Interestingness Measures for Association
Patterns : A Perspective

! and Vipin Kumar!

Pang-Ning Tan
Department of Computer Science,
University of Minnesota,
200 Union Street SE,
Minneapolis, MN 55455.
{ptan,kumar}@cs.umn.edu

Abstract. Association rules are valuable patterns because they offer
useful insight into the types of dependencies that exist between attributes
of a data set. Due to the completeness nature of algorithms for mining
association-type patterns (such as Apriori), the number of patterns ex-
tracted are often very large. Therefore, there is a need to prune or rank
the discovered patterns according to some measure of interestingness. In
this paper, we will examine the various interestingness measures that
arise from statistics, machine learning and data mining literature. We
will investigate how close these measures reflect the statistical notion
of correlation. We will show that support-based pruning is appropriate
because it removes mostly uncorrelated and negatively correlated pat-
terns. Another useful measure is the x? statistic, which is often used to
test whether there is sufficient evidence in the data samples to reject the
hypothesis that items in a pattern are independent. Our experimental
results verified that many of the intuitive measures (such as Piatetsky-
Shapiro’s rule-interest, confidence, laplace, entropy gain, etc.) are very
similar in nature to correlation coefficient (in the region of support values
typically encountered in practice). Finally, we will introduce a new met-
ric, called the I.S measure, and show that it is highly linear with respect
to correlation coefficient for many interesting association patterns.



1 Introduction

Association rules [3,2] are valuable patterns that can be derived from large
database of transactions. They offer useful insight into the dependence relation-
ships that exist among attributes of the data set. Conceptually, an association
rule indicates that the presence of a set of items, or itemset, in a transaction
would imply the occurence of other items in the same transaction.

The association rule discovery problem is often decomposed into two separate
tasks : (1) to discover all itemsets having support above a user-defined threshold,
and (2) to generate rules from these frequent itemsets. The first task can be
very expensive, because it requires a lot of I/O operations. Over the years, many
algorithms, such as Apriori and other level-wise algorithms [3,2,4,17,9, 1], have
been developed to efficiently discover these itemsets.

On the other hand, rule generation is less I/O intensive. Nevertheless, there
are two major problems with association rule generation : (1) too many rules
are being generated (rule quantity problem), and (2) not all of the rules are
interesting (rule quality problem). Both problems are not entirely independent.
For example, knowledge about the quality of a rule can be used to reduce the
number of rules presented to an analyst.

There has been various research effort aimed at mitigating both problems.
The rule quantity problem can be handled by pruning or summarizing the dis-
covered rules. Toivonen et al.[21] proposed the idea of using structural rule covers
to remove redundant rules and clustering as a means for grouping (summarizing)
together related rule covers. Liu et al. [14] used the standard x? test to prune
insignificant rules and introduced the concept of direction setting rules to sum-
marize the discovered pattern. Other researchers adopt a completely different
view on how to handle the rule quantity problem. Srikant et al. [20] and Ng et
al. [16] used the constraints provided by a user to limit the number of rules that
are produced.

Solution to the rule quality problem relies on specification of an interesting-
ness measure to represent the novelty, utility or significance of a pattern. By
ordering the discovered rules according to their degree of interestingness, one
can ensure that only good quality rules are presented to an analyst. Some of the
measures are applicable to itemsets as well as rules. ' In such cases, they can be
incorporated into the itemset generation step for early pruning of uninteresting
itemsets.

In the original formulation of association rule discovery problem, support and
confidence are two of the interestingness measures proposed. Support is necessary
because it represents the statistical significance of a pattern. From the marketing
perspective, support of an itemset in retail sales data justifies the feasibility of
promoting the items together. Support is also good for pruning the search space
since it possesses a nice downward closure property (Figure 1). Beyond that,
it may not serve as a reliable interestingness measure. For example, rules with

! We will use the term association pattern to refer to both an association rule and the
itemset from which the rule is generated.



high support quite often correspond to obvious knowledge about the domain.
The rule Bread = Milk, for instance, may not be interesting to a data analyst
simply because it does not reveal any surprising information, despite gathering
sufficiently high support. In Fig. 1, any itemsets that lie outside the frequent
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Fig. 1. Lattice structure for all itemsets. This structure can be divided into several
regions : I. Infrequent and dependent itemsets, II. frequent and dependent itemsets,
III. frequent and independent itemsets, IV. infrequent and independent itemsets.

itemset border can be ruled out as uninteresting. However, one still have to
face the problem of combinatorial explosion due to the large number of frequent
itemsets and rules that can be potentially generated.

