O(n), where n is the length of the event sequence. To optimize
the running time, a; and ay can be selected so that |mo(aq)| + [mo(az)| is
minimized.

The space requirement of the algorithm can be expressed as
> Yower, Imo(a)|, assuming the minimal occurrences of all frequent episodes
are stored, or alternatively as Irla)q(zaefiufi+1 |mo(a)|), if only the current
and next levels of minimal occurrences are stored. The size of 3, o7 [mo(a)|
is bounded by n, the number of events in the input sequence, as each event
in the sequence is a minimal occurrence of an episode of size 1. In the second
iteration, an event in the input sequence can start at most |F;| minimal oc-
currences of episodes of size 2. The space complexity of the second iteration
is thus O(|Fi|n).

While minimal occurrences of episodes can be located quite efficiently,
the size of the data structures can be even larger than the original database,
especially in the first couple of iterations. A practical solution is to use in the
beginning other pattern matching methods, e.g., similar to the ones given for
WINEPT in Section 3, to locate the minimal occurrences.

Finally, note that MINEPI can be used to solve the task of WINEPI.

Namely, a window contains an occurrence of an episode exactly when it
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contains a minimal occurrence. The frequency of an episode a can thus be

computed from mo(a).

4.3 Finding confidences of rules

We now show how the information about minimal occurrences of frequent
episodes can be used to obtain confidences for various types of episode rules
without looking at the data again.

Recall that we defined an episode rule as an expression f3[win)] =
a [winy], where 3 and « are episodes such that 8 < a, and win; and win, are
integers. To find such rules, first note that for the rule to be frequent, the
episode a has to be frequent. So rules of the above form can be enumerated
by looking at all frequent episodes «, and then looking at all subepisodes 3
of a. The evaluation of the confidence of the rule 3 [win;] = «a[winy] can
be done in one pass through the structures mo(3) and mo(«), as follows.
For each [t,,1.) € mo(3) with t, — t; < winy, locate the minimal occurrence
[ts, u.) of a such that t; < wu, and [u,, u.) is the first interval in mo(a) with
this property. Then check whether u. — t, < win,.

The time complexity of the confidence computation for a given episode
and given time bounds win; and winy is O(|mo(B)| + |mo(a)|). The con-
fidences for all win;, winy in the set W of time bounds can be found, using
a table of size |[W]?, in time O(|mo(B)| + |mo(a)| + |W]?). For reasons of
brevity we omit the details.

The set W of time bounds can be used to restrict the initial search of min-
imal occurrences of episodes. Given W, denote the maximum time bound by
Wing,, = max( W). In episode rules, only occurrences of at most win,,,, time
units can be used; longer episode occurrences can thus be ignored already in
the search of frequent episodes. We consider the support, too, to be com-

puted with respect to a given win,, ;.
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5 Experiments

We have run a series of experiments using WINEPT and MINEPI. The general
performance of the methods, the effect of the various parameters, and the
scalability of the methods are considered in this section. Consideration is
also given to the applicability of the methods to various types of data sets.
The experiments have been run on a PC with 166 MHz Pentium processor
and 32 MB main memory, under the Linux operating system. The sequences

resided in a flat text file.

5.1 Performance overview

For an experimental overview we discovered episodes and rules in a telecom-
munication network fault management database. The database is a sequence
of 73679 alarms covering a time period of 7 weeks. There are 287 different
types of alarms with very diverse frequencies and distributions. On the av-
erage there is an alarm every minute. However, the alarms tend to occur in
bursts: in the extreme cases there are over 40 alarms in one second.

We start by looking at the performance of the WINEPT method described
in Section 3. There are several performance characteristics that can be used
to evaluate the method. The time required by the method and the number
of episodes and rules found by the method, with respect to the frequency
threshold or the window width, are possible performance measures. We
present results for the two opposite extreme cases of the complexity: serial
episodes and injective parallel episodes.

