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1 Introduction
The ability to identify interesting patterns in large scale consumer data empowers
business establishments to leverage on the information obtained. Clustering process
is a data mining technique which finds such patterns, previously unknown in large
scale data, embedded in a large multi-dimensional space. Clustering techniques
find application in several fields. Clustering web documents based on web logs has
been studied in [1], customer segmentation based on similarity of buying interests
is explored as collaborative filtering in [2], [3] explores the detection of clusters
in geographic information systems. Clustering algorithms need to address several
issues. Scalability of these algorithms with the data base size is as important as
their scalability with the dimensionality of the data sets. Effective representation
of the detected clusters is as important as cluster detection. Simplicity in reporting
clusters among those found improves the usability of the algorithm. Further, most
clustering algorithms require key input parameters from the user which are hard to
determine and also greatly control the process of cluster detection. Clusters could
also be embedded in a subspace of the total data space. Detection of clusters in all
possible subspaces results in an exponential algorithm as the number of subspaces is
exponential in the data dimension. Most of the earlier works in statistics and data
mining [4, 5] operate and find clusters in the whole data space. Many clustering
algorithms [3, 6, 5] require user input of several parameters like the number of
clusters, average dimensionality of the cluster, etc. which are not only difficult to
determine but are also not practical for real-world data sets.

We use a grid and density based approach for cluster detection in subspaces.
Density based approaches regard clusters as high density regions than their sur-
roundings. In a grid and density approach a multi-dimensional space is divided into
a large number of hyper-rectangular regions and regions which have more points
than a specified threshold are identified as dense. Finally dense hyper-rectangular
regions that are adjacent to each other are merged to find the embedded clusters.
The quality of results and the computation requirements heavily depend on the
number of bins in each dimension. Hence, determination of bin sizes automati-
cally based on the data distribution greatly helps in finding correct clusters of high
quality and reduces the computation substantially.

1.1 Contributions

In this paper we present MAFIA 1, a scalable subspace clustering algorithm using
adaptive computation of the finite intervals (bins) in each dimension, which are
merged to explore clusters in higher dimensions. Adaptive grid sizes improves the
clustering quality by concentrating on the portions of the data space which have
more points and thus are more likely to be part of a cluster region enabling minimal
length DNF expressions, important for interpreting results by the end-user. MAFIA
does not require any key user inputs and takes in only the strength of the clusters
that needs to be discovered in the given data set. Further, we present a modi-
fied bottom-up algorithm for cluster detection in all possible subspaces previously

1Merging of Adaptive Finite Intervals
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unexplored by other subspace clustering algorithms. We describe recent work on
clustering techniques in databases in Section 2. Density and grid based clustering
is presented in Section 3, where we describe subspace clustering as introduced by
[7] and also describe our approach of using adaptive grids. Section 4 presents the
modified subspace clustering algorithm with a theoretical analysis. Finally, Section
5 presents the performance evaluation on a wide variety of synthetic and real data
sets with large number of dimensions, highlighting both scalability of the algorithms
and the quality of the clustering. Section 6 concludes the paper.

2 Related Work
Clustering algorithms have long been studied in statistics [8], machine learning
[9], pattern recognition, image processing [10] and databases. k-means, k-mediods,
CLARANS [11], BIRCH [5], CURE [12] are some of the earlier works. However,
none of these algorithms detect clusters in subspaces. PROCLUS [6], a subspace
clustering algorithm finds representative cluster centers in an appropriate set of
cluster dimensions. It needs the number of clusters, k, and the average cluster
dimensionality, l, as input parameters, both of which are not possible to be known
a-priori for real data sets. Density and grid based approaches regard clusters as
regions of data space in which objects are dense and are separated by regions of low
object density [13]. The grid size determines the computations and the quality of
the clustering. CLIQUE, a density and grid based approach for high dimensional
data sets [7], detects clusters in the highest dimensional subspaces taking the size
of the grid and a global density threshold for clusters as inputs. The computation
complexity and the quality of clustering is heavily dependent on these parameters.
ENCLUS [14], an entropy based subspace clustering algorithm requires a prohibitive
amount of time to just discover interesting subspaces in which clusters are embedded
and requires entropy thresholds as inputs, which is not intuitive for the user.

