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T
he Web is a hypertext body of approximately
300 million pages that continues to grow at
roughly a million pages per day. Page varia-
tion is more prodigious than the data’s raw
scale: Taken as a whole, the set of Web pages

lacks a unifying structure and shows far more author-
ing style and content variation than that seen in tra-
ditional text-document collections. This level of
complexity makes an “off-the-shelf” database-man-
agement and information-retrieval solution impossi-
ble.

To date, index-based search engines for the Web
have been the primary tool by which users search for
information. The largest such search engines exploit
technology’s ability to store and index much of the
Web. Such engines can therefore build giant indices
that let you quickly retrieve the set of all Web pages
containing a given word or string.

Experienced users can make effective use of such
engines for tasks that can be solved by searching for
tightly constrained keywords and phrases. These
search engines are, however, unsuited for a wide range
of equally important tasks. In particular, a topic of any
breadth will typically contain several thousand or mil-
lion relevant Web pages. Yet a user will be willing, typ-
ically, to look at only a few of these pages.

How then, from this sea of pages, should a search
engine select the correct ones—those of most value to
the user?

AUTHORITATIVE WEB PAGES
First, to distill a large Web search topic to a size that

makes sense to a human user, we need a means of iden-
tifying the topic’s most definitive or authoritative Web
pages. The notion of authority adds a crucial second
dimension to the concept of relevance: We wish to
locate not only a set of relevant pages, but also those
relevant pages of the highest quality.

Second, the Web consists not only of pages, but
hyperlinks that connect one page to another. This
hyperlink structure contains an enormous amount of

latent human annotation that can help automatically
infer notions of authority. Specifically, the creation of
a hyperlink by the author of a Web page represents
an implicit endorsement of the page being pointed to;
by mining the collective judgment contained in the set
of such endorsements, we can gain a richer under-
standing of the relevance and quality of the Web’s con-
tents.

To address both these parameters, we began devel-
opment of the Clever system1-3 three years ago. Clever
is a search engine that analyzes hyperlinks to uncover
two types of pages:

• authorities, which provide the best source of
information on a given topic; and

• hubs, which provide collections of links to
authorities. 

In this article, we outline the thinking that went into
Clever’s design, report briefly on a study that com-
pared Clever’s performance to that of Yahoo and
AltaVista, and examine how our system is being
extended and updated.

FINDING AUTHORITIES
You could use the Web’s link structure in any of sev-

eral ways to infer notions of authority—some much
more effective than others. Because the link structure
implies an underlying social structure in the way that
pages and links are created, an understanding of this
social organization can provide us with the most lever-
age. Our goal in designing algorithms for mining link
information is to develop techniques that take advan-
tage of what we observe about the Web’s intrinsic
social organization.

Search obstacles
As we consider the types of pages we hope to dis-

cover, and to do so automatically, we quickly confront
some difficult problems. First, it is insufficient to apply
purely text-based methods to collect many potentially

Sifting through the growing mountain of Web data demands an increasingly
discerning search engine, one that can reliably assess the quality of sites,
not just their relevance.
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relevant pages, and then comb this set for the most
authoritative ones. For example, were we to look for
the Web’s main search engines, we would err badly if
we searched only for “search engines.” Although the
set of pages containing this term is enormous, it does
not contain most of the natural authorities we would
expect to find, such as Yahoo, Excite, InfoSeek, and
AltaVista. Similarly, we cannot expect Honda’s or
Toyota’s home pages to contain the words “Japanese
automobile manufacturers,” nor that Microsoft’s or
Lotus’ home pages will contain the words “software
companies.” Authorities are seldom particularly self-
descriptive. Large corporations design their Web pages
carefully to convey a certain feel and project the cor-
rect image—a goal that might differ significantly from
that of actually describing the company. Thus, people
outside a company frequently create more recogniz-
able and sometimes better judgments about it than
does the company itself.