Tables 1 and 2 represent performance statistics for finding frequent epis-
odes in the alarm database with various frequency thresholds. The number
of frequent episodes decreases rapidly as the frequency threshold increases.
With a given frequency threshold, the numbers of serial and injective parallel

episodes may be fairly similar, e.g., a frequency threshold of 0.002 results in
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Frequency Candidates Frequent Iterations Total

threshold Episodes time (s)
0.001 4528 359 45 630
0.002 2222 151 44 646
0.005 800 48 10 147
0.010 463 22 7 110
0.020 338 10 4 62
0.050 288 1 2 22
0.100 287 0 1 16

Table 1: Performance characteristics for serial episodes with WINEPI; alarm
database, window width 60 s.

Frequency Candidates Frequent [terations Total
threshold Episodes time (s)
0.001 2122 185 5 49
0.002 1193 93 4 48
0.005 520 32 4 34
0.010 366 17 4 34
0.020 308 9 3 19
0.050 287 1 2 15
0.100 287 0 1 14

Table 2: Performance characteristics for injective parallel episodes with
WINEPI; alarm database, window width 60 s.

151 serial episodes or 93 parallel episodes. The actual episodes are, however,
very different, as can be seen from the number of iterations: recall that each
iteration [ produces episodes of size [. For the frequency threshold of 0.002,
the longest frequent serial episode consists of 43 events (all candidates of the
last iteration were infrequent), while the longest frequent injective parallel
episodes have 3 events. The number of iterations equals the number of can-
didate generation phases. The number of database passes equals the number
of iterations, or is smaller by one when there were no candidates in the last

iteration.
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Figure 5: Number of frequent serial (solid line) and injective parallel (dotted
line) episodes as a function of the window width; WINEPI, alarm database,
frequency threshold 0.002.

The effect of the window width on the number of frequent episodes is
represented in Figure 5. For each window width, there are considerably fewer
frequent injective parallel episodes than frequent serial episodes. With the
alarm data, the increase in the number of episodes is fairly even throughout
the window widths that we considered. However, we will later show that this
may depend heavily on the type of data we are using.

Figure 6 represents the number of serial and injective parallel episodes
found by the method, and Figure 7 the total processing time required, as
the frequency threshold increases. Both curves decrease steeply with the
increasing frequency threshold. The time requirement is much smaller for
parallel episodes than for serial episodes with the same threshold. There
are two reasons for this. The parallel episodes are considerably shorter (see
Tables 1 and 2) and hence, fewer database passes are needed. The complexity

of recognizing injective parallel episodes is also smaller.
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Figure 6: Number of frequent serial (solid line) and injective parallel (dotted
line) episodes as a function of the frequency threshold with WINEPI; alarm
database, window width 60 s.
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Figure 7: Processing time for serial (solid line) and injective parallel (dot-
ted line) episodes as a function of the frequency threshold; WINEPI, alarm
database, window width 60 s.

5.2 Quality of candidate generation

We now take a closer look at the candidates considered and frequent episodes
found during the iterations of the procedure. As an example, let us look at

what happens during the first iterations. Statistics of the first ten iterations
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Episode Episodes Candidates Frequent Match

size episodes

1 287 287 58 20 %
2 82369 3364 137 4 %
3 2107 719 46 6 %
4 7-10° 37 24 64 %
5 210" 24 17 1%
6 610" 18 12 67 %
7 21017 13 12 92 %
8 510" 13 8 62 %
9 1-10% 8 3 38 %
10 4 -10% 3 2 67 %

Table 3: Number of candidate and frequent serial episodes during the first
ten iteration phases with WINEPT; alarm database, frequency threshold 0.001,
window width 60 s.

of a run with a frequency threshold of 0.001 and a window width of 60 s is
shown in Table 3.

The three first iterations dominate the behavior of the method. During
these phases, the number of candidates is large, and only a small fraction
(less than 20 per cent) of the candidates turns out to be frequent. After the
third phase the candidate generation is efficient, few of the candidates are
found infrequent, and although the total number of iteration phases is 45,
the last 35 iterations involve only 1-3 candidates each. Thus we could safely
combine several of the later iteration steps, to reduce the number of database
passes.

