
Knowledge Discovery from Users Web-Page Navigation
�

Cyrus Shahabi
�

, Amir M. Zarkesh
�

, Jafar Adibi
�

, and Vishal Shah
�

�

Integrated Media Systems Center and
Computer Science Department

University of Southern California
Los Angeles, California 90089

[shahabi, adibi, vishalsh]@usc.edu

�

Quad Design Technology
Camarillo, California 93010
azarkesh@qdt.com

Abstract

We propose to detect users navigationpaths to the advan-
tage of web-site owners. First, we explain the design and
implementationof a profiler which captures client’s selected
links and pages order, accurate page viewing time and cache
references, using a Java based remote agent. The informa-
tion captured by the profiler is then utilized by a knowledge
discovery technique to cluster users with similar interests.
We introduce a novel path clustering method based on the
similarity of the history of user navigation. This approach
is capable of capturing the interests of the user which could
persist through several subsequent hypertext link selections.
Finally, we evaluate our path clustering technique via a sim-
ulation study on a sample WWW-site. We show that depend-
ing on the level of inserted noise, we can recover the correct
clusters by %10-%27 of average error margin.

1. Introduction

The orthodox view on the web-pages assumes a uni-
directional flow of information from the server to the client.
In this view, the flow of information in the other direction
is possible only if the client chooses to respond through e-
mail or web-page forms. The previous studies on the design
of the web-pages are also concentrated on how to make this
uni-lateral flow more efficient to the client. In this paper, we
discuss a broader view in which the servers also could con-
tinuously receive useful information from the clients.

Capturing the characteristics of the users of a business
web site is an important task for their marketing department.

�
This research has been funded in part by the Integrated Media Systems

Center, a National Science Foundation Engineering Research Center with
additional support from the Annenberg Center for Communication at the
University of Southern California and the California Trade and Commerce
Agency.

The navigation path of the web-page users, if available to
the server, carries valuable informationabout the users inter-
ests. In this paper, we propose a technique to detect the nav-
igation path rather accurately up to the restrictions set by the
current Internet security protocols. Our technique detects
link hits and viewing time per page. This is a superset of in-
formation on the order of page hits. It basically encodes the
entire user navigation path. Our profiling approach has cru-
cial advantages over existing commercial and academic pro-
filers. The main advantages include: 1) it requires no mod-
ification at the client site (e.g., hacking the browser source
code), 2) it complies with the current state of the HTTP pro-
tocol and its packet structure (i.e., requires no modification
and/or extension to the protocol), and 3) it does not require
any manual modification at the server side, as the entire pro-
cess is automated (i.e., the one-time process of modifying
a large web-site to make it available for profiling takes less
than an hour). Subsequently, a systematic approach, called
path-mining [24], is explained. This approach is well suited
to capture similarity among the orders of the accessed pages
in the navigation paths. The merit of our approach in prob-
ing the similarity among users interests is shown in a de-
tailed analysis of a test site in Sec. 5.

We start by describing the structure of users navigation
profile and set the notation in Sec. 2. The structure of a sam-
ple site is also described there. In Sec. 3, we discuss the chal-
lenges involve in the construction of the user profile: accu-
rate capturing of the web-page viewing time, detecting client
cache hits, and obtaining hypertext links information. We
describe the design of our profiler as a remote agent which
can accurately construct the users profiles. In Sec. 4, we
discuss a systematic method to cluster the users navigation
paths. First a similarity measure on the feature space of the
navigation paths is presented. This similarity measure is ca-
pable to detect similarity in the order of the navigation links.
The behavior of this measure is shown in a detail analysis
of some paths in the sample site. As the second step, many

classical data mining approach can be used for the classifi-
cation based on the given similarity metric. In Sec. 5, a big
set of paths in the example web site is analyzed in details and
the performance of the similarity measure is tested. Sec. 6
provides a conclusion and overview on the future works.

2. Structure of the Users Navigation Profile

The most detailed information we could gather from the
Internet browsing of clients, is the list of links (s)he selected
and the elapsed time between them. All other type of infor-
mation, from the number of hits per page to the complete
path profile and the time spent on a path, could be derived
from the above data. In this section we formalize this struc-
ture and set the definitions. Moreover, the structure of a
sample site is introduced. The sample site is used for the rest
of this paper to illustrate the structure and efficiency of our
approach.

The structure of an Internet server site could be abstracted
as following. Let us denote the set of all hyper-text links ex-
ist in the WWW-pages of a site as

���������
	����
������
. In the

view of our applications, it is natural to consider a WWW-
page as the set of all links in that page. Therefore, the set of
all WWW-pages of a site, � �������
	��
����	������

, could be real-
ized as a partition of

�
to the equivalent classes. Here links���

and
���

are equivalent, i.e.
���! �� �

, if they are in the same
page. Then � could be defined as

� �"�!#$ %�
(1)

On the other hand a graph structure could be recognized.
Each link has a starting and an ending page. For some of the
links starting points or the ending points could be on some
page outside the site � . Moreover it is possible to have links
from a page to itself. A navigation path could be shown as
a sequence of links. Formally, we are dealing with paths on
a directed graph. The nodes of the graph are pages and the
links are the WWW-hypertext links. We call this graph a site
connectivity graph. Any page of a WWW-site could be po-
tentially called from a page in some other site. Therefore the
portion of navigation path which is inside the site could be
started from any node. Similarly, any page could have links
which points to the pages in other sites. In this paper, we are
interested only in the part of clients navigation path inside
the site. These paths are made only from the links in

�
.