3 Density and Grid based Clustering
Density based approaches regard clusters as high density regions than their sur-
roundings. A common way of finding high-density regions in the data space is
based on the grid cell densities [13]. A histogram is constructed by partitioning the
data space into a number of non-overlapping regions and then mapping the data
points to each cell in the grid. Equal length intervals are used in [7] to partition
each dimension, which results in uniform volume cells. The number of points inside
the cell with respect to the volume of the cell can be used to determine the density
of the cell. Clusters are unions of connected high density cells. Two k-dimensional
cells are connected if they have a common face in the k-dimensional space or if
they are connected by a common cell. Creating a histogram that counts the points
contained in each unit is infeasible in high dimensional data as the number of hyper-
rectangles is exponential in the dimensionality of the data set. Subspace clustering
further complicates the problem as it results in an explosion of such units. One
needs to create histograms in hyper-rectangles formed in all possible subspaces. A
bottom-up approach of finding dense units and merging them to find dense clusters
in higher dimensional subspaces has been proposed in CLIQUE [7]. Each dimension
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is divided into a user specified number of intervals, ε. The algorithm starts by deter-
mining 1-dimensional dense units by making a pass over the data. In [7] candidate
dense cells in any k dimensions are obtained by merging the dense cells in (k − 1)
dimensions which share the first (k − 2) dimensions. A pass over data is made to
find which of the candidate dense cells are actually dense. The algorithm terminates
when no more candidate dense cells are generated. In [7] candidate dense units are
pruned based on a minimum description length technique to find the dense units
only in interesting subspaces. However, as noted in [7] this could result in missing
some dense units in the pruned subspaces. In order to maintain the high quality of
clustering we do not use this pruning technique.

3.1 Adaptive Grids

We propose an adaptive interval size in which bins are determined based on the data
distribution in a particular dimension. The size of the bin and hence number of
bins in each dimension in turn determine the computation and quality of clustering.
Finer grids leads to an explosion in the number of candidate dense units (CDUs),
while coarser grids leads to fewer bins, and regions with noise data might also get
propagated as dense cells. Also, a user defined uniform grid size may fail to detect
many clusters or may yield very poor quality results. A single pass over the data is
done in order to construct a histogram in every dimension. Algorithm 3.1 describes
the steps of the adaptive grid technique. The domain of each dimension is divided
into fine intervals, each of size x. The size of each bin, x, is selected such that each
dimension has a minimum of 1000 fine bins. If the range of the dimension is from
m to n then we set the number of bins in that dimension to be max(1000, (n −
m)) and correspondingly find the value of x. We assume that all attributes have
been normalized to the same base quantity while finding m, n and hence x. The
maximum of the histogram value within a window is taken to reflect the window
value. Adjacent windows whose values differ by less than a threshold percentage, β,
are merged together to form larger windows ensuring that we divide the dimensions
into variable sized bins which capture the data distribution. However, in dimensions
where data is uniformly distributed this results in a single bin and indicates much
less likelihood of finding a cluster. However, we split the domain into a small fixed
number of partitions, set a high threshold as this dimension is less likely to be part
of a cluster and collect statistics for these bins to examine further. This technique
greatly reduces the computation time by limiting the degree of bin contribution
from non-cluster dimensions . Variable sized bins are assigned a variable threshold.
A variable sized bin is likely to be part of a cluster if it has a significantly (which we
call cluster dominance factor α [15]) greater number of points than it would have
had, had the data been uniformly distributed in that dimension. Thus, for a bin of
size a in a dimension of size Di we set its threshold to be αaN

Di
, where N is the total

number of data points.

Effect of Adaptive Grids on Computation

Figure 1 shows the histogram of data in two dimensions. Figure 1(a) shows the user
defined uniform sized grid used in the approach of [7] resulting in a large number
of CDUs (rectangles in the figure). With the increase in data set size, each pass
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Algorithm 3.1 Adaptive Grid Computation

Di - Domain of Ai

N - Total number of data points in the data set
a - Size of a generic bin
for each dimension Ai, i ∈ (1, . . . d)

Divide Di into windows of some small size x
Compute the histogram for each unit of Ai, and set the value of
the window to the maximum in the window
From left to right merge two adjacent units if they are within a threshold β
/* Single bin implies an equi-distributed dimension */
if(number of bins == 1)

Divide the dimension Ai into a fixed number of equal partitions.
Compute the threshold of each bin of size a as αaN

Di

end

(a) (b)

Figure 1. (a) Uniform grid size (b) Adaptive grid size

over the data in the bottom-up algorithm results in evaluating a large number of
candidate dense units. However, as seen in Figure 1(b) adaptive grids makes use
of the data distribution and computes the minimum number of bins as required in
each dimension resulting in very few CDUs.