Working with hyperlink information causes diffi-
culties as well. Although many links represent the type
of endorsement we seek—for example, a software
engineer whose home page links to Microsoft and
Lotus—others are created for reasons that have noth-
ing to do with conferring authority. Some links exist
purely for navigational purposes: “Click here to return
to the main menu.” Others serve as paid advertise-
ments: “The vacation of your dreams is only a click
away.” We hope, however, that in an aggregate sense,
over a large enough number of links, our view of links
as conferring authority will hold.

Modeling authority conferral
How can we best model the way in which author-

ity is conferred on the Web? Clearly, when commer-
cial or competitive interests are at stake, most or-
ganizations will perceive no benefit from linking
directly to one another. For example, AltaVista,
Excite, and InfoSeek may all be authorities for the
topic “search engines,” but will be unlikely to endorse
one another directly.

If the major search engines do not explicitly describe
themselves as such, how can we determine that they
are indeed the most authoritative pages for this topic?
We could say that they are authorities because many
relatively anonymous pages, clearly relevant to
“search engines,” link to AltaVista, Excite, and
Infoseek. Such pages are a recurring Web component:
hubs that link to a collection of prominent sites on a
common topic. Hub pages appear in a variety of
forms, ranging from professionally assembled re-
source lists on commercial sites to lists of recom-
mended links on individual home pages. These pages
need not be prominent themselves, or even have any
links pointing to them. Their distinguishing feature is
that they are potent conferrers of authority on a

focused topic. In this way, they actually form a
symbiotic relationship with authorities: A good
authority is a page pointed to by many good
hubs, while a good hub is a page that points to
many good authorities.3

This mutually reinforcing relationship be-
tween hubs and authorities serves as the central
theme in our exploration of link-based meth-
ods for search, the automated compilation of
high-quality Web resources, and the discovery
of thematically cohesive Web communities.

HITS: COMPUTING HUBS AND AUTHORITIES
The HITS (Hyperlink-Induced Topic Search) algo-

rithm3 computes lists of hubs and authorities for Web
search topics. Beginning with a search topic, specified by
one or more query terms, the HITS algorithm applies
two main steps:

• a sampling component, which constructs a
focused collection of several thousand Web pages
likely to be rich in relevant authorities; and

• a weight-propagation component, which deter-
mines numerical estimates of hub and authority
weights by an iterative procedure.

HITS returns as hubs and authorities for the search
topic those pages with the highest weights.

We view the Web as a directed graph, consisting of
a set of nodes with directed edges between certain
node pairs. Given any subset S of nodes, the nodes
induce a subgraph containing all edges that connect
two nodes in S. The HITS algorithm starts by con-
structing the subgraph in which we will search for
hubs and authorities. Our goal is to have a subgraph
rich in relevant, authoritative pages.

To construct such a subgraph, we first use the query
terms to collect a root set of pages—say, 200—from
an index-based search engine. We do not expect that
this set necessarily contains authoritative pages.
However, since many of these pages are presumably
relevant to the search topic, we expect at least some
of them to have links to most of the prominent author-
ities. We therefore expand the root set into a base set
by including all the pages that the root-set pages link
to, and all pages that link to a page in the root set, up
to a designated size cutoff.

This approach follows our intuition that the promi-
nence of authoritative pages derives typically from the
endorsements of many relevant pages that are not, in
themselves, prominent. We restrict our attention to
this base set for the remainder of the algorithm. We
find that this set typically contains from 1,000 to
5,000 pages, and that hidden among these are many
pages that, subjectively, can be viewed as authoritative
for the search topic.
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We work with the subgraph induced by the
base set, with one modification. We find that
links between two pages with the same Web
domain frequently serve a purely navigational
function, and thus do not confer authority. By
“Web domain,” we mean simply the first level
in the URL string associated with a page. We
therefore delete all links between pages with
the same domain from the subgraph induced
by the base set, and then apply the remainder
of the algorithm to this modified subgraph.