In theory, confidence measures the conditional probability of events associ-
ated with a particular rule. For example, if a rule X — Y has a confidence ¢, it
means that ¢% of all transactions that contain X will also contain Y. Unfortu-
nately, confidence can be misleading in many practical situations, as shown by
Brin et al. in [7]. [7] offerred an alternative to evaluate the significance of asso-
ciation patterns using standard hypothesis testing techniques. Specifically, they
proposed the use of x? statistic to evaluate the dependence between items in an
itemset. This measure is desirable because it will rule out itemsets that occur by
chance. [7,19] also showed that x” possess an upward closure property that can
be used to further prune the search space. This property will allow us to look
for a border between dependent and independent itemsets (Fig. 1. However, we
will argue that the alternative proposed in [7,19] may still be unsatisfactory.

This paper intends to follow-up on the earlier work done by Brin et al in [7].
The main contributions of this paper are as follows :

1. We investigate the possibility of using various measures from statistics, ma-
chine learning and data mining literature to rank the association patterns.



2. We show that support-based pruning is useful for removing uncorrelated and
negatively correlated itemsets.

3. We combine support-based pruning with x? pruning to reduce the complex-
ity of mining interesting association patterns. Specifically, we examine the
applicability of various interestingness measures to region II of Fig. 1.

4. We introduce a new measure, called the IS measure, which takes into account
both the interestingness and support of a pattern.

5. We evaluate how well the various interestingness measures can capture the
notion of statistical correlation. In fact, our empirical results show that many
of these measures are capable of representing statistical correlation within
certain range of support values.

The rest of the paper is organized as follows. In section 2, we describe several
statistical techniques for measuring the degree of association between variables.
We then explore some of the interestingness measures that arise from data mining
in section 3. Experimental results comparing the various metrics to standard
statistical correlation are also presented. In Section 4, we look at how these
measures can be applied to find interesting patterns in region IT of Fig. 1. Finally,
we conclude by summarizing our results in Section 5.

2 Statistical Measures of Dependency

Inferring dependencies between variables in data is a well-studied area in statis-
tics. In this section, we will present several statistical methods for measuring the
dependencies between categorical variables. The first class of methods, called
the goodness of fit test, compares the actual distribution of a data set to its
expected distribution under a null hypothesis. To test for item dependence, the
null hypothesis assumes that a pattern consists of items that are independent
of each other. Then, based on evidence provided by the observed data, one can
determine whether to accept or reject the independence assumption. Though hy-
pothesis testing is a well-established methodology in statistical inference, tech-
niques that estimate directly the degree of dependence are often more desirable.
These are called measures of association in statistical literature.

Our discussion will focus primarily on pairs of dichotomous variables, even
though some of the techniques described here can be generalized to larger sized
patterns. Let A and B denote a pair of binary variables. The dataset that con-
tains these variables can be summarized into a 2 x 2 contingency table as shown
in Table 1. Each cell represents the four possible combinations of A and B val-
ues. f;; corresponds to the frequency (or support count) for each cell; while f;+
and f;; are the marginal sums for row ¢ and column j respectively. For example,
fix = fir + fio- Also, N refers to the size of the database.

2.1 Goodness of fit test

Goodness of fit tests are often used for comparing probability distributions. For
testing variable dependencies, a null hypothesis is initially proposed, stating that
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Table 1. A 2 x 2 contingency table for binary variables.
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the variables are independent of each other. A test procedure is then formulated
to measure the discrepancy between the observed sample from its expected dis-
tribution under the null hypothesis. Pearson’s x? statistic is often used for this
purpose :

o _ o e = E(fir))?
=2 ) .

where the sum ranges over all the cells in the contingency table. The expected
frequency of a particular cell is E(f;;) = N x fJTJr X erTk Briefly, x? measures the
normalized deviation between the observed frequencies, f;, from their expected
frequencies, E(fjx), under the null hypothesis. The larger the deviation, the
more evidence we have to reject the independence hypothesis.

For the 2x 2 contingency table shown in Table 1, its x? value can be simplified
into the following expression :

&= (fu = fix f1/N)? N (fi0 = fiy fro/N)? N (for = for f+1/N)?
firfr1/N fiefro/N forfr1/N
+(foo — fot f+o/N)?
forfro/N
_ N (f11foo — fo1.f10)?