A sample site for a hypothetical entertainment center
have been developed. The connectivitygraph for the sample
site is shown in Fig. 1. The names of the nodes are the title of
the pages. The names of the links are the click-able hyper-
text, corresponding to those links. As it can be seen in Fig. 1,
the connectivity graph could be quiet complicated. A subset
of links in the sample site is shown in Fig. 2. If the site is
well designed, navigation can be very informative. Only a
few links to the outside sites are shown in Fig. 1.

Local caching at the client browser makes it possible for
the client to jump back to some of the pages (s)he already
visited. Each browser can have different caching strategy
which gives ability to jump to all or part of the pages which
are visited. Moreover, the possible jumps from each page
dynamically depend on the history of the navigation of that
specific client to reach to that page. Therefore the cache
jumps are not shown in the connectivity graph. However,
detection of the cache hits is important and a systematic
method for this is presented in Sec. 3.

It is crucial to note that the sequence of pages in a path are
not enough to accurately describe a client navigation path.
This is due to the fact that two different links could have
identical starting and ending pages. Knowing which one of
these similar links is selected can be informative because
of different context in which it is appeared. To illustrate,

consider &('�)+*-,.,�,./021-3�4�5602173�4�5
and &('�)+*8,�,�,6,�,�,6,�/9;:=< '
> 4�3 > 5602173�4�5

in our sample site (see Fig. 2). Choosing ,.,?,@/02173�4�5
can be due to

the interest in Evita because of its box-office success. How-
ever, choosing ,�,6,�,6,6,6,A/9$:=< '�> 4�3 > 5 can be due to the interest in the
news about controversial screening of Evita in Argentina.

Figure 2. Simplified Graph

An important feature of the users navigation paths is the
time they spend on different pages. We assign the time spent
on each page by a user, to the link (s)he selected to leave that
page. This should be the time that the user spent

1-3 '�) 3 > <
the page and it should exclude the time spent on receiving
and loading the page (see Sec. 3). We assign the viewing
time of the last page to the last page itself. If a user remains

on a page for a considerably long time before selecting the
next link, we consider this as a sign that the client was not
reading the page for the entire time. A time-out mechanism
is explained in Sec. 3 that considers this page as the ending
point of the client path. The next move of the client after the
long pause is considered as the starting point of a new path.

We define the profile informationof a user as the set of the
links of his(er) navigation and the corresponding link times.
We show the links sequence of the path traversed by the user� as *�� ��� �����.	
���
��	 �����
	

, the corresponding links time se-
quence as ��� �� ��� � ������	=	
������	 ��� � ������	�	 and the user profile
as pair of sequences,

� *�������� 	 .
Some examples of paths on the sample site (Fig. 2) are

given in the following:

1. Main ,6,�,6,6,6,6,�,6,6,6/���.173 '�*��
�
�7*
'�� Movies ,A,?,6,6,6,�,6,6,A/&('�)+*�� ��!7*
'�� News

, , ,?,6,6,6,6,�/"#�%$ �%&�'7*
'�� Box Office ,�,�,�,6,6,6,6,�,�/02173�4�5 �
!
�7*
'�� News

, , ,6,?,6,6,6,�,6,6,6,6, /9$:=< '�> 4�3 > 5 �
' ��*
'�� Evita: 44 sec

2. Music , ,�,6,6,6,6,�,�/"��%$ � �(�
�'�� Box Office ,7,6,6,6,�,6,6,6,6,?,@/) : � � 3� � '+�,���-*�'�� Cru-

cible , ,�,6,6,?,6,6,6, /"#�%�%- *#�,��'-*�'�� Books:19 sec

3. Main ,6,6,6,6,�,6,�,�,6, /���.1-3 '
*��.'
'-*�'�� Movies , ,6,6,�,6,6,6, /"#�%$ �
� ��*
'�� Box Of-

fice ,�,?,6,6,�,6,6,6,�/021-3�4�5 �%&
& *
'�� News , ,�,6,6,6,6,�,�/"��%$ �
!('-*�'�� Box Office

,�,6,6,�,6,6,6,?,�/02173�4�5 �
/,�
*�'�� Evita :31 sec

4. Main ,6,�,6,6,6,6,�,6,6,6/���.173 '�*�� ��07*
'�� Movies ,A,?,6,6,6,�,6,6,A/&('�)+*��
� ��*
'�� News
, , ,?,6,6,6,6,�/"#�%$ �
'
17*
'��
Box Office ,�,?,6,6,6,�,6,6,�/0 1-3�4�5 �
/,�
*�'�� News ,�,?,6,6,�,6,6,6,A/021-3�4�5 �
�%& *
'�� Evita