We extract good hubs and authorities from
the base set by giving a concrete numerical
interpretation to our intuitive notions of
authorities and hubs. We associate a nonnega-
tive authority weight xp and a nonnegative hub
weight yp with each page p ∈ V. We are inter-

ested in the relative values of these weights only, not
their actual magnitudes. In our manipulation of the
weights, we apply a normalization so that their total
sum remains bounded. The actual choice of normal-
ization does not affect the results—we maintain the
invariant that the squares of all weights sum to 1. A
page p with a large weight xp will be viewed as a “bet-
ter” authority, while a page with a large weight yp will
be viewed as a “better” hub. Since we do not impose
any a priori estimates, we set all x and y values to a
uniform constant initially; we will see later, however,
that the final results are essentially unaffected by this
initialization.

We now update the authority and hub weights as
follows. If a page is pointed to by many good hubs,
we would like to increase its authority weight. Thus
we update the value of xp, for a page p, to be the sum
of yq over all pages q that link to p:

(1)

where the notation q → p indicates that q links to p.
In a strictly dual fashion, if a page points to many good
authorities, we increase its hub weight via

(2)

There is a more compact way to write these updates,
and it sheds more light on what occurs mathemati-
cally. Let us number the pages {1, 2, . . . , n} and define
their adjacency matrix A to be the n × n matrix whose
(i,j)th entry is equal to 1 if page i links to page j, and is
0 otherwise. Let us also write the set of all x values as
a vector x = (x1, x2,… , xn), and similarly define y = (y1,
y2,… , yn). Then our update rule for x can be written
as x ← ATy and our update rule for y can be written
as y ← Ax. Unwinding these one step further, we have
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 such that 

x ← ATy ← ATAx = (ATA)x (3)

and

y ← Ax ← AATy = (AAT )y.                                  (4)

Thus, the vector x after multiple iterations is precisely
the result of applying the power iteration technique to
ATA: We multiply our initial iterate by larger and larger
powers of ATA. Linear algebra tells us that this sequence
of iterates, when normalized, converges to the principal
eigenvector of ATA. Similarly, we discover that the
sequence of values for the normalized vector y con-
verges to the principal eigenvector of AAT. Gene Golub
and Charles Van Loan4 describe this relationship
between eigenvectors and power iteration in detail.

Power iteration will converge to the principal eigen-
vector for any nondegenerate choice of initial vector—
in our case, for example, for any vector whose entries
are all positive. This says that the hub and authority
weights we compute are truly an intrinsic feature of
the linked pages collected, not an artifact of our choice
of initial weights or the tuning of arbitrary parame-
ters. Intuitively, the pages with large weights represent
a very dense pattern of linkage, from pages of large
hub weight to pages of large authority weight.

Finally, HITS outputs a short list consisting of the
pages with the largest hub weights and the pages with
the largest authority weights for the given search
topic. Once the root set has been assembled, HITS is
a purely link-based computation with no further
regard to the query terms. Nevertheless, HITS pro-
vides surprisingly good search results for a wide range
of queries. For example, when tested on the sample
query “search engines,” HITS returned the top
authorities—Yahoo, Excite, Magellan, Lycos, and
AltaVista—even though none of these pages con-
tained the phrase “search engines” at the time of the
experiment. Results such as this confirm our intuition
that in many cases the use of hyperlinks can help cir-
cumvent some of the difficulties inherent in purely
text-based search methods.

Our techniques for uncovering authorities and hubs
provide a further benefit. As the “Trawling the Web
for Emerging Cybercommunities” sidebar shows, our
algorithms can uncover Web communities, defined by
a specific interest, that even a human-assisted search
engine like Yahoo may overlook.

COMBINING CONTENT WITH LINK INFORMATION
Although relying extensively on links when search-

ing for authoritative pages offers several advantages,
ignoring textual content after assembling the root set
can lead to difficulties. These difficulties arise from
certain features of the Web that deviate from the pure
hub-authority view:
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• On narrowly focused topics, HITS frequently
returns good resources for a more general topic. For
instance, the Web does not contain many resources
for skiing in Nebraska; a query on this topic will typ-
ically generalize to Nebraska tourist information.