Jitfor fr1fro @

Since this statistic is calculated using all the cells from the contingency table,
its value can be large if the variables exhibit strong positive (or negative) corre-
lation with each other. [7,19] have used this property to find both positive and
negatively correlated association patterns. They also showed that x? is upward
closed, a property can be exploited to prune the search space of the problem.
However, this test may not be the ultimate answer due to the following reasons:

1. As stated in [7], x* does not tell us the strength of correlation between items
in an association pattern. Instead, it will only help us to decide whether
items in the pattern are independent of each other. Thus, it cannot be used
for ranking purposes.

2. The upward closure property of x? ensures that all itemsets above the x?
border are statistically dependent. In reality, some itemsets above the x>
border will be more interesting than others. Therefore, just knowing the
border alone is insufficient.



3. The x?2 statistic depends on the total number of transactions. On the other
hand, the x2? cutoff value depends only on the degrees of freedom of the
attributes (which is 1 for binary attributes) and the significance level desired.
For example, the rejection region for binary attributes at 0.05 significance
level is 3.84. When the number of transactions are large, the cutoff value can
be exceeded by a very large number of itemsets.

Another form of goodness of fit test is based on the likelihood ratio test.
However, this approach requires specification of a parametric model in the order
to compute the likelihood ratio. More details can be found in statistical references
such as [13]. For large sample size, it can be shown that this test is equivalent
to Pearson x? test.

2.2 Measures of Association

Goodness of fit tests can only tell us whether a pattern contains independent
items. For ranking purposes, a direct measure of association between variables
is a preferable scheme. We will present three such measures in this section. They
are Pearson’s ¢-coeflicient, Goodman and Kruskal’s A coefficient and uncertainty
measures from information theory.

In order to compare the similarity between these metrics, a series of ex-
periments have been conducted using a synthetic dataset. This dataset contains
10000 randomly generated data points. Each data point is a 4-tuple (f11, fi0, fo1, foo),
generated according to the following conditions :

1. th<1,flT°<1andf°T1<land
2. fur+ fio+ for <N.

This data set will be used to compute the various interestingness measures
introduced throughout this paper. We then choose one of the statistical measures
of association as the reference metric, and plot the graphs of the remaining
measures with respect to this reference metric.

2.2.1 Correlation coefficient Correlation coefficient measures the degree of
linearity between a pair of random variables. Theoretically, it is defined as the
covariance between two variables, divided by their standard deviations:

pAB = ————— 3)

where Cov(A, B) = E(AB) — E(A)E(B). The range of pap is between —1 and
+1. If the two variables are independent, then p4p = 0. However, the converse is
not necessarily true. It is possible that p4p = 0 even when the variables are not
independent. This occurs when both E(AB) and E(A) are zero, thus satisfying
pap = 0 trivially. Fortunately, this is not a problem for binary variables. If
E(AB) and E(A) are zero, then both P(A, B) and P(A, B) have to be zero,
thus rendering A to be a meaningless attribute.



For binary variables, 04 = y/p(1 — p) where p = P(A) = f14+/N. The corre-
lation coefficient between A and B can be written as

1-1%_%.%
Va0 -Benhea- )
— Nfll_f1+‘f+1
\/fH—(N - f1+)f+1(N — f+1)
— Nfll _f1+‘f+1 (4)
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The numerator of this equation can be simplified into the following :

N fi1 = fiy - fr1 = Nfir = (fi1 + fr0)(fi1 + for)
= Nfii — fi1 — firfio — firfor — frofor
= fuu(N = fi1 = fio — fo1) — fiofor
= f11foo — fiofo1 (5)

PAB =

Hence, equation 4 becomes

pAB = fllfOO - flOfOl (6)
Vfitfor frifro

The above equation is obtained assuming that the contingency table is con-
structed using frequencies of an entire population. For finite samples, Pearson
introduces the phi-coefficient, ¢, which is defined to be :

_ fiifoo — frofor
\ fit fot+ 1 fro
where fij,s are the observed frequencies from samples of the population. Notice

the similarity between this coefficient and equation 6. We will use the term
correlation coefficient and ¢-coefficient interchangeably for the rest of the paper.

¢
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Table 2. Simplified Example

The ¢-coefficient for Table 2 is (8 — 3)/v/5 x 5 x 7 x 3 = 1//21.

The ¢-coefficient is closely related to x? statistic. Upon comparing equation 7
with equation 2, we would obtain ¢* = x2/N. ¢? is also called the coefficient
of determination in statistics literature. We will use the ¢-coefficient as the
reference metric for comparison with other interestingness measures.