,A,�,6,6,6,6,�,6, /&('�)+*��
' ��*
'�� News , ,6,6,6,�,6,6,6,?,6,6,6,�/9;:=< '
> 4�3 > 5 ����07*
'�� Evita:39 sec

5. Movies , ,6,6,6,6,�,6,�/"#�%$ �
'(�-*�'�� Box Office ,A,6,6,�,6,6,6,6,A/&('�)+*#�,��2-*�'�� News

,.,6,�,�,6,�,6,6,6,./34� :%5 5 >6�
/7& *�'�� Box Office ,�,6,�,6,6,?,6,6,�/0 1-3�4�5 � ��0-*�'�� Evita:50

6. Main , ,6,�,6,6,6,6, /"#�%$ � ��27*
'��
Box Office ,�,6,�,6,6,6,6,?,�/0 1-3�4�5 �
'('-*�'�� News , ,6,6,6,6,�,6,�/"#�%$ �%&��
*�'�� Box Of-

fice ,�,6,�,6,6,6,6,?,�/0 1-3�4�5 �
!7& *�'�� Evita ,A,�,6,6,6,6,�,6,
/&('�)+*��
!
/7*
'�� News: 47

These examples are used in the following sections to explain
different aspects of our analysis.

3. Design and Implementation of a Profiler

For the purpose of recording users’ path profile, we de-
signed and implemented a profiler. A simple profiler can be
a counter which counts the number of accesses to a web-
page. A sample profiler can be found in[13] which is written
in Perl script and provides a comprehensive view of daily ac-
cesses for the web-site. Due to the specific requirements of
our analyzer (see Sec. 4), we require to capture more infor-
mation than those captured by previous profilers (e.g., [23]).

Many research studies [13, 23, 5] and some commercial
products [2, 1] have looked at capturing users’ web access
patterns and store them in log files for different purposes.
Our profiler is distinguishable from all those studies due to
its following main characteristics. Our profiler is executed
at the client site instead of the server site. While this re-
sults in more accurate information gathered from the client
(e.g., client cache hits, precise page viewing time), its im-
plementation is very challenging. We achieved this by im-
plementing a Java applet which its details are sketched in
Sec. 3.1.2. Note that in [5], they also gathered accurate in-
formation about the client access. They achieved that by
modifying the web-browser. Our profiler, however, requires
no modification at the client site (includingthe browser), and
it does not rely on user cooperation. In addition, no modifi-
cation needs to be done in the current state of HTTP proto-
col and/or its packet structure. It is only required to mod-
ify the web-pages at the server site. This modification can
be done automatically by some kind of a parser. That is,
we define a new phase between the time that a web-page
is constructed and the time it is made available through In-
ternet. During this intermediate phase every page is parsed
and modified automatically. First, a call to a Java applet is
added to every page (see Sec. 3.1.2 for more details). Sec-
ond, all the hypertext links are modified so that by clicking
on them, more information will be transfered to the server
site (see Sec. 3.3). A demo of our profiler is available on8 4 4 � � #-#))+) � � *�� � ' 5 � #
5 ' � 4 # 3�9 *�� #A�?: �%:�3 � ' :.�;8 4<9 � . For
the rest of this section, we describe the design of our pro-
filer.

For each user, our profiler should capture the ordered list
of selected links and the viewing time of each page. The in-
formation content of our profile is a superset of statistical in-
formation such as frequency of access to a page and a link.
To generate profile sequence accurately, the profiler needs to
overcome three interesting challenges: 1) accurate record-
ing of the time spent by client viewing a page, 2) detecting
a page access at the server site, should the client observes
a hit in its local cache, and 3) detecting the links traversed
by the clients. For the rest of this section we describe these
challenges and our proposed solutions.

3.1 Viewing Time

The time spent by a user viewing a page is a very impor-
tant piece of information that can be employed to measure
user’s interest in the page. However, accurate recording of
the viewing time is not trivial. To illustrate, consider Fig. 3.
This figure demonstrates a client interactions with the server
from the time the user requests a page (time

4�=
) until the time

the server receives the user’s subsequent request for another
page (time

4?>
). We are interested in the duration

4<@
,
4BA

that
is termed viewing time. Note that the difference between

4 �

t0: click1

t1: receive

t2: send page
t3: load page

t4: click2

t5: receive

Server Client

Time

t0 t1 t2 t3 t4 t5

view
ing tim

e

Figure 3. Client/Server Interactions

and
4 � is in the order of a fraction of milli-second and can be

ignored (i.e.,
4 ��� 4 �). Currently, different web servers such

as NCSA [12] and Apache [14] provide us with the flexibil-
ity to obtain

4 �
and

4 >
(actually

4 � and
4��

) as the times the
request was served. They store this information in Com-
mon [19] or Extended Log File [21] format. However, for
the purpose of our analysis we need times

4 =
and

4B@
. In ad-

dition, we need time
4�A

to compute viewing time accurately.