If we take a closer look at the frequent episodes, we observe that all
frequent episodes longer than 7 events consist of repeating occurrences of
two very frequent alarms. Each of these two alarms occurs in the database

more than 12000 times (16 per cent of the events each).
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Support Candidates Frequent Iterations Total

threshold Episodes time (s)
50 12732 2735 83 28
100 5893 826 71 16
250 2140 298 54 16
500 813 138 49 14
1000 589 92 48 14
2000 405 64 47 13
4000 352 53 46 12

Table 4: Performance characteristics for serial episodes with MINEPI; alarm
database, maximum time bound 60 s.

Support Candidates Frequent Iterations Total
threshold Episodes time (s)
50 10041 4856 89 30
100 4376 1755 71 20
250 1599 484 54 14
500 633 138 49 13
1000 480 89 48 12
2000 378 66 47 12
4000 346 53 46 12

Table 5: Performance characteristics for parallel episodes with MINEPT; alarm
database, maximum time bound 60 s.

5.3 Comparison of algorithms winerr and Mivepr

Tables 4 and 5 represent performance statistics for finding frequent episodes
with MINEPI, the method using minimal occurences. Compared to the cor-
responding figures for WINEPI in Tables 1 and 2, we observe the same general
tendency for a rapidly decreasing number of candidates and episodes, as the
support threshold increases.

The episodes found by WINEPI and MINEPI are not necessarily the same.
If we compare the cases in Tables 1 and 4 with approximately the same

number of frequent episodes, e.g., 151 serial episodes for WINEPT and 138 for
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Figure 8: Processing time for serial (solid line) and injective parallel (dotted
line) episodes with MINEPI; alarm database, maximum time bound 60 s.

MINEPI, we notice that they do not correspond to the same episodes. The
sizes of the longest freuquent episodes are somewhat different (43 for the
original, 48 for the minimal occurrence method). The frequency threshold
0.002 for WINEPI corresponds, at the minimum, to about 150 instances of the
episode, while the support threshold used for MINEPI is 500. The difference
between the methods is very clear for small episodes. Consider an episode «
consisting of just one event A. WINEPI considers a single event A to occur in
60 windows of width 60 s, while MINEPI sees only one minimal occurrence.
On the other hand, two successive events of type A result in « occuring in
61 windows, but the number of minimal occurrences is doubled from 1 to 2.

Figure 8 shows the time requirement for finding frequent episodes with
MINEPI. The processing time for MINEPI reaches a plateau when the size of
the maximal episodes no longer changes (in this case, at support threshold
500). The behavior is similar for serial and parallel episodes. The time
requirements of MINEPI should not be directly compared to WINEPI: the
episodes discovered are different, and our implementation of MINEPI works

entirely in the main memory. With very large databases this might not be
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Varying support threshold, Varying number of time bounds,

four time bounds support threshold 1000
Support Distinct  Rule gen. Number of All  Rule gen.
threshold rules time (s) time bounds  rules time (s)
50 50470 149 1 1221 13
100 10809 29 2 2488 13
250 4041 20 4 5250 15
500 1697 16 10 11808 18
1000 1221 15 20 28136 22
2000 1082 14 30 42228 27
4000 1005 14 60 79055 43

Table 6: Number of rules and rule generation time with MINEPI; alarm data-
base, serial episodes, support threshold 1000, maximum time bound 60 s,

confidence threshold 0.

possible during the first iterations; either the minimal occurrences need to
be stored on the disk, or other methods (e.g., variants of Algorithms 4 and
5) must be used.

5.4 Rules

The methods can easily produce very large amounts of rules. Recall that rules
are constructed by considering all frequent episodes « as the right-hand side
and all subepisodes 3 =< « as the left-hand side of the rule. Additionally,
MINEPI considers variations of these rules with all the time bounds in the
given set W.

Table 6 represents results with serial episodes. The initial episode genera-
tion with MINEPI took around 14 s, and the total number of frequent episodes
was 92. The table shows the number of rules obtained by MINEPT with con-
fidence threshold 0 and with maximum time bound 60 s. On the left, with
a varying support threshold, rules that differ only in their time bounds are
excluded from the figures; the rule generation time is, however, obtained by

generating rules with four different time bounds.
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Figure 9: Total number of distinct rules found by MINEPI with various con-
fidence thresholds; alarm database, maximum time bound 60 s, support

threshold 100.