• Since all the links out of a hub page propagate
the same weight, HITS sometimes drifts when
hubs discuss multiple topics. For instance, a
chemist’s home page may contain good links not
only to chemistry resources, but also to resources
for her hobbies and regional information for her
hometown. In such cases, HITS will confer some
of the “chemistry” authority onto authorities for
her hobbies and town, deeming these authorita-
tive pages for chemistry.

• Frequently, many pages from a single Web site will
take over a topic simply because several of the pages
occur in the base set. Moreover, pages from the
same site often use the same HTML design tem-

plate, so that in addition to the information they
give on the query topic, they may all point to a sin-
gle popular site that has little to do with the query
topic. This inadvertent topic hijacking can give a
site too large a share of the authority weight for the
topic, regardless of the site’s relevance.

System heuristics
The Clever system addresses these issues by replac-

ing the sums of Equations 1 and 2 with weighted
sums, assigning to each link a nonnegative weight.
The weight assigned depends in several ways on the
query terms and the endpoints of the link. Together
with some additional heuristics, weighting helps mit-
igate HITS’ limitations.

The text that surrounds hyperlink definitions (hrefs)
in Web pages is often referred to as anchor text. In
our setting, we choose to use anchor text to weight
the links along which authority is propagated. A typ-
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Trawling the Web for 
Emerging Cybercommunities

The Web harbors many communities—
groups of content creators who share a
common interest that manifests itself as a
set of Web pages. Though many commu-
nities are defined explicitly—newsgroups,
resource collections in portals, and so on—
many more are implicit. Using a subgraph-
enumeration technique called trawling, we
discovered fine-grained communities num-
bering in the hundreds of thousands—
many more than the number of portals and
newsgroup topics. The following commu-
nities are a sampling of those we have
extracted from the Web:

• people interested in Hekiru Shiina, a
Japanese pop singer;

• people who maintain information
about fire brigades in Australia; and

• people belonging to Turkish student
organizations in the US.

Identifying these communities helps us
understand the intellectual and sociologi-
cal evolution of the Web. It also helps pro-
vide detailed information to groups of
people with certain focused interests.
Owing to these communities’ astronomical
number, embryonic nature, and evolu-
tionary flux, they are hard to track and find
through sheer manual effort. Thus, when

uncovering communities, we treat the Web
as a huge directed graph, use graph struc-
tures derived from the basic hub-author-
ity-linkage pattern as a community’s
“signature,” and systematically scan the
Web graph to locate such structures.

We begin with the assumption that the-
matically cohesive Web communities con-
tain at their core a dense pattern of linkage
from hubs to authorities. The pattern ties
the pages together in the link structure,
even though hubs do not necessarily link
to hubs, and authorities do not necessarily
link to authorities. We hypothesize that this
pattern is a characteristic of both well-
established and emergent communities. To
frame this approach in more graph-theo-
retic language, we use the notion of a
directed bipartite graph—one whose nodes
can be partitioned into two sets A and B
such that every link in the graph is directed
from a node in A to a node in B. Since the
communities we seek contain directed
bipartite graphs with a large density of
edges, we expect many of them to contain
smaller bipartite subgraphs that are in fact
complete: Each node in A has a link to each
node in B.

Using a variety of pruning algorithms,1

we can enumerate all such complete bipar-
tite subgraphs on the Web using only a
standard desktop PC and about three days
of runtime. In our experiments to date, we

have used an 18-month-old crawl of the
Web provided by Alexa (www.alexa.com),
a company that archives Web snapshots.
The process yielded about 130,000 com-
plete bipartite graphs in which three Web
pages all pointed to the same set of three
other Web pages.

Were these linkage patterns coinciden-
tal? Manual inspection of a random sam-
ple of about 400 communities suggests
otherwise: Fewer than five percent of the
communities we discovered lacked an
apparent unifying topic. These bipartite
cliques could then be fed to our HITS algo-
rithms. These algorithms “expanded” the
cliques to many more Web pages from the
same community.

Moreover, Yahoo does not list about 25
percent of these communities, even today.
Of those that do appear, many are not
listed until the sixth level of the Yahoo
topic tree. These observations lead us to
believe that trawling a current copy of the
Web will result in the discovery of many
more communities that will become explic-
itly recognized in the future. 