2.2.2 Predictive Association Another statistical measure of association,
developed by Goodman and Kruskal, is called the index of predictive association.
This measure is based upon the following observation : if two variables are highly
dependent, then the error in predicting one of the variables would be smaller
whenever the other variable is known. To be more precise, the index of predictive
association for a variable, say A, is defined to be :

Plea) — P(ealB)
P(ea)

where €4 is the error in predicting A. A4 is a non-negative real number be-
tween 0 and 1. If no other information is available, the best guess we can make
regarding the value of A is the value A that has the largest probability, ie.
A = arg(max, P(Ay)). The error in using this estimate is P(e4) = 1 — P(A) =
1-— maXy P(Ak)

Now, suppose we observe B = Bj. With this extra information, the best
estimate of A is the value that maximizes the conditional probability A =
arg(maxy, P(Ag|B1)). The error associated with this estimator is P(es|B;) =
1 — maxy, P(Ag|B1). The average prediction error for A given B can be com-
puted by averaging over the entire range of B values :

Aa = (8)

P(ea|B) = P(ea|B1)P(B1) + -+ + P(ea|Bp) P(Bin)
= (1 - max P(4¢|B1))P(B1) + -+~ + (1 - max P(44] Byu)) P(Bin)

= ZP(B]-) - ZmI?XP(AHBj)P(Bj)

ZI—kaa,XP(Ak,B]’) (9)

where EJ P(B]) =1 and P(Ak|B])P(B]) = P(Ak,Bj).
Equation 8 can now be written as :

Ej maxpg P(Ak,Bj) — MaXyg P(Ak)
o 1 — maXg P(Ak)
> maxy fip — maxg fig

= 1
N — maxpg f+k ( 0)

Aa

This equation can be used as a measure for the implication rule B = A. For
the itemset {A, B} , we may prefer a symmetric version of this coefficient :

Doy maxg fik + D0, max; fix — maxy frp —max; fiy
N 2N — maXy f+k — mnaxy f]'+

B (11)

Ezample 2. For the example given in Table 2, A\yp = (44+24+44+3-5-7)/(20—
5-7)=1/8.

The relationship between ¢ and A is shown in Figure 2. The graphs in this
figure are generated using synthetic data. They show the effect of changing both



upper and lower support thresholds on itempairs of the dataset. In practice, many
real-world datasets may involve tens of thousands of variables and millions of
tuples (rows). For such datasets, support for interesting variables are quite low,
say less than 30% or 40%. Association rule mining on these datasets often require
a minimum support threshold at 0.1%, 0.5% or even as high as 5% (if too many
patterns are generated). These graphs show that a strong linear relationship
exists between A\ and the ¢-coefficient within the above range of low support
values. Further discussion about the effect of changing support thresholds will
be presented in Section 3. Also, one can observe that the predictive association
measure treats both negative and positive correlations in the same way.
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Fig. 2. Correlation coefficient versus Predictive association plot.

2.2.3 Uncertainty A third measure of association originates from infor-
mation theory. Uncertainty (or entropy) of a variable X is given by H(A) =
— > 1 P(Ar)log P(Ag). In a sense, this measure is analogous to statistical vari-
ance. When the probabilities are evenly spread among the values of a variable,
then its entropy will be large; and vice-versa. We can extend this concept to
more than one variable. For example, the joint entropy between two variables is
defined to be H(A, B) = =3, >, P(Ay, Bj)log P(Ax, B;) while its conditional
entropy is H(A|B) = H(A, B) — H(B). One way to specify the degree of associ-
ation between two variables is in terms of a quantity called mutual information



I(A,B) = H(A) — H(A|B)
= H(A) + H(B) — H(A, () ’
P(A;, B

_ZZP A;, Bj) logP(Al) ) (12)

Mutual information specifies the amount of reduction in uncertainty of a variable
A when a second variable B is known. This measure is symmetric with respect
to both A and B. The overall measure of association between A and B can be
expressed in terms of the maximum mutual information ratio :

H(A) + H(B) — H(A, B)
min[H (A), H(B)]

S(A,B) = (13)

The relationship between the ¢-coefficient and S is shown in Figure 3. The
graphs look rather similar to those between predictive association and ¢ and are
symmetric about the horizontal axis when all itempairs are considered. In the
region of low support values, there is a strong linear relationship between the
two measures. This indicates that any one of the three measures can be used as
a statistical measure of association between dichotomous variables, within this
region of interest.
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Fig. 3. Correlation coefficient versus Uncertainty.