The minimal occurrence method is particularly useful, if we are interested
in finding rules with several different time bounds. The right side of Table 6
represents performance results with a varying number of time bounds. The
time requirement increases slowly as more time bounds are used, and the
time increases slowlier than the number of rules.

The amount of almost 80000 rules, obtained with 60 time bounds, may
seem unnecessarily large and unjustified. Remember, however, that there are
only 1221 distinct rules. The rest of the rules present different combinations
of time bounds, in this case down to the granularity of one second. For
the cost of 43 s we thus obtain very fine-grained rules from our frequent
episodes. Different criteria can then be used to select the most interesting
rules from these. Figure 9 represents the effect of the confidence threshold to
the number of distinct rules found by MINEPI. Although the initial number of
rules may be quite large, it decreases fairly rapidly if we require a reasonable

confidence.
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Data set Events Event Supp. Max Conlf. Freq. Rules

name types thr. time b. thr. epis.
alarms 73679 287 100 60 0.8 826 6303
WWW 116308 7634 250 120 0.2 454 316
text1 5417 1102 20 20 0.2 127 19
text2 2871 905 20 20 0.2 34 4
protein 4941 22 7 10 21234

Table 7: Characteristic parameter values for each of the data sets and the
number of episodes and rules found by MINEPI.

5.5 Results with different data sets

In addition to the experiments on the alarm database, we have run MINEPI
on a variety of different data collections to get a better view of the usefulness
of the method. The data collections that were used, some typical parameter
values for them, and some results are presented in Table 7.

The WWW data is part of the WWW server log from the Department of
Computer Science at the University of Helsinki. The log contains requests
to WWW pages at the department’s server; such requests can be made by
WWW browsers at any host in the Internet. We consider the WWW page
fetched as the event type. The number of events in our data set is 116308,
covering three weeks in February and March, 1996. In total, 7634 different
pages are referred to. Requests for images have been excluded from consid-
eration.

Suitable support thresholds vary a lot, depending on the number of events
and the distribution of event types. A suitable maximum time bound for the
device generated alarm data is one minute, while the slower pace of a human
user requires using a larger time bound (two minutes or more) for the WWW
log. By using a relatively small time bound we reduce the probability of
unrelated requests contributing to the support. A low confidence threshold
for the WWW log is justified since we are interested in all fairly usual patterns
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of usage, not only in the dominating ones. In the WWW server log we found,
e.g., long often used paths of pages from the home page of the department
to the pages of individual courses. Such behavior suggests that rather than
using a bookmark directly to the home page of a course, many users quickly
navigate there from the departmental home page.

The two text data collections are modifications of the same English text.
Each word is considered an event, and the words are indexed consecutively
to give a “time” for each event. The end of each sentence causes a gap
in the indexing scheme, to correspond to a longer distance between words
in different sentences. We used text from GNU man pages (the gnu awk
manual). The size of the original text (textl) is 5417 words, and the size of
the condensed text file (text2), where noninformative words such as articles,
prepositions, and conjunctions, have been stripped off, is 2871 words. The
number of different words in the original and the condensed text is 1102,
resp. 905.

For text analysis, there is no point in using large time bounds, since it
is unlikely that there is any connection between words that are not fairly
close to each other. This can be clearly seen in Figure 10 which represents
the number of episodes found on various window widths using WINEPI. This
figure reveals behavior that is distinctively different from the corresponding
Figure 5 for the alarm database. We observe that for the text data, the
window widths from 24 to 50 produce practically the same amount of serial
episodes. The number of episodes will only increase with considerably larger
window widths. For this data, the interesting frequent episodes are smaller
than 24, while the episodes found with much larger window widths are noise.
The same phenomenon can be observed for parallel episodes.

Only few rules can be found in text using a simple analysis like this.