Reference
1. S.R. Kumar et al., “Trawling Emerging-

Cyber-Communities Automatically,”Proc.
8th World Wide Web Conf., Elsevier Sci-
ence, Amsterdam, 1999,  pp. 403-415.
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ical example shows why we do so: When we
seek authoritative pages on chemistry, we might
reasonably expect to find the term “chemistry”
in the vicinity of the tails—or anchors—of the
links pointing to authoritative chemistry pages.
To this end, we boost the weights of links in
whose anchor—a fixed-width window—query
terms occur.

We base a second heuristic on breaking large
hub pages into smaller units. On a page con-
taining many links, it is likely that not all links
focus on a single topic. In such situations it

becomes advantageous to treat contiguous link subsets
as minihubs, or pagelets; we can then develop a hub
score for each pagelet, down to the level of single links.
We hypothesize that contiguous sets of links on a hub
page focus more tightly on a single topic than does the
entire page. For instance, a page may be a good hub for
the general topic of “cars,” but different portions of it
may cater to the topics of “vintage cars” and “solar-
powered cars.” 

We apply one further set of modifications to HITS.
Recall that HITS deletes all links between two pages
within the same Web domain. Because we work with
weighted links, we can address this issue through our
choice of weights. First, we give links within a com-
mon domain low weight, following the rationale that
authority should generally be conferred globally rather
than from a local source on the same domain. Second,
when many pages from a single domain participate as
hubs, we scale down their weights to prevent a single
site from becoming dominant.

All these heuristics can be implemented with mini-
mal effort and without significantly altering the math-
ematics of Equations 1 through 4. The sums become
weighted sums, and matrix A now has nonnegative
real-valued entries rather than just 0s and 1s. As before,
the hub and authority scores converge to the compo-
nents of the principal eigenvectors of AAT and ATA,
respectively. In our experience, the relative values of the
large components in these vectors typically resolve
themselves after about five power iterations, obviating
the need for more sophisticated eigenvector computa-
tion methods.

COMPARING CLEVER WITH 
OTHER SEARCH ENGINES

How do the resources computed by Clever compare
with those found by other methods? We have con-
ducted several user studies that compare Clever’s com-
pilations with those generated by AltaVista (www.
altavista.com), a term-index engine, and by Yahoo
(www. yahoo.com), a manually compiled topic taxon-
omy in which a team of human ontologists create
resource lists.

In one such study,2 which compares Clever with

Yahoo and AltaVista, we began with a list of 26 broad
search topics. For each topic, we took the top 10 pages
from AltaVista, the top five hubs and five authorities
returned by Clever, and a random set of 10 pages from
Yahoo’s most relevant node or nodes. We then inter-
leaved these three sets into a single topic list, masking
which method produced which page. Next, we assem-
bled 37 users, who were required to be familiar with
using Web browsers but who were not experts in com-
puter science or in the 26 search topics. We then asked
the users to visit pages from the topic lists and rank
them as “bad,” “fair,” “good,” or “fantastic,” in
terms of the pages’ utility in providing information
about the topic. This yielded 1,369 responses in all,
which were then used to assess the relative quality of
Clever, Yahoo, and AltaVista on each topic. AltaVista
failed to receive the highest evaluation for any of the
26 topics. For the other search engines, we obtained
the following results:

• For 31 percent of the topics, Yahoo and Clever
received evaluations equivalent to each other
within a threshold of statistical significance;

• for 50 percent, Clever received a higher evalua-
tion; and

• for the remaining 19 percent, Yahoo received the
higher evaluation.

In masking the source from which each page was
drawn, this experiment denied Yahoo one clear advan-
tage of a manually compiled topic list: the editorial
annotations and one-line summaries that give power-
ful cues for deciding which link to follow. We did this
deliberately because we sought to isolate and study
the power of different paradigms for resource finding,
rather than for the combined task of compilation and
presentation. In an earlier study1 we did not mask
these annotations, and Yahoo’s combination of links
and presentation beat an early version of Clever.