Another argument to question the accuracy of viewing
time information is that the user might load a page and then
leave. Hence, even

4 @
,
4 A

is not the real time spent on view-
ing the page. One method to compensate is to compute a
threshold based on the page size and reading speed of hu-
mans. If the viewing time exceeded the threshold, then the
time information for that page must be invalidated and the
threshold can be used as the viewing time. An alternative is
to use smart cameras [18] to determine if the user is really
viewing the page. This of course has privacy issues which
might only be acceptable for certain applications (such as
educational applications).

To illustrate the problem of using inaccurate viewing
time, consider the following example. Suppose a clustering
algorithm clusters users based on the time they spend view-
ing a page (as in [23]) and the profiler assumes

4 >
,
4 �

as the
viewing time. The clustering algorithm will end up classify
users based on the network traffic. For example, at 9:00am
suddenly all the users show interest on page

3
while the re-

ality is that the network was congested and it took longer to
load the next page from page

3
for most of the users.

We propose two techniques to compute viewing time.
The first one is based on a server-site profiler and has the dis-
advantage of using approximation. The second approach is
a client-site profiler which is more accurate but it is possible
for a user to disable it due to tight security considerations.

3.1.1 Server Site Profiler

If the profiler is running at the server site, it can trivially ob-
tain

4 �
,
4 � and

4<>
. The server can then execute a ping com-

mand and measure its round-trip time (say
�
). Subsequently,� 4 �

,
4<= 	

(or
� 4<>

,
4B@ 	

) can be approximated as �� . Using ping
is appropriate because it incorporates the network conges-
tion at the time of request. In other words

�
is a function of

network congestion. Finally,
� 4 A

,
4 � 	 can be approximated

as � 5 < '	� 3�
 ' � � � , where � 5 < '	� 3�
 ' is the size of the page
in number of TCP/IP packets. Having the above durations,
the computation of

4 @
,
4 A

is straightforward.
Note that this method is relying heavily on approxima-

tion because some metrics such as the server load has not
been considered. Consequently, the estimated viewing time
might not be accurate. In the following section, we describe
a more accurate method to capture the viewing time.

3.1.2 Remote Agent

If the profiler can be executed at the client site, then the
measurement of viewing time can be done much more ac-
curately. In this section we propose a method to run a re-
mote agent at the client site without violating the security of
the user. Our remote agent is implemented in Java [8] lan-
guage. We developed a Java applet which is loaded into the
client machine only once when the first page of our server
has been accessed. Subsequently, every time a new HTML
page (say page

9
) is loaded at the client display, the applet

will send the system time as (�������� � 9+) to the server. Simi-
larly, once the page is unloaded, again the system time will
be reported to the server as (����� ���?� 9+). Trivially, by deduct-
ing � ������� � 9 	 from ����� ��� � 9 	 , the server can compute the ex-
act viewing time for page

9
.

The only disadvantage of this method is that the loading
time of the applet is considered as part of the viewing time of
the first page. After that, the applet becomes resident in the
client’s cache and no more loading time will be encountered.
The loading time is unpredictable because it depends on var-
ious parameters such as connection speed, network conges-
tion, number of classes being downloaded, speed of the just-
in-time compiler etc. and varies from one platform/browser
to the other. To resolve this problem, we investigated an al-
ternative solution based on JavaScript [3] language which
is a compact, object-based scripting language for develop-
ing client/server Internet applications. In comparison with
Java applet, this implementation consumes very little or no
time in interpretation as the JavaScript is a lightweight lan-
guage. However, we abandoned the JavaScript implemen-
tation because the only time that the code can capture and
report � ��� ��� , was when the user clicks on a hypertext link.
Instead, if the user clicks on hot-key buttons on the browser
(e.g.,

*A5 � - ,
:�� :) 5 :%5 or

< �
buttons in Netscape) for naviga-

tion, the JavaScript code cannot capture and report � ��� ��� to

the server. Hence, we select the Java applet implementation
and ignore the loading time of the applet for the first page.

To capture � ������� and ���� ��� by the Java applet, each
HTML page should be modified to incorporate a call to the
applet. The following are sample statements that should be
added (automatically) to the beginning of every HTML page
(“index.html” page in this example):

<APPLET CODEBASE="/java"
CODE="ViewTime" WIDTH=1 HEIGHT=1>
<PARAM NAME="PAGE_NAME"
VALUE="http://imsc.usc.edu/index.html">

</APPLET>

Incorporating the above statements at the beginning of the
page results in invocation of the applet “ViewTime” imme-
diately when the page is loaded. Subsequently, the applet
stops execution when the page is unloaded.

� ������� and ����� ��� are captured by the applet using the cur-
rentTimeMillis() method from java.lang.System. We imple-
mented our own class to send � ������� and ����� ��� to the server
using java.net.Socket class. The submissions of � ��� � � and
���� ��� to the server are incorporated into the start and stop
methods of java.applet.Applet class, respectively. The start
method is called each time the applet is revisited in the web-
page. The stop method is called when the web-page that
contains this applet has been replaced by another page and
also just before the applet is to be destroyed. In addition to
� ������� and � ��� ��� , the applet also sends the URL of the loaded
page. This information is utilized later to detect client cache
hits (see Sec. 3.2).