The strongest rules in the original text involve either the word “gawk”, or
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Figure 10: Number of serial (solid line) and injective parallel (dotted line)
episodes as a function of the window width; WINEPI, compressed text data
(text2), frequency threshold 0.02.

common phrases such as
the, value[2] = of [3] (confidence 0.90)

meaning that in 90 % of the cases where the words “the value” are consec-
utive, they are immediately followed by the preposition “of”. These rules
were not found in the condensed text since all prepositions and articles have
been stripped off. The few rules in the condensed text contain multiple oc-
currences of the word “gawk”, or combinations of words occurring in the
header of each man page, such as “free software”.

We performed scale-up tests with 5, 10, and 20 fold multiples of the
compressed text file, i.e., sequences of approximately 2900 to 58000 events.
The results in Figure 11 show that the time requirement is roughly linear
with respect to the length of the input sequence, as could be expected.

Finally, we experimented with protein sequences. We used data in the
PROSITE database [1] of the ExXPASy WWW molecular biology server of the
Geneva University Hospital and the University of Geneva [11]. PROSITE
contains biologically significant DNA and protein patterns that help to
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Figure 11: Scale-up results for serial (solid line) and injective parallel (dotted
line) episodes with MINEPI; compressed text data, maximum time bound 60,
support threshold 10 for the smallest file (n-fold for the larger files).

identify to which family of protein (if any) a new sequence belongs. The
purpose of our experiment is to evaluate our algorithm against an external
data collection and patterns that are known to exist, not to find patterns
previously unknown to the biologists. We selected as our target a family of
7 sequences (“DNA mismatch repair proteins 1”7, PROSITE entry PS00058).
The sequences in the family are known to contain the string GFRGEAL of seven
consequtive symbols. We transformed the data in a manner similar to the
English text: symbols are indexed consecutively, and between the protein
sequences we place a gap. The total length of this data set is 4941 events,
with an alphabet of 22 event types. The method could be easily modified to
take several separage sequences as input, and to compute the support of an
episode a, e.g., as the number of input sequences that contain a (minimal)
occurrence of « of length at most the maximum time bound.

The parameter values for the protein database are chosen on purpose to
reveal the pattern that is known to be present in the database. The window

width was selected to be 10, i.e., slightly larger than the length of the pattern
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that we were looking for, and the support threshold was set to 7, for the
seven individual sequences in the original data. With this data, we are only
interested in the longest episodes (of length 7 or longer). Of the more than
20000 episodes found, 17 episodes are of length 7 or 8. As expected, these
contain the sequence GFRGEAL that was known to be in the database. The
longer episodes are variants of this pattern with an eighth symbol fairly near,
but not necessarily immediately subsequent to the pattern (e.g., GFRGEAL*S).
These types of patterns belong to the pattern class used in PROSITE but, to
our suprise, these longer patterns are not reported in the PROSITE database.

6 Extensions and related work

The task of discovering frequent parallel episodes can be stated as a task
of discovering all frequent sets, a central phase of discovering assocation
rules [2], the rule generation methods are also basically the same for asso-
ciation rules and WINEPI. The levelwise main algorithm has also been used
successfully in the search of frequent sets [3].

Technical problems related to the recognition of episodes have been re-
searched in several fields. Taking advantage of the slowly changing contents
of the group of recent events has been studied, e.g., in artificial intelligence,
where a similar problem in spirit is the many pattern/many object pat-
tern match problem in production system interpreters [9]. Also, comparable
strategies using a sliding window have been used, e.g., to study the locality
of reference in virtual memory [7]. Our setting differs from these in that
our window is a queue with the special property that we know in advance
when an event will leave the window; this knowledge is used by WINEPT in
the recognition of serial episodes. In MINEPI, we take advantage of the fact
that we know where subepisodes of candidates have occurred.

The recent work on sequence data in databases (see [21]) provides inter-
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esting openings towards the use of database techniques in the processing of
queries on sequences. A problem similar to the computation of frequencies
occurs also in the area of active databases. There triggers can be specified
as composite events, somewhat similar to episodes. In [10] it is shown how
finite automata can be constructed from composite events to recognize when
a trigger should be fired. This method is not practical for episodes since the
deterministic automata could be very large.