Effect of Adaptive Grids on Quality of Clustering

Figure 2 shows a ’plus’ shaped cluster (abcdefghijkl) as discovered by [7] and
our algorithm using adaptive grids. The cluster reported by CLIQUE, pqrs, is
shown in Figure 2(a). Parts of the cluster discovered by [7] are not in the original
defined cluster abcdefghijkl and also parts of the original cluster are thrown away
as outliers. MAFIA uses adaptive grid boundaries and so the cluster definitions are
minimal DNF expressions representing the clusters accurately. MAFIA develops
grid boundaries very close to the boundaries of the cluster and reports abcdefghijkl
shown in Figure 2(b) as the cluster with the DNF expression (l, y)∧ (m, z)∧ (n, y)∧
(m,x) ∧ (m, y).

4 MAFIA Implementation
MAFIA consists mainly of the following steps. The algorithm starts by making a
pass over the data in chunks of B records to enables scaling to out-of-core data
sets. A histogram of the data is built in each dimension as elaborated in Algorithm
3.1. The adaptive finite intervals in every dimension is determined and the bin sizes
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Figure 2. (a) Cluster discovered by CLIQUE (b) Cluster discovered by MAFIA

and thresholds for every bin formed is found. Each bin thus found is considered to
be a CDU. CDUs in dimension k are built by combining dense units of dimension
k − 1 such that they share any of the k − 2 dimensions. The section 4.1 elaborates
the steps involved in this process. Further we elaborate our modified bottom-up
algorithm and provide a theoretical analysis. The algorithm spends most of its time
in making a pass over the data and finding out the dense units among the CDUs
formed in every dimension. Repeated passes over the data need to be done to build
dense units of higher dimensions. After finding the histogram count of the CDUs
in a particular dimension, dense units are identified and dense unit data structures
are built for the next higher dimension. A CDU is dense if its histogram count
is greater than the thresholds of all the bins that form the CDU. The algorithm
terminates when no more dense units exists. Clusters are finally reported at the
end of the program.

Algorithm 4.1 MAFIA Algorithm

N - Number of records; d - Dimensionality of data
Ai - i

th attribute i ∈ d; B - Number of records that fit in memory buffer
Read data in chunks of B records and
build a histogram in each dimension Ai, i ∈ (1, . . . , d)
Determine adaptive intervals using the histogram in each
dimension Ai, i ∈ d and also fix the threshold level
Set candidate dense units to the bins found in each dimension
Set current dimensionality, k to 1
while (no more dense units are found)

if (k > 1) { Find-candidate-dense-units();}
Read data in chunks of B records and for every record
populate the candidate dense units
Identify-dense-units();
Register non dense units with the print data structures
Build-dense-unit-data-structures();

report-clusters();
end

4.1 Building Candidate Dense Units

The approach in [7] fails to explore all possible candidate dense cells. For example,
consider two 3-D dense units {a1, c7, b8} and {c7, b8, d9}, where (a, b, c, d) are the
bins in the dimensions indicated by their subscripts. Figure 3 shows the process of
combination of these two 3-D dense units to form a potential 4-D CDU. We can
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easily see that the two dense units results in a 4-D CDU {a1, c7, b8, d9} which is not
formed by the approach in [7]. Thus our approach of building k-dimensional CDUs
sharing any of the (k − 2) dimensions provably explores all the CDUs. We shall
now present results to illustrate the large number of subspaces that are explored
correctly by our algorithm.

Dim 7

Dim 8

Dim 1

a
b

c

Dim 7

Dim 8

b
c

Dim 9
d

Figure 3. MAFIA: Building A CDU in dimension 4 ({a1, c7, b8, d9})

Let Ndu be the number of dense units in dimension k − 1 which combine
to form the CDUs in dimension k. Let d be the dimension of the data used in
the clustering process. We shall evaluate the total number of CDUs that could be
generated by MAFIA and the approach in [7] and finally compare the total number
of subspaces that MAFIA explores compared to [7].