At the server site, a Perl script is running that will gather
all the information sent by the client (e.g., � ��� ��� , ���� ���) and
record it as the user profile. This information will be an-
alyzed by our path clustering techniques as described in
Sec. 4. The major drawback of the remote agent is that some
users might disable Java from their browser due to security
concerns.

3.2 Client Cache

Typically, web browsers employ some techniques to
cache the pages that has recently been accessed. If the user
decides to return to an already accessed page, the server will
not be notified and hence a server site profiler cannot record
this information. There are many alternative methods to de-
tect cache hits.

One method is to assign a short expiration time to HTML
pages, enforcing the browser to retrieve every page from the
server (and hence notifying the server). This can be done us-
ing Expires entity-header field in the HTTP protocol. This
allows the web server to select a date after which the infor-
mation may no longer be valid. One can set the date to value

of zero (0) or an invalid date format that results in immedi-
ate expiration of a page after its retrieval. Alternatively the
user can also set the browser cache size to zero. However,
this requires the user cooperation and cannot be enforced.
The obvious disadvantage of both of the above methods is
the performance degradation resulted from observing many
cache misses.

An alternative method to capture references to cached
pages is by doing some kind of detective work. This method
is based on the fact that the links of a path should be consis-
tent, i.e., the ending page of each link should be the same
as the starting page of the next link. Violation of this rule
in a user profile is the sign of local cache usage. This can
be best shown by an example. Assume the following access
pattern for a user:

���
,
�-�

,
�6�

, and
�

� . However, due to some
caching mechanism, the server is only notified of the follow-
ing pattern:

� �
,
� �

, and
�

� . This is because the second access
to page

� �
observed a hit at the client’s cache. The server

can analyze the access pattern and assuming there is no link
from

� �
to
�

� (which is a likely true assumption; otherwise,
the user could have directly used that link to load

�
�) detect

that the user has loaded
���

first and then
�

� . We developed
a heuristic to generate as accurately as possible the real ac-
cess pattern from reported access patterns. In our heuristic
method, we use the Referrer request-header field in HTTP
protocol [15]. However, due to lack of space and since our
alternative method to capture cache hits (described in the
following paragraphs) is more reliable and accurate, we do
not elaborate more on this heuristic method. Note that an-
other serious shortcoming of our heuristic method is that it
might not be able to detect the link sequences. To illustrate,
in the previous example, if there are two different links from� �

to
� �

, the server cannot find out which link was selected.
This is because no report about this access was sent to the
server. The situation becomes worse if the client uses hot-
key buttons on the browser (e.g.,

*A5 � - button in Netscape).
In contrast to all the above methods, our remote agent de-

sign can capture cache hits simply and accurately. Recall
from Sec. 3.1.2, that for every HTML page, either loaded
from cache or sent by the server, the “ViewTime” applet sub-
mit � ��� � � and ���� ��� to the server. Hence, if the server re-
ceives � ������� for a page that has not been requested (say page9

), it can interpret it as a cache hit for page
9

. Note that this
technique is independent of how the cached page was refer-
enced, i.e., by using hot-key buttons or by directly clicking
on hypertext links.

3.3 Traversed Links

One of the major differences between this approach (see
Sec. 4) and previous studies is that we consider the order of
page accesses. Our profiler has even made one more step
forward and captures the links the client has selected to ac-

cess pages. To illustrate, in Fig. 2, the user can select ei-

ther ,�,�,�,6,6,6,�/9;:=< '
> 4�3 > 5 or ,.,?,@/0 1-3�4�5
hypertext links to navigate from

the News web-page to the Evita web-page. In order for our
path clustering algorithm to differentiate between these two
users, our profiler should be able to capture the link informa-
tion. This becomes even more challenging when the links
have both identical names and target pages, but appear in
different contexts. For example, in Fig. 2, there are two links

with the identical name of ,.,6,@/021-3�4�5
, but in two different con-

texts (i.e. a “song” context and an “Oscar” context).

 Evita

 Argentina

 Evita

News.html

Song:

Oscar:

Screening in Argentina:

Figure 4. The original & '
) * web-page

1

2

3

Evita 1

1

2

Argentina

Evita

id name number Evita

 Argentina

 Evita

News.html

Song:

Oscar:

Screening in Argantina:

Sever-resident Table

Figure 5. The modified & '
) * web-page

Currently, only the URL of the page requested by the
client is passed to the server. This information is not suffi-
cient to distinguish between links pointing to the same page
(either with or without identical names). Briefly, our pro-
filer extends the URL address of the pages with a link iden-
tifier. The link identifier is an index to a server resident table
whose rows contain link names and numbers.