3 Measures of Dependency from Data Mining

In recent years, various data mining techniques have been proposed to extract
interesting patterns from large databases. Due to the large number of discovered
patterns, numerous objective measures were introduced to quantify the interest-
ingness of these patterns. Most of the measures can be adapted to association-
type patterns (such as frequent itemset and association rules). In this section,
we will describe some of the measures and compare their characteristics with re-
spect to statistical correlation. We start by presenting the fundamental principles
underlying a good, intuitive objective measure.

3.1 Principles of Objective Measures of Interestingness

Objective measure is a data-driven, domain-independent approach to evaluate
the interestingness of discovered patterns 2. [18] have outlined three basic prin-
ciples that must be obeyed by any intuitive objective measure, F' :

1. F =0 if A and B are statistically independent; i.e. whenever P(A, B) =
P(A)P(B).

2. F monotonically increases with P(A, B) when all other parameters remain
the same.

3. F monotonically decreases with P(A) (or P(B)) when the rest of the pa-
rameters stay the same.

The first principle ensures that patterns that occur by chance have zero interest
value. The second principle states that the interest value should be large for
patterns that have higher statistical significance (where statistical significance is
expressed in terms of the support of the pattern, P(A, B)). The third principle
is used to compare the interest values of patterns with equivalent statistical
significance. The pattern that requires a larger coverage (P(A) or or P(B)) in
order to attain the same degree of significance, is less interesting than the pattern
with lower coverage.

Many other authors have attempted to extend and refine these fundamental
principles. For example, [15] have added a fourth principle saying that F should
be monotonically increasing with P(A) while P(A, B)/P(A) and P(B) remain
unchanged. [12] introduced a fifth principle to distinguish between two types
of inductive rules, called discriminant rules and characteristic rules. Although
these are useful extensions, we believe that the essential properties of a good
objective measure are sufficiently captured by the first three principles.

These principles may serve as a guideline for evaluating different objective
measures. In practice, however, there are many good measures that do not satisfy
all of the above principles. For example, the first principle is too rigid because it
specifies what the absolute interest value should be for independent items. One
way to circumvent this is by requiring |F| to be equal to some constant c¢ip
when both A and B are independent, or by rescaling F' to F' = F — cpin-

2 In contrast to subjective measures which are more user-driven and domain-
dependent.



3.2 Support and Confidence

A rule A — B has support s if s% of all the transactions contains both A and B.
The rule has a confidence ¢ if ¢% of all transactions that contain A also contain
B. In terms of the 2 x 2 contingency table, s = f11 /N and ¢ = fi1/f1+.
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Fig. 4. Number of itempairs removed by applying upper support threshold.

Earlier, it was mentioned that support is necessary because it measures the
statistical significance of a pattern. Since the choice of an appropriate support
threshold is often ad-hoc, we need to ensure that support-based pruning will
not remove many of the interesting patterns. In this paper, we assume that only
positively correlated itemsets are of interest to a data analyst. Figures 4 and 5
show the effect of applying various support thresholds on the synthetic dataset.
The upper-left graph in both figures depict the histograms of ¢-coefficients for
every itempairs in the dataset. These histograms appear to be very similar to a
Gaussian distribution. The rest of the histograms show the itempairs that are
removed when various support thresholds are imposed.

Figure 4 shows the number of itempairs that were removed when the upper
support threshold is decreased. The distribution of the removed itempairs is sim-
ilar to a Gaussian distribution. This result indicates that by placing a maximum
support threshold, one will end up pruning uncorrelated, positively correlated
and negatively correlated itempairs in equal proportions to their initial distribu-
tion. In contrast, if a lower bound of support is specified, most of the itempairs
removed are either uncorrelated or negatively correlated. This result makes sense
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Fig. 5. Number of itempairs removed by applying lower support threshold.

because itempairs with low support tend to have large values in fig, fo1 or foo
cells of their contingency tables. This would often correspond to uncorrelated or
negatively correlated itemsets.

Confidence was initially proposed to measure the strength of an implication
rule. [7] showed that confidence may produce counter-intuitive rules especially
when support of the itemset is high, as will be shown in the next example.

| |Wind0wsNT|WindowsNT| |

Linuz 20 10 30
Brample 3.\ D) 0 10 70
| | 80 | 20 100

Table 3. A 2 x 2 contingency table example.

Consider the 2 x 2 table shown in Table 3. It summarized the purchase of two
brands of operating systems at a retail store within a certain time period. Each
cell in this table corresponds to the frequency of events pertaining to the purchase
of Windows NT or Linux operating systems. For instance, the upper right cell
entry indicates that within the period under consideration, 10 customers bought
the Linux operating systems but not Windows NT. Now, suppose the support
and confidence thresholds were set at 5% and 50% respectively. The association
rule Linur = WindowsNT would have a 20% support and 67% confidence.