MAFIA: Candidate Dense Unit Generation Process

Candidate dense units in k dimensions, are obtained by merging any two dense
cells, represented by an ordered set of (k− 1) dimensions, such that they share any
of the (k − 2) dimensions. Each dense unit (du) needs to be compared with every
other dense unit to identify the CDUs, resulting in an O(Ndu2) algorithm. Let us
assume that the given data in a d-dimensional space has clusters embedded in all
possible subspaces resulting in dense units of dimension k−1 in all dCk−1 subspaces
for a worst case analysis. Two dense units can be combined together if they share
any of their k − 2 dimensions and further, if the bins in the matched dimensions
also match. The k − 1 dimensions of each dense unit can be looked as a sequence
of k − 1 distinct integers, all of which are less than d. Thus the generation of a k
dimensional CDU is equivalent to extending a k − 1 sequence to a k sequence of
integers. The number of sequences of length k − 1 is given by dCk−1. Each k − 1
subsequence can be extended into a k sequence in {d − (k − 1)} ways. Hence a
particular set of {d− (k − 1)} sequences each of length k (obtained by extending a
given k− 1 sequence to a k sequence) contains a common k− 1 length subsequence.
Any two dense units belonging to this set can be combined to form a CDU. Thus
for a given k−1 subsequence, we can form {d−(k−1)}C2 CDUs. If NMAFIA represents
the total number of possible CDUs that can be generated, we have

NMAFIA = dCk−1 × {d−(k−1)}C2 (1)

as there are dCk−1 subsequences each of length k − 1.
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CLIQUE: Candidate Dense Unit Generation Process

Candidate dense units in k dimensions, are obtained by merging any two dense cells,
represented by an ordered set of (k−1) dimensions, such that they share first of the
(k−2) dimensions. Let NCLIQUE, be the total number of CDUs generated for a data
set containing clusters with complete subspace coverage in dimension k. NCLIQUE

can be found by using an exhaustive enumeration technique. As before, consider
the problem of extending a k− 1 sequence (dense unit) to a k sequence. Let a k− 1
sequence be formed with number i in the ith position, {1, 2, . . . , (k − 1)}. We know
from the analysis of MAFIA that we can form d−(k−1)C2 CDUs with this (k − 1)
sequence. Now consider the k − 1 subsequence {1, 2, . . . , k}, where the (k − 1)th

position contains the integer k. It can be easily seen that we have (d−k) sequences
each of length k which have the given subsequence in common. Thus the set of
(d − k) sequences can be combined among themselves to give a total number of
d−kC2 CDUs. In an analogous manner when we change the integer present in the
(k − 1)th position from k − 1 to d the total number of CDUs formed is

d−(k−1)C2 + d−kC2 + . . . + 2C2 (2)

We shall now change the integer present in the (k−2)nd position and perform
a similar analysis. If the integer k−1 occupies the (k−2)nd position and we change
the the integer present in the k − 1 position from k to d we can form a total of

d−kC2 + d−(k+1)C2 + . . . + 2C2 (3)

CDUs as explained in equation 2. Similarly, if k occupies the (k − 2)nd position we
can form an additional

d−(k+1)C2 + d−(k+2)C2 + . . . + 2C2 (4)

CDUs. By varying the integer in the (k − 2)nd position we can form a total of

{d−kC2 + d−(k+1)C2 + . . . + 2C2} + {d−(k+1)C2 + . . . + 2C2} + . . . + 2C2 (5)

CDUs. The above equation is the summation of results in equation 3, 4 and the
like by varying the integer in the (k− 2)nd position from k− 1 to d− 2. In a similar
manner we change the integer present in each position, i, of a k − 1 sequence and
by an enumerative technique find that NCLIQUE is given by

= [d−(k−1)C2 + d−kC2 + . . . + 2C2] +

[{d−kC2 + d−(k+1)C2 + . . . + 2C2} + {d−(k+1)C2 + . . . + 2C2} + . . . + {2C2}] +

...

which is the summation of the results obtained in the above equations 2-5.

Observing that
∑n

i=2
iC2 = n(n2−1)

6 , we have

NCLIQUE =

n−(k−2)∑

nk−3=2

. . .

n3−3∑

n2=2

n2−2∑

n1=2

n1−1∑

i=2

i(i2 − 1)

6
(6)
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where, n1, n2, . . . , nk−3 are all equal to d − (k − 1) in the final substitution.
Given a value for k and d we can evaluate the value NCLIQUE using a tool

like Mathematica. When the dimension of the data set, d, is 10 and k is 5 we
have NCLIQUE to be 210 and NMAFIA to be 3150. Thus for 10-D data sets with
complete subspace coverage in all the 5 dimensional subspaces MAFIA explores 15
times more number of subspaces than [7] and thus covers all possible subspaces
to discover embedded clusters. Although in real life datasets complete subspace
coverage is rare, clustering algorithms need to explore them all for correctness and
completeness.