As mentioned before, we add a new phase between the
time that a page is constructed and the time that it is made
available through Internet. During this intermediate phase
each page is parsed and modified automatically. For exam-
ple, Fig. 4 shows the structure of the &('�)+* web-page prior
to applying the intermediate phase. Subsequently, Fig. 5 de-
picts the result of applying the intermediate phase on the
&('
) * web-page. Hence, the three references to Evita.html
are augmented with three different link identifiers. In addi-
tion, a table is generated that is indexed by link identifiers.
Each row of the table contains a link identifier, its corre-
sponding reference name and the number of occurance of
the reference name in the page. Now the page is ready to
become available on the Internet. That is, if a user clicks on

“Argentina”, the target page, Evita2.html, will be passed to
the server. The server decomposes Evita2.html into the tar-
get page address, Evita.html, and the link identifier � . From
the link identifier, the server retrieves the 2nd row of the
index table and realizes that the link “Argentina” was se-
lected. Subsequently, it sends the target page Evita.html to
the client and record the following access pattern for the

user: News.html ,�,?,6,6,�,6,�/9;:=< '�> 4�3 > 5 Evita.html. Note that with-
out the above steps, the server could have only recorded
News.html Evita.html access pattern. Similarly, a user in-
terested in Oscar nominations who selects the first occu-
rance of “Evita” to access

021-3�4�5 �;8 4<9 �
can be distinguished

from the other user interested in music who selects the sec-
ond occurance of “Evita”. The server will record News.html
, ,�,�,6,6,�/021-3�4�5 � � Evita.html as the access pattern of the first user

and News.html , ,�,6,�,6,�/021-3�4�5 � � Evita.html as the access pattern of
the second one.

Since the above technique requires no modification at the
client site, it can be employed by both server or client site
profilers. We have incorporated this technique into our re-
mote agent design (see Sec. 3.1.2).

4. Knowledge Discovery from Users Profile

The purpose of knowledge discovery from users profile,
is to find clusters of similar interests among the users. If the
site is well designed, there will be strong correlation among
the similarity of the navigation paths and similarity among
the users interest. Therefore, clustering of the former could
be used to cluster the latter. In the following section we
show this correlation using many examples from our sam-
ple site. We call WWW-sites with high correlation between
users interests and their navigation path a Server Informa-
tive WWW-site. In [25] some design guidelines to construct
Server Informative web-sites are explained.

The basic question is: what do we mean by calling two
paths similar? Similarityamong the navigation paths should
be based on some of their features. The definition of the
similarity is application dependent. Here we provide an
overview on a powerful path clustering method called path-
mining[24]. This approach is suitable for knowledge dis-
covery in databases with partial ordering in their data. In
this method, first a general path feature space is character-
ized. Then a similarity measure among the paths over the
feature space is introduced. Finally this similarity measure
is used in the clustering purposes. For more in-depth anal-
ysis of the path-mining approach and its other applications
consult [24]. Here we cover different aspect of path-mining
in the context of the WWW-site navigation analysis.

4.1 Path Feature Space

Defining a similarity measure among paths
is not straightforward. This is due to the fact that we need
to measure the distance between paths with different length
and/or different starting pages. Moreover, paths are defined
on a directed graph that can potentially have many cycles.

We consider a space of path features which is rich enough
to capture important features of a path but yet has a simple
underline structure. Consider a path * consisting of > links.
We call * a > -hop path. Let’s define

���
as the set of all pos-

sible
9

-hop sub-paths of * . Therefore,
��� � * 	 has > ,

9�� �
elements. As a convention a page is considered as a � -hop
path. The set of

9
-hop sub-paths contains all possible or-

ders of
9

connected links in the path. Note that a cyclic path
includes some of its sub-paths more than once. The union of
all

� � � * 	 ’s for all ��� 9 � > , which is shown by
� � * 	 , is

called the feature space of path * . Note that path * itself be-
longs to

� � * 	 .
To illustrate, consider the first and the third path in the

example of Sec. 2. The feature space which is embedding
these two paths is the union set of all sub-paths of these two
paths. This set of features is listed in the following (only up
to : � -hops)� 0-hops: Main, Movies, News, Box Office, Evita

� 1-hops: Main ,�,6,6,�,�/���.173 '�* Movies, Movies ,-,6,-/&('
) * News,

News ,�, /"#�%$
Box Office, Box Office ,.,6,@/021-3�4�5

News, News

,�,6,6,�,6,6,A/9$:=< '�> 4�3 > 5 Evita, Box Office ,.,?,@/02173�4�5
Evita

� 2-hops: Main ,�,6,�,�,�/���.1-3 '�* Movies ,-,�,8/&('�)+* News, Movies

,7,6,-/&('�)+* News ,�,A/"��%$
Box Office, News ,�, /"#�%$

Box Of-

fice ,-,6,-/&('
) * News, Box Office ,7,6,-/& '
) * News ,�,�,�,6,6,6,A/9;:=< '
> 4�3 > 5
Evita, Main ,�,?,6,6,�/���.1-3 '
* Movies ,�, /"#�%$

Box Office, Box Of-

fice ,7,6,-/& '
) * News ,�, /"#�%$
Box Office, News ,�,A/"#�%$

Box of-

fice ,.,�,@/0 1-3�4�5
Evita

Consideringall possible
9

-hops up to ! -hops, the feature
space of these two paths includes '(� sub-paths.