Thus, it will pass both threshold conditions and eventually declared to be inter-
esting. However, this information can be misleading. The prior probability that
a customer purchases Windows NT is 80%. Once we know that the customer had
purchased Linux, the conditional probability that he or she would buy Windows
NT reduces to 75%. In other words, the rule Linuz = WindowsNT does not
make sense in this situation. This is why confidence may not be an appropriate
measure.

The relationship between maximum confidence and correlation is shown in
figure 6. Here, we assume that the overall confidence of an itemset is represented
by the maximum confidence among the rules that can be generated from this
itemset :

fl 1 fl 1
MaxConf = max(—, <) (14)
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Fig. 6. Correlation coefficient versus Maximum Confidence.

Other confidence-like measures have been used in various data mining appli-
cations. For example, the laplace function [11]

oc(AUB)+1

o(4) +2 (15)

laplace =
is often used to measure the expected accuracy of classification rules. In this
formula, o(-) denotes the support count of an itemset. Both confidence and
laplace function satisfy all but the first principle of objective measure.



3.3 Interest and IS Measure

As of late, interest factor is becoming a popular measure of interestingness for
association-like patterns [7,19,6,10]. This metric is defined to be the ratio be-
tween the joint probability of two variables with respect to their expected prob-
abilities under the independence assumption.

P(A,B)

I(4,B) = P(A)P(B)

(16)
The interest factor can be any non-negative real number; with a value of 1
corresponding to statistical independence. This metric is desirable because it
satisfies all three fundamental principles of objective measures.

Interest factor is closely related to the ¢ coefficient. For a 2 x 2 contingency
table,

fuN
fivf1

If we re-arrange equation 4, we can obtain the following relationship between
interest factor and the ¢-coefficient :

_Nfu-fir

Vit for frifro

N
— f1+f]}-§1-1 -1 f1+f+1

V fi+for frifro
_ U= Vi (18)
v for fro

For large databases, the support count of a given itemset tends to be low,
ie. flTJr < 1 and % < 1. In this scenario, both fOTJr and % are close to 1.
Moreover, highly correlated items have I > 1. With this choice of approximation,

equation 18 becomes :

I(A,B) = (17)

¢

o 7. ]S
¢ ~ I N2

_ Nfu [fisfa
C finfn VN2
_ [Nt h
VNV Asfa N

:,/IX% (19)

This suggests that a better interestingness measure, derivable from statistical
correlation, in the region of low support and high interest values is :

A
IS =\[Tx = (20)



IS has many desirable properties despite violating the first principle of ob-
jective measure. First of all, it contains a product of two important quanti-
ties, interest factor and support. In other words, this measure takes into ac-
count both interestingness and signifance of a pattern. Second, IS is equiva-
lent to the geometric mean of confidence of rules that can be generated from
the itempair i.e. IS = \/Conf(A = B) x Conf(B = A). Another interpre-
tation of this measure is as the cosine angle between two random vectors, i.e.

IS =P(A,B)/\/P(A, A)P(B, B).
Figures 7 and 8 show the relationship between interest factor and IS with

the ¢-coefficient using the synthetic dataset. Note the high linearity exhibited
by the I.S measure, agreeing with the theoretical arguments above.
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Fig. 7. Correlation coefficient versus Interest factor.

We have also repeated our experiments using real-world datasets. The first
dataset is a subset of Reuters newswire articles®. This dataset contains 2886
attributes and 2005 documents. The second dataset is obtained from a large
retail corporation. This dataset has 14462 attributes and 58565 transactions.
The relationship between IS and ¢-coefficient for these datasets are shown in
Figure 9.

% available at http://www.research.att.com/ lewis.
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3.4 Other Measures

We now describe three other interestingness measures that can be used for
association-type patterns. They are the Gini index [5], Piatetsky-Shapiro’s rule-
interest [18] and conviction [8].

The Gini index for an association rule A = B is given by

Gini = P(A)(P(B|A)* + P(—~B|A)?)) + P(-A)(P(B|-A)? + P(-~B|-A)?%))
—P(B)? — P(-B)? (21)

This value may range from 0 (when A and B are completely independent) to 0.5
(for perfect correlation). Figure 10 shows the relationship between Gini index
and correlation using the synthetic dataset. The symmetric nature of this plot
indicates that Gini index treats both positive and negatively correlated rules in
the same way. However, as the minimum support threshold increases, negatively
correlated itempairs will be pruned, which agrees with our earlier observation.
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Fig. 10. Correlation coefficient versus Gini index.