Figure 4 illustrates the process of building CDUs in dimension 3 for a data set
in 10 dimensions. Each CDU and, similarly a dense unit, in the dth-dimension is
completely specified by the d dimensions of the unit and their corresponding d bin
indices. The vertical dashed lines in the figure separate the CDUs and the dense
units from other CDUs and dense units. Let the number of dense units be denoted
by Ndu and the number of CDUs by Ncdu. It is easy to see that each dense unit
needs to be examined with every other dense unit to form CDUs and thus results in
an O(Ndu2) algorithm. Dense units which could not be combined with any other
dense unit will be registered as a potential cluster region. It can be seen from Figure
4 that the process of CDU generation may lead to identical CDUs being formed.
The repeat CDUs are eliminated by comparing each CDU with every other CDU,
resulting in an O(Ncdu2) complexity filtering algorithm.

21 1 1 1 1 1 1 1 1 1 1 1 1 1

1 7 1 8 2 3 2 4 2 5 4 5 7 9 8 9

2

2 4 5 2 4 5

1 1 1 1 1 1

1 7 8 1 7 9 1 8 9 2 3 4 2 3 5 2 4 5

2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 7 8 1 7 9 1 8 9 2 3 4 2 3 5 2 4 5

2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 8 9

21 1

7 8 9

21 1

Dense Unit Dimensions

Dense Unit Bins

CDU Dimensions

CDU Bins

Repeat

Ndu = 8

Ncdu = 7

Figure 4. Building Candidate Dense Units. (Current Dimension, k = 3)

4.2 Un-supervised Clustering Algorithm

Clusters which are a proper subset of a higher dimension cluster are eliminated and
only unique clusters of the highest dimensionality are presented to the end user in-
creasing the usability of the algorithm. MAFIA requires a single user input (cluster
dominance factor α) which specifies the strength of the clusters to be discovered.
α indicates the magnitude of deviation of the histogram values from that of uni-
form distribution. A value of α greater than 1.5 has been accepted to be sufficient
deviation to be considered significant in the field of statistics and data mining [15].
Discovering clusters with higher values of α yields clusters in the data set which are
more dominant than the others in terms of the number of data points contained in
the cluster. Hence, choosing a suitable value of α is straightforward. Our algorithm
can report clusters for any given range of alpha in a single run. The parameter



10

β used in merging neighboring windows is used in the process of finding adaptive
grids. A low value of β results in merging adjacent bins having nearly identical
histogram values. As histogram values of adjacent bins are rarely low values of
β result in large number of bins resulting in a greater computation time but high
quality clusters. High values of β merge all bins in a given dimension and yielding
poor quality clusters. Our algorithm is not very sensitive to the value of β. Clusters
of high quality are discovered efficiently by MAFIA when too low or too high values
of β are avoided. A value of β in the range of 25% to 75% has worked well in our
experiments.

4.3 Analysis

Let k represent the highest dimensionality of any dense unit in the data set. The
running time of the algorithm is exponential in k as all its projections, O(2k) subset
dimensions, are also dense. However, with the use of adaptive grids the number of
CDUs is greatly reduced and thus enables MAFIA to scale gracefully with the data
dimensionality and size. Let N be the total number of records, B the number of
records that fit in memory buffer and let γ be the I/O access time for a block of B
records from the disk. The complexity of the algorithm is then O(ck), where c is
a constant. The total I/O time is O(N

B kγ) as data is read in chunks of B records
in each of k passes of the algorithm. The total time complexity of the algorithm is
then O(ck + N

B kγ).

5 Performance Evaluation
We present performance results of MAFIA in terms of scalability of the algorithm
with database size, data dimensionality and cluster dimensionality. Further, we
compare CLIQUE with MAFIA, in terms of quality of the clustering and compu-
tation time. We also provide a sensitivity analysis of MAFIA with respect to the
parameters α and β. Finally we shall present results on real world data sets. The
results reported are extracted on a machine with 256 MB of main memory and a
400 MHz Pentium II processor running a Linux.