CONSTRUCTING TAXONOMIES
SEMIAUTOMATICALLY

Yahoo’s large taxonomy of topics consists of a sub-
ject tree, each node of which corresponds to a par-
ticular topic and which is populated by relevant
pages. Our study results suggest that Clever can be
used to compile such large topic taxonomies auto-
matically.

Suppose we are given a tree of topics designed by
domain experts. The tree can be specified by its topol-
ogy and the labels on its nodes. We wish to populate
each node of the tree with a collection of the best hubs
and authorities. The following paradigm emerges: If
we can effectively describe each node of the tree as a
query to Clever, the Clever engine could then popu-
late the node as often as we please. For instance, the

Our study results
suggest that Clever

can be used to 
compile large topic

taxonomies
automatically.



resources at each node could be refreshed on a nightly
basis following the one-time human effort of describ-
ing the topics. How, then, should we describe a topic
node to Clever?

Most simply, we may take the name or label of the
node as a query term. More generally, we may wish to
use the descriptions of other nodes on the path to the
root. For instance, if the topic headings along a root-
to-leaf path are Business/Real Estate/Regional/United
States/Oregon, the query “Oregon” is not accurate;
we might prefer instead the query “Oregon real
estate.”

Additionally, we may provide some exemplary
authority or hub pages for the topic. For instance, the
sites www.att.com and www.sprint.com may be exem-
plary authority pages for the topic “North American
telecommunications companies.” In practice, we envi-
sion a taxonomy administrator first trying a simple
text query to Clever. Often this query will yield a good
collection of resources, but other times Clever may
return a mix of high-quality and irrelevant pages. In
such cases, the taxonomy administrator may highlight
some of the high-quality pages in the Clever results as
exemplary hubs, exemplary authorities, or both. This
is akin to the well-studied technique of relevance feed-
back in information retrieval.

To take advantage of exemplary pages, we add an
exemplary hub to the base set, along with all pages
that it points to, and then increase the weights of the
links emanating from the exemplary hub in the itera-
tive computation. We treat exemplary authorities sim-
ilarly, except that instead of adding to the base set any
page pointing to an exemplary authority—a heuristic
found to pull in too many irrelevant pages—we add
any page pointing to at least two exemplary authori-
ties. We use a similar heuristic to delete from the base
set user-designated “stop-sites” and their link neigh-

borhoods. This is typically necessary because of the
overwhelming Web presence of certain topics. For
instance, if our topic is Building and Construction
Supplies/Doors and Windows, the “Windows” key-
word makes it difficult to ignore Microsoft. Stop-sit-
ing www.microsoft.com eliminates this concern.

Thus, we may envision a topic node being described
to Clever as a combination of query terms, exempli-
fied authority and hub pages, and, optionally, stop-
sites. We have developed a Java-based graphical user
interface—called “TaxMan,” for Taxonomy Man-
ager—to administer such taxonomy descriptions.
Using this tool, we have constructed taxonomies with
more than a thousand topics. We have benchmarked
both the time spent in creating these taxonomies and
the resultant quality of using simple text-only queries
versus a combination of text queries and exemplary
Web pages. In our study, we found that the average
time spent per node grows from about seven seconds
to roughly three minutes when you move to a combi-
nation of text and exemplary page queries. Outside
users quantified the increase in quality by reporting
that—when comparing the pages generated using
exemplaries to pages generated by textual queries—
they considered eight percent more of the exemplary
pages to be good link sources.

The “Assigning Web Pages to Categories” sidebar
describes how hyperlinks can be used to establish
clearer taxonomy categories as well.