The rule-interest function was introduced in [18] as a simple measure that
satisfies all three fundamental principles of objective measures. This measure is
defined to be

RI = P(A, B) — P(A)P(B) (22)

The range of this function is between -0.25 and 0.25. Statistical independence oc-
curs at RI = 0. The relationship between this measure and statistical correlation
using synthetic dataset is shown in Figure 11.
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Fig. 11. Correlation coefficient versus Piatetsky’s rule interest measure.

Conviction was introduced in [8] as an asymmetric version of the interest
factor :

P(A)P(-B)

P(A,-B) (23)

conviction =

This measure is derived from interest factor in the following way. A rule A —-
B is logically equivalent to =(AA—=B). Thus, equation (23) is an asymmetric way
of testing the independence between A and —B.*. The ratio between P(A,—B)
and P(A)P(—B) is inverted due to the negation symbol in the logical expression
—(AA-B).

Conviction is different from confidence because it does not suffer from the
same problem of producing misleading rules. Unlike interest factor, conviction
will assign the value +oo if the confidence of the rule is 1 (regardless of what
P(A, B) is). Figure 12 shows the relationship between maximum conviction and
the ¢-coefficient.

4 Ranking of Association Patterns

In this section, we will show how the various measures described previously
can be used for ranking the association patterns according to their degree of
interestingness.

* If A and B are independent, so does (4, -B), (-4, B) and (=4, -B).
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Fig. 12. ¢-coefficient versus conviction.

Instead of ranking every itemsets, a good starting point would be to rank
only itemsets that fall into region II of Fig. 1. Firstly, we need to determine
the maximal frequent itemset border and x? border using standard algorithms
such as Apriori [4] and the Dependence Rules Algorithm[7]. The two borders
can be used to remove all itemsets that are infrequent or independent. Next,
we would compute the interest value for each remaining itemset according to an
interestingness measure, F'. If an analyst is only interested in itemsets, we can
return the highly-ranked itemsets.

However, if an analyst is interested in rules rather than itemsets, one must
define the corresponding objective measures for rules, F’. In many cases, the
objective measures for itemsets may not be the same as that for association
rules. Therefore, one must ensure that both F and F' are consistent with each
other.

We will now illustrate an example of ranking itemsets and rules using the
interest factor, I. Consider a large k-itemset {A;, Ay - - - Ay }. There are 2¢~2 ways
to partition the itemset into rules. ® The interest factor for the large k-itemset
can be written as :

P(Ay, Ay, -+ Ay)
(A1)P(A2) - P(Ay)

I(A1, Ay -+ Ag) = P (24)

Suppose we want to compute the corresponding interest value for the rule
A1As - Aj — Aj1Ajqo -+ A, We can rewrite the above equation into the

5 Here, due to the symmetry of the I factor, we assume that the rules A — B and
B — A have the same interest value.



following form :

P(A1,As,---Aj) P(Ajp1,Aj12, - Ag|Ar -+ - A))
(AI)P( 2) - P(A)
P(Ay, Ay, --- Ay) P(AJ+1,Aj+2;"'Ak|A1A2"'Aj)
P(A1)P(Az) - P(4;) P(f‘l(j+1)P(Aj+2)")' P(Ag)
PA17A27"'7ATL
= I(Ay, Ay, A,
o Ao i) VP ) - POAO P(A Ay - Ay)
XP(Aj+1>Aj+2;"'Ak)
P(Aj+1)Aj+27"'Ak)
= I(A, Az, Aj) T(Ajyr, Ajra, - Ax)
P(A17A27"'Ak)

X . 25
P(Ay, Ay, Aj)P(Ajy1, Ajyo - Ag) (25)

I(A17A27"'Ak) =

The above equation allows us to define the interest factor for a rule in terms
of the interest factor for the corresponding itemsets :

Definition 1. The interest factor for the rule AyAs -+ Aj — Aj11Ajp0 - Ay
can be defined as :

P(Ay, Ay, A4y)
P(Ay, Az, - Aj)P(Ajq1, Ajpo - Ap)
~ I(Ay, As,--- Ay)
I(A1, Ay, oo Aj) T(Ajr, Ajys, -+ Ay)

The above definition is useful because it allows us to compute the interest fac-
tor for a rule using only the interest factors of the itemsets. Furthermore, it says
that the best rule for a given itemset is the one that maximizes the difference be-
tween I(Al, AQ, v Ak) and the product I(Al, AQ, v Aj) [(Aj+1,Aj+2, v Ak)
This definition can also be used to define the interest part of the IS measure for
an association rule.