5.1 Data Sets

We created a data generator to produce large synthetic data sets. The extent of
a cluster in each of its dimensions can be controlled and so also the max and min
of each dimension enabling generation of arbitrary shaped clusters. All dimensions
are scaled to lie in the range [0, . . . , 100]. Data points are generated such that each
unit cube, part of the user defined cluster, in this scaled space contains at least one
point. The data so generated is scaled back appropriately into the user specified
attribute ranges. This method, as against randomly populating the user defined
cluster region as used in [7], ensures cluster generation exactly as defined by the
user and helps to validate the results. For the remaining attributes we select a value
at random from a uniform distribution over the entire range of the attribute. An
additional 10% noise records is added to the data set. Values for all the attributes
in these noise records are independently drawn at random over the entire range
of the attribute. Also, user specified cluster definition is permuted to ensure no
dependency on the order of input records.
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5.2 Experimental Results

Effect of using Adaptive Grids

Table 1 shows the speedup obtained over CLIQUE on 3 different data sets given. We
set the threshold percentages for the bins in various dimensions depending on the bin
size based on Algorithm 1. However, while running CLIQUE we set the threshold
τ to the same uniform high value as given in Table 1 in all dimensions so that it
could discard a larger number of candidate dense units in every pass over the data.
It is easy to see that higher the value of τ , larger will be the number of candidate
dense units discarded as non-dense units and thus CLIQUE would discover clusters
faster. Each dimension is divided into 10 bins for the results reported for CLIQUE.
While running [7] we do not prune the subspaces as it could potentially reduce the
quality of clusters obtained. Table 1 shows that MAFIA performs 66.82 to 133.8
times better than CLIQUE for these data sets. The results presented for CLIQUE
are by using the modified candidate dense unit generation process along with the
usage of an user specified fixed grid size and threshold. The modified algorithm
results in exploring a much larger number of subspaces. Higher speedups have been
observed for data sets with much larger dimensionality and database size. This is
due to the very nature of our algorithm which decides a minimum set of bins in
a dimension based on its interestingness as observed from the data histogram in
every dimension. This results in a set of candidate dense units much lower than
the one obtained by equal number of bins in all dimensions. The latter results in
an explosion of candidate dense units in a very high dimension space.

Table 1. Speedups obtained over CLIQUE using Adaptive Grids

Data Data Cluster Number of Threshold % Speedup
Dim Size Dim Clusters

Data Set A 20 8.85 Million 5 5 2 133.8
Data Set B 30 0.65 Million 8 1 7 66.82
Data Set C 10 0.25 Million 5 3 2 82.13

Subspace overlap of clusters heavily affects the computation time. Candidate
dense units explodes with increase in the number of distinct cluster dimensions as
we consider more combinations of distinct dimensions. This effect would be even
more pronounced in CLIQUE as it treats all dimensions equally without exploiting
the data distribution in each dimension. A direct comparison to the results reported
in [7] is not possible since they do not mention the subspace overlap of the clusters.

Effect of Adaptive Grids on Computational Complexity

We generated a data set containing a single 7 dimensional cluster in a 10 dimensional
data space. The data set contained 5.4 million records. In this experiment we ran
MAFIA and compared it with our modified implementation of [7]. This modification
of the algorithm drastically increases the search space for finding the embedded
clusters. Table 2 shows the number of CDUs (Ncdu) and the number of dense
units (Ndu) generated in this experiment. Results presented for [7] are with 10
uniform sized bins in each dimension and a threshold percentage of 1% for all
dimensions. MAFIA discovered correctly the single cluster embedded. However,
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CLIQUE discovered 75 unique clusters each of dimension 6 and 546 unique clusters
each of dimension 7. Most of these clusters contained at least one cluster dimension
which was not part of the original defined cluster. Since [7] treats all dimensions
of the data set in the same way by forming uniform sized grids, its computation
time grows drastically. However, MAFIA exploits the data distribution in each
dimension by forming adaptive grids and thus greatly reduces the computation
time by forming as few bins as required in each dimension. This results in very
few candidate dense units being generated as seen in Table 2. In this experiment,
MAFIA took just 691 seconds while the modified implementation of CLIQUE took
79162 seconds resulting in a factor of 114.56 speedup.