CITATION ANALYSIS
The mining of Web link structures has intellectual

antecedents in the study of social networks and cita-
tion analysis.5 The field of citation analysis has devel-
oped several link-based measures of scholarly papers’
importance, including the impact factor and influence
weights.5 These measures in effect identify authorita-
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Assigning Web Pages to
Categories

In addition to finding hubs, authorities,
and communities, hyperlinks can be used
to categorize Web pages. Categorization
is a process by which a system learns from
examples to assign documents to a set of
predefined topic categories such as those
found in a taxonomy. Hyperlinks contain
high-quality semantic clues to a page’s
topic; these clues are lost when the links
are processed by a purely term-based cat-
egorizer. Exploiting this link information
is challenging, however, because it is
highly noisy. Indeed, we have found that
naive use of terms in a document’s link
neighborhood can degrade accuracy.

HyperClass1 embodies one approach to
this problem, making use of robust statis-
tical models such as Markov random
fields (MRFs) together with a relaxation
labeling technique. HyperClass obtains

improved categorization accuracy by
exploiting link information in the neigh-
borhood around a document. The MRF
framework applies because pages on the
same or related topics tend to be linked
more frequently than those on unrelated
topics. Even if none of the linked pages’
categories are known initially, you can
obtain significant taxonomy improvement
using relaxation labeling, wherein you iter-
atively adjust the category labels of the
linked pages and of the page to be catego-
rized until you find the most probable con-
figuration of class labels. In experiments
performed1 using preclassified samples
from Yahoo and the US Patent Database
(www.ibm.com/patents), HyperClass with
hyperlinks cut the patent error rate by half
and the Yahoo documents error rate by
two thirds.

HyperClass is also used in a focused
Web crawler2 designed to search for pages

on a particular topic or set of topics only.
By categorizing pages as it crawls, the
focused crawler does more than filter out
irrelevant pages—it also uses the associ-
ated relevance judgment, as well as a rank
determined by a version of the Clever
algorithm, to set the crawling priority of
the outlinks on the pages it finds.

References
1. S. Chakrabarti, B. Dom, and P. Indyk,

“Enhanced Hypertext Classification
Using Hyper-links,” ACM SIGMOD
Int’l Conf. Management of Data, ACM
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tive sources without introducing the notion of
hubs. The view of hubs and authorities as dual
sets of important documents is inspired by the
apparent nature of content creation on the
Web, and indicates some of the deep contrasts
between Web and scholarly literature content.

The methodology of influence weights from
citation analysis relates to a link-based search
method developed by Sergey Brin and
Lawrence Page.6 They used this method as the
basis for their Google Web search engine.
Google first computes a score, called the
PageRank, for every page indexed. The score

for each page is the corresponding component of the
principal eigenvector of a matrix B, which can be
viewed as the adjacency matrix A with a very small
constant added to each entry. Given a query, Google
returns pages containing the query terms, ranked in
order of these pages’ PageRanks.

The actual implementation of Google incorporates
several additional heuristics, similar in intent and spirit
to those used for deriving Clever from HITS. Google
focuses on authoritative pages, however, while Clever
seeks both authorities and good hub pages. Some hub
pages may have few or no links into them, giving them
low PageRank scores and making it unlikely that
Google would report them. Several participants in our
user studies suggested that good hubs are especially
useful when trying to learn about a new topic, but less
so when seeking a very specific piece of information.
Google and Clever also differ in their behavior
toward topics with a commercial theme. A com-
pany’s Web-page description of itself may use terms
and language different from these that a user might
search for. Thus, a direct search for “mainframes”
in Google would not return IBM’s home page, which
does not contain the term “mainframes.” Yet IBM
would still be pulled in by Clever because of the
many hub pages that describe IBM as a mainframe
manufacturer.

In independent work, Krishna Bharat and Monika
R. Henzinger7 have given several other extensions to
the basic HITS algorithm, substantiating their
improvements via a user study. For instance, their
paper was the first to describe the modification in
which the weights of multiple links from within a site
are scaled down.

W e believe the mining of Web link topology
has the potential for beneficial overlap with
several areas, including the field of infor-

mation retrieval.8 Mining well-structured relational
data offers another possibility. Extracting from an
unstructured medium such as the Web a structure
of the kind that succumbs to traditional database
techniques9 presents a considerable challenge. 

We hope that the techniques described here repre-
sent a step toward meeting this challenge. ❖
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