T(Ay - Aj — Ajy - Ay) =

(26)

5 Conclusions

One way to compare the various measures presented in this paper is by deter-
mining their correlation with respect to the ¢-coefficient. Table 4 illustrates the
correlation values computed using the synthetic dataset, for various ranges of
support values. Notice that RI works tremendously well in almost any situations.
However, for low support regions, 1.S seems to be the best choice, which is not
surprising considering it is derived from the correlation coefficient itself. On the
other hand, conviction works poorly even for the low support region. This is
because it has a very wide range of values (from 0 to co0). Other measures such
as the A-coefficient and Gini index have very low correlation with ¢ when no
support thresholds are imposed. This is because both measures are symmetric
about zero (i.e. their values are non-negative). However, as the support region
becomes smaller, the symmetry will be broken and the correlation values become
larger.
The following conclusions can be made :



Support |interest| IS |laplace|conviction| max A |entropy| RI Gini
range | factor conf index

[0,1] 0.7057 |0.7981{0.7855| 0.0511 ]0.7854|-0.0027(-0.0065 [0.9811(-0.0046
0.005,1] |0.7055 |0.7979|0.7862| 0.0510 |0.7861|0.0136 | 0.0220 |0.9814|0.0151
[0.01,1] |0.7135 |0.7974|0.7846| 0.0510 |0.7845|0.0353 | 0.0541 (0.9818|0.0388
[0.05,1] |0.7393 [0.7915|0.7659| 0.0534 |0.7659|0.2101 | 0.2577 (0.9840( 0.2263

[0.005,0.7]| 0.7293 |0.8627|0.8856| 0.0477 |0.8854|0.0555 | 0.1011 {0.9911|0.0511
[0.01,0.7] | 0.7391 [0.8650| 0.8879 | 0.0476 |0.8878|0.0738|0.1327 (0.9912|0.0746
[0.05,0.7] | 0.7725 [0.8760| 0.8929 | 0.0476 |0.8928|0.2506 | 0.3566 (0.9921| 0.2855
[0.005,0.5]| 0.7315 {0.9318/0.9298 | 0.0483 (0.9296|0.5280 | 0.5571 |0.9800| 0.4722
[0.01,0.5] | 0.7433 [0.9342| 0.9313| 0.0480 |0.9311|0.5401 | 0.5831 (0.9798| 0.4920
[0.05,0.5] | 0.7835 [0.9505|0.9350 | 0.0458 |0.9349|0.6970 | 0.7601 (0.9777|0.6914
[0.005,0.3]| 0.7057 |0.9806(0.9317| 0.3199 [0.9311]|0.8644 | 0.9023 |0.9492| 0.8426
[0.01,0.3] | 0.7280 {0.9820]|0.9340| 0.3193 |0.9336| 0.8696 | 0.9101 (0.9469| 0.8482
[0.05,0.3] | 0.7704 [0.9871|0.9273 | 0.3076 |0.9271|0.9147|0.9452 (0.9316|0.8897

Table 4. Correlation between different interestingness measures and ¢-coefficient for
various range of support values. These coefficients are computed for itempairs generated
using the synthetic dataset.

— Support is a good measure because it represents how statistically signifi-
cant a pattern is. Support-based pruning is effective because support is an
anti-monotone function, and it allows us to prune mostly uncorrelated or
negatively correlated patterns.

— x? is appropriate to test whether there is sufficient evidence to show that

items in a pattern are independent of each other. However, it does not quan-
tify the strength of correlation among the items.

— Many of the measures (such as IS, laplace, maximum confidence, RI) behave
similarly in the region of low support values (which typically occurs in large
databases).

The above conclusions suggest that we can use any of the appropriate in-
terestingness measures to rank the patterns of region IT in Fig. 1. An appropri-
ate measure should be highly correlated with statistical correlation and takes
into account the support of the pattern. Finally, we have presented a consistent
method for ranking the itemsets and rules according to their interest factor and
1S measure.

For our future work, there are several directions we can pursue. So far, we
have only compared interestingness measures for pairs of items. Most of the dis-
cussion presented here, such as the fundamental principles of objective measures
and the various metrics, are applicable to larger itemsets. We have also discussed
a method for ranking rules using interest and IS measure. It will be interesting
to extend the method to other measures.
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