Table 2. Candidate Dense Units generated by MAFIA and CLIQUE

Dimension 2 3 4 5 6 7 8
MAFIA Ncdu 21 35 35 21 7 1 0

Ndu 21 35 35 21 7 1 0
CLIQUE Ncdu 2313 5739 19215 38484 42836 24804 5820

Ndu 535 1572 3337 3870 2312 546 0

Quality of Results

We compare the quality of the results obtained by MAFIA with those of CLIQUE,
shown in Table 3. The results are for a relatively small data set with 400, 000
records in 10 dimensions with 2 clusters each in a different 4 dimensional subspace.
In the first case we set the number of bins to be 10 in every dimension and also set
a threshold of 1% uniformly in all dimensions (as implemented in CLIQUE). In the
second case we set arbitrary number of bins in each dimension (with a minimum of 5
bins to a maximum of 20 bins per dimension). The threshold in each dimension is set
to 1%. In the first case CLIQUE reported the correct dimensions of the 2 clusters,
however, it detected the 2 clusters only partially and large parts of the clusters
were thrown away as outliers. In the second run, with a variable number of bins in
each dimension, it completely failed to detect one of the clusters and, as before, the
single cluster was partially detected. This is due to the inherent nature of CLIQUE
which uses fixed discretization of the dimensions and hence results in a loss in the
quality of the cluster obtained. When we ran MAFIA on the same data set, both
the clusters and the cluster boundaries in each dimension were accurately reported.
On a data set with 1.6 million records in a 10-D space containing 2 clusters, one in
a 4 dimensional subspace and the other in a 6 dimensional subspace we performed
a similar experiment. CLIQUE partially reported the two clusters with a mismatch
of 1 dimension in both the reported clusters. Also, the boundaries reported by
CLIQUE were a crude approximation of the embedded clusters. However, MAFIA
reported both the clusters with their exact cluster dimensions and cluster boundaries
as was defined for the data set.

Table 3. Comparison of the quality of results obtained by MAFIA and CLIQUE

Cluster Dimensions Clusters Discovered
CLIQUE (fixed 10 bins) {1,7,8,9},{2,3,4,5} {1,7,8,9},{2,3,4,5}
CLIQUE (variable bins) {1,7,8,9},{2,3,4,5} {2,3,4,5}
MAFIA {1,7,8,9},{2,3,4,5} {1,7,8,9},{2,3,4,5}
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Sensitivity Analysis for α and β

In this experiment we show that MAFIA is not sensitive to the variation of β and
also demonstrate ease of use of the cluster dominance factor α. The 20 dimensional
data set used in this experiment contains 5 clusters in 5 different 5-dimensional
subspaces and has 8.85 million records. The parameter α is a measure of the amount
of deviation from uniform distribution. Higher the value of α more interesting and
dominant is the cluster discovered. We fix the value of β at 35% for this run. As we
gradually increase the value of α from 1.5 to 4 in steps of 0.5, we observed that the
number of clusters discovered decreases as α increases. This is an interesting feature
in that it enables us to discover clusters in the data set which have a required amount
of deviation from that of uniform distribution of data. Thus selecting a suitable
value or a range for α is very easy.

β controls the number of bins formed in each dimension. Lower values of β
result in merging adjacent bins which have nearly identical histogram values and
higher values of β result in merging all the bins in a given dimension. Also, very
low value of β could yield high quality clusters at the cost of a great computation
time. We fix the value of α to be 1.5 for this run. For a value of 1% β we observed
6 clusters and when β was increased from 10% to 75% in steps of 5% we always
discovered 5 clusters. For an extreme value of 150% β we discovered 3 clusters. Thus
values of β between 25% and 75% work extremely well MAFIA. This behavior with
respect to both alpha and beta has been observed consistently in all the data sets
used in this paper.

Scalability with Database Size

Figure 5 shows the results for scalability with the database size for a 20 dimensional
data with the number of records ranging from 1.45 million to 11.8 million. There
were 5 clusters embedded in 5 different 5-dimensional subspaces. The thresholds
for different bins were determined automatically by Algorithm 1. The time spent
in cluster detection almost shows a direct linear relationship with the database size.
The linear behavior is because the number of passes over the database depends
only on the dimensionality of the embedded cluster. An increase in the size of
the database just means that more data has to be scanned on every pass over the
database while finding the dense units resulting in a linear increase in time.
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Figure 5. With increasing database size: 20D data, five 5-D clusters
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Scalability with Dimensionality of Data and Cluster Dimensionality

In Figure 6(a) we see that MAFIA scales very well with the increase in data dimen-
sion. The results shown are on a data set of 250, 000 records with 3 clusters each
in a five dimensional subspace, with a total of 9 distinct dimensions. The linear be-
havior is due to the fact that our algorithm makes use of data distribution in every
dimension and only depends on the number of distinct cluster dimensions. Addi-
tional non cluster dimensions only result in the algorithm making a pass over more
data in every pass over the data set. CLIQUE not only depends on distinct clus-
ter dimensions but also on the data dimensionality. Hence it exhibits a quadratic
behavior with respect to the data dimensionality as reported in [7].