The time spent over a sub-path is simply defined by the
sum of the times spent on the links of that sub-path. As we
mentioned in Sec. 2, the link time is defined by the viewing
time on the end page of that link. The total viewing for the
user � on the sub-path * is denoted as ��� � * 	 .
4.2 Path Angles and Path Clustering

A natural angle among the paths can be constructed by
using an inner product over the feature space[24]. The angle
among the navigation paths * � and * � over sub-paths with
length

9
is given by

	�
� ��� ��� � ��� ��� 	 � � * �-	 * ��� �� � * �.	 * � � � 	 �� � � * � 	 * ��� � 	 �� (2)

where the inner product over sub-paths with length
9

for
the paths * � and * � is defined by� � * � ����� �<	=	�� * � ����� � 	 � �2���

��� = ������! �"#� �%$'& �! �"(�)� $ � � ��� * 	+* � � � � * 	=� (3)

Based on the above definitions, the paths with no common
page are perpendicular. Also each path has zero angle with
itself. This angle can be employed as a natural similarity
measure. Note that above definition works for any non-
negative integers > � , > � and

9
, where > � and > � are the

lengths of * � and * � , respectively. For
9-,/.10(2 � > �@	 > � 	

all the inner-products are equal and we drop the
9

index.
Here we investigate the sample paths given in the Sec. 2

to check if the path angle measure predicts reasonable re-
sults. A simple calculation based on Eq. 3 produces the path
angle among every pair of the six paths given in that exam-
ple. The result is shown in the following path angle matrix.	�
� �3�4��� � � � 	 �566666

7
� � � ��� � � �(!
� � � ' ��0 � � �
',� � � ��0(�

� � �,��� � � � �,��0 � � � ��� � � � ��� � � �
�7&
� � �(!
� � � � ��0 � � � � ��� � � ���(� � � '
�(/
� � ',��0 � � � ��� � � �,��� � � � �
2(� � � ���(!
� � �(' � � � � ��� � � ���
� � � �
2
� � � � ���(2
� � ��0
� � � �
�7& � � '(�
/ � � ���
! � � ���(2 �

8:99999
; (4)

Up to here we showed how to calculate the similarity be-
tween each pairs of the paths. Hereafter, using the path angle
as a measure for similarity, we can apply a handful of algo-
rithms in the classical theory of data mining[9, 6, 10]. In the
next section we use < -means algorithm to classify a large
number of paths on our sample site. For the purpose of il-
lustration, henceforth a simple threshold method to classify
our six example paths are employed.

Knowing the number of desired classes we could deter-
mine a threshold angle

� ��=
to split the classes. Paths with

angels less than the threshold angle are considered in the
same class. A membership matrix could be constructed by
changing elements of the similarity matrix to ones or zeros
depending if they are larger or smaller than the threshold.
For a threshold angle in the following range

� � �(!
� � 	�
>� ��� ��=.	 � � � '
�(/ (5)

the membership matrix for our example is

� ��� � � � �
566666
7
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

8 99999
; (6)

In this matrix, a � in row
3

and column
�

suggests similarity
between paths

3
and

�
. We could transform this membership

matrix to a block diagonal matrix with simple swapping of
the rows and columns (see Tab.1). From Tab.1, we can clas-

Path ID 1 4 3 6 2 5

1 1 1 0 0 0 0
4 1 1 0 0 0 0
3 0 0 1 1 0 0
6 0 0 1 1 0 0
2 0 0 0 0 1 0
5 0 0 0 0 0 1

Table 1. Results after clustering

sify our sample paths to the following four classes: path �
and & are in the first class, paths ' and / are in the second
class. Paths � and ! each make an isolated class.

The power of path-mining algorithm is in probing the or-
der of the links. For example, consider paths � and ' . Al-
though, these two paths visit the same pages, path-mining
did not cluster them in the same group. This is because
they have visited different links and/or different links order.
Other methods in which similarity function is only based on
visiting similar pages[23], are not able to address this issue.
Notice the distinction among path � and ' is mapped to a
distinction between the interests of the two users. User with
path � may be interested in news about Evita while user with
path ' is interested in Evita because of the box office records.

Two paths are considered perpendicular if they have no
link or page in common. For example the angle between
path � and / is close to 0
� since they have only one page
in common. Examine paths & and � to see how path-mining
algorithm handles path with cycles. These examples indi-
cate that clustering based on the path angles follows an in-
tuitive clustering. Fast algorithms in finding the path angles
are important when the graph size is very large. For a de-
tailed analysis consult[24].

5. Performance Evaluation

To evaluate the merit of our profiler and path-mining al-
gorithm, we conducted a two step experiment on our sam-
ple web-site shown in Fig. 1. The parameters of this site are
reported in Table 2. First we chose ten users to surf on the
sample web-site. Using our profiler the links and their cor-
responding viewing time were captured. The profiler output
was checked against a direct measurement of the users activ-
ities. The profiler recorded the viewing time and link access
accurately.