The methods for matching sets of episodes against a sequence have some
similarities to the algorithms used in string matching (e.g., [12]). In par-
ticular, recognizing serial episodes in a sequence can be seen as locating all
occurrences of subsequences, or matches of patterns with variable length
don’t care symbols, where the length of the occurrences is limited by the
window width. Learning from a set of sequences has received considerable
interest in the field of bioinformatics, where an interesting problem is the
discovery of patterns common to a set of related protein or amino acid se-
quences. The classes of patterns differ from ours; they can be, e.g., substrings
with fixed length don’t care symbols [15]. Closer to our patterns are those
considered in |24|. The described algorithm finds patterns that are similar
to serial episodes; however, the patterns have a given minimum length, and
the occurrences can be within a given edit distance. Recent results on the
pattern matching aspects of recognizing episodes can be found in [6].

The work most closely related to ours is perhaps [4]. There multiple
sequences are searched for patterns that are similar to the serial episodes
with some extra restrictions and an event taxonomy. Our methods can be
extended with a taxonomy by a direct application of the similar extensions to
association rules [13, 14, 22]. Also, our methods can be applied on analyzing
several sequencies; there is actually a variety of choices for the definition of
frequency of an episode in a set of sequencies. More recently, the pattern

class of [4] has been extended with windowing, some extra time constraints,
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and an event taxonomy [23]. — For a survey on patterns in sequential data,
see [17].

In stochastics, event sequence data is often called a marked point pro-
cess [16]. It should be noted that traditional methods for analyzing marked
point processes are ill suited for the cases where the number of event types
is large. However, there exists an interesting combination of techniques: fre-
quent episodes are discovered first, and then the phenomena they describe
are analyzed in more detail with methods for marked point processes.

There are also some interesting similarities between the discovery of fre-
quent episodes and the work done on inductive logic programming (see,
e.g., [20]); a noticeable difference is caused by the sequentiality of the under-
lying data model, and the emphasis on time-limited occurrences. Similarly,
the problem of looking for one occurrence of an episode can be viewed as a
constraint satisfaction problem.

The class of patterns discovered can be easily modified in several direc-
tions. Different windowing strategies could be used, e.g., considering only
windows starting every win’ time units for some win’, or windows starting
from every event. Other types of patterns could also be searched for, e.g.,
substrings with fixed length don’t care symbols; searching for episodes in
several sequences is no problem. A more general framework for episode dis-
covery has been presented in [18]. There episodes are defined as combinations

of events satisfying certain user specified unary of binary conditions.

7 Conclusions

We presented a framework for discovering frequent episodes in sequential
data. The framework consists of defining episodes as partially ordered sets
of events, and looking at windows on the sequence. We described an al-

gorithm, WINEPI, for finding all episodes from a given class of episodes that
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are frequent enough. The algorithm was based on the discovery of episodes
by only considering an episode when all its subepisodes are frequent, and
on incremental checking of whether an episode occurs in a window. The
implementation shows that the method is efficient. We have applied the
method in the analysis of the alarm flow from telecommunication networks,
and discovered episodes have been embedded in alarm handling software.

We also presented an alternative approach, MINEPI, to the discovery of
frequent episodes, based on minimal occurrences of episodes. This approach
supplies more power for representing connections between events, as it pro-
duces rules with two time bounds.

Both rule formalisms have their advantages. While the rules of MINEPI
are often more informative, the frequencies and confidences of the rules of
WINEPT have nice interpretations as probabilities concerning randomly chosen
windows. For a large part the algorithms are similar, there are significant
differences only in the computation of the frequency or support. Roughly,
a general tendency in the performance is that WINEPI can be more efficient
in the first phases of the discovery, mostly due to smaller space requirement.
In the later iterations, MINEPI is likely to outperform WINEPI clearly. The
methods can be modified for cross-use, 1.e., WINEPI for finding minimal oc-
currences and MINEPI for counting windows, and for some large problems —
whether the rule type of WINEPI or MINEPI — a mixture of the two methods
could give better performance than either alone.

Interesting extensions to the work presented here are facilities for rule
querying and compilation, i.e., methods by which the user could specity the
episode class in high-level language and the definition would automatically
be compiled into a specialization of the algorithm that would take advantage
of the restrictions on the episode class. Other open problems include the
combination of episode techniques with marked point processes and intensity

models.
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