Figure 6(b) shows the scalability observed with increasing cluster dimensional-
ity in MAFIA. The results reported are for a 30-dimensional data set with 650, 000
records containing 1 cluster. Results show that the time increase with cluster di-
mensionality reflects the time complexity of the algorithm, which is exponential
in the number of distinct cluster dimensions. The time taken to discover clusters
increases greatly with the increase in the cluster dimensionality. This is due to the
fact that higher cluster dimensionality results in a large subspace coverage and a
large number of candidate dense units are formed in the subspace covered by the
cluster. Thus each pass on the data needs to populate a large number of candi-
date dense units and increase in cluster dimensionality also increases the number of
passes over the data set.
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Figure 6. With increasing (a) Data Dimensionality (b) Cluster Dimensionality

Real Data Sets

We applied MAFIA on three real world data sets to discover embedded clusters in
different subspaces. The data sets used are of varying dimensionality and size.

1. One Day Ahead Prediction of DAX The data set is a one day ahead
prediction of the German Stock index (DAX, Deutscher Aktien Index) based
on twelve input time series which includes different stock indices, bond indices
and inflation indicators. Detailed explanation of the DAX data set and de-
scription of the inputs can be found in [16]. The results reported are for the
data set in 22 dimensions with 2757 records and cluster dominance factor 2.
Clusters reported in Table 4 are all unique and took just 8 seconds to discover.
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Table 4. Clusters Discovered in the DAX Data Set

Cluster Dimension 3 4 5 6
Number of Clusters Discovered 161 134 104 24

2. Ionosphere Data We applied MAFIA to the radar data that was collected by
a system in Goose Bay, Labrador [17]. The data set is of 34 dimensions with
351 records we set the cluster dominance factor as 2. We discovered 158 unique
clusters in 3-D subspaces and 32 unique clusters in 4-D subspaces. However,
when we increased the cluster dominance factor to 3 we discovered one single
cluster in a 3-D subspace. PROCLUS [6] has reported two clusters one each
in 31 and 33 dimensions for this data set. However, we believe that this could
be in part due to an incorrect value of l, the average cluster dimensionality,
chosen by the user. Further, [6] also requires the user to specify k, the number
of clusters in the data set which cannot be known a-priori for real data sets.

3. Each-Movie Recommendation Data We applied MAFIA to a massive
data set which contained movie ratings collected by DEC Systems Research
Center [18] over a period of 18 months. During this period 72916 users entered
a total of 2, 811, 983 (≈ 2.8 Million) numeric ratings for 1628 different movies
(films and videos). Each rating is characterized by four numbers containing
information about the user-id, movie-id, a score (0 − 1) and a weight (0 − 1).
In this 4-D data set we discovered 7 clusters all of dimension 2 in 28 seconds.
Clusters discovered by MAFIA revealed interesting information about which
set of movies were rated most by which set of users. The experiment reveals
the scalability with respect to the data size of MAFIA on real data. Our
implementation of CLIQUE took 151 seconds and found clusters in dimensions
2, 3 and 4. For this experiment using CLIQUE, we had 10 uniform sized bins
in all dimensions with a uniform threshold of 1% in each dimension. However,
when we ran CLIQUE with an arbitrary number of bins in each dimension we
discovered a different set of clusters. Thus evaluating the results and finding
the correct set of clusters would not be easy with CLIQUE.

6 Conclusions
In this paper we presented MAFIA, an efficient scalable algorithm for subspace
clustering using a density and grid based approach with adaptive finite intervals.
This performs two orders of magnitude better than CLIQUE and also improves the
quality of clustering greatly. MAFIA requires a very intuitive single user input,
which makes it a far more un-supervised data mining algorithm than any other ex-
isting subspace clustering algorithm. The scalable algorithm developed can handle
massive data sets and makes it a viable algorithm for discovering clusters in high
dimensional data for large scale data mining applications. Experimental evalua-
tions on a variety of synthetic and real data sets, with varying dimensionality and
database sizes, show the gains in performance and quality of clusters. The use of
adaptive grids in MAFIA leads to large improvements over CLIQUE both in terms
of computation time and also quality of clustering.
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