Subsequently, we generated from 30 to 150 paths around
the ten nucleus paths. The mean length of the generated

Number of pages 34
Number of links 136

Avg number of links per page 4
Avg similar target-different links per page 2
Avg similar target-identical links per page 2
Total number of links to outside web pages 11

Table 2. Sample web-site parameters

ID # of paths
in original
cluster

Result
BF=5%

Error
%

Result
BF=10%

Error
%

1 100 113 13 131 31
2 115 87 24 92 20
3 43 48 11 57 32
4 56 54 3 44 21
5 93 86 8 86 14
6 140 151 7 119 15
7 30 35 17 15 50
8 84 96 14 123 46
9 129 139 7 110 15
10 150 131 7 163 9

Table 3. K-Means clustering Result

paths was 8 links. To generate a path * � around the nu-
cleus path * � , we employed Markov Chain model as fol-
lows. Suppose

3 	 �
is a link in * � and we want to generate

the next link after
3

for * � . Subsequently, we go to
�

with
95% probability as opposed to any other node in the graph.
We call this a path with branching factor(BF) or noise level

� ! . Therefore, the probabilityof generating an 8-hops iden-
tical to the nucleus path is about 66%. The other 34% of
generated paths are in a range of similar to entirely different
from the nucleus path. The generated paths can be different
in links, time, and length of a given path.

We report the result of the clustering on paths generated
with branching factor (BF) 5% and 10%. A total of 940
paths were generated and fed into our path-mining algo-
rithm. Subsequently, we applied K-Means clustering algo-
rithm [6, 9] on the path angles computed from our path sim-
ilarity algorithm. The result for K-Means algorithm with< � ��� (i.e., 10 clusters) is presented in Table 3. Our ex-
periment shows that the average error margin in recovering
the original clusters are

� ��� and
� �
2 for the branching fac-

tors
� ! and

� ��� , respectively. Note that due to the impact
of inserted noise, some of the generated paths might legiti-
mately belong to some class different than which they have
been originated.

6. Conclusions and Future Research Directions

Conventionally, web users access have been captured by
profilers to the advantage of the user in order to achieve a
smoother navigation or understand the user behavior [10,
17]. In this study, we propose to capture user navigation path
to the advantage of web site owner. Capturing this infor-
mation requires a more elaborated user profiler which has
been designed and implemented as part of this study. Tra-
ditional profilers only count the frequency of access to a
page as well as some data regarding the clients system[13].
Other studies in this area focussed on how to differentiate
users who are logging in with the same IP address using ses-
sion identifier[20, 16] in conjunction with identifier timeout
mechanism (as mentioned in [23]), which has also been in-
corporated by our profiler. Some studies mentioned the im-
portance of the page viewing time [23] while no feasible
implementation to accurately collect this piece of informa-
tion was proposed. Our profiler, in addition to the above,
captures clients: 1) access page order, 2) link access, 3)
cache reference, and 4) accurate page viewing time. We also
proposed a design and implementation for a remote agent.
The tradeoff between user privacy and servers’ requirement
to capture user information is currently under investigation
by alternative standardization committees [20, 22]. In this
study, we assumed the current status of HTTP standard and
Java security system.

Next, we implemented the path-mining algorithm[24] to
cluster the navigationpaths detected by the our profiler. This
algorithm finds a scalar number as the similarity among the
paths. These similarity numbers could be fed to standard
data-mining algorithms [7] to cluster the users interests. The
advantage of this approach over previous attempts [23] is the
utilization of the links orders in addition to the users page
access viewing times.

There are many interesting applications that can bene-
fit from the knowledge extracted by our method [11]. Dy-
namic link generation and pre-fetching the pages have al-
ready been mentioned in [23, 4]. Our clustering method pro-
vides a better knowledge base for these applications due to
path order considerations. Another interesting application
is to map the user navigation path data to the answers of a
specific questionnaire. Having this done, the marketing di-
vision of a business could implicitly get the answers to some
of its marketing questions just from users navigationon their
web-site. We need a systematic web-site design methodol-
ogy to create new web-pages, or modify existing web-pages,
such that different users’ navigation patterns could be bet-
ter mapped to the answers to a set of specific questions. We
have already developed some preliminary design rules and
our experimental results have been promising and will ap-
pear in [25]. This direction involves the use and test of
our package with more sophisticated knowledge discovery

methods, like associated rules.

References

[1] Interse market focus 3 by interse corporation.
http://www.interse.com.

[2] Netcount service from pricewaterhouse llp.
http://www.netcount.com.

[3] See. http://home.netscape.com/eng/mozilla/Gold/handbook
/javascript/index.html.

[4] A. Bestavros. Using speculation to reduce server load and
service time on the www. In Proceedings of CIKM’95:
The

�����
ACM International Conference on Information and

Knowledge Management, Baltimore, Maryland, November
1995.

[5] C. Cunha, A. Bestavros, and M. Crovella. Characteristics
of www client-based traces. Technical Report TR-95-010,
Boston University, CS Dept, Boston, MA 02215, April 1995.

[6] B. Everitt. Cluster Analysis. H-E-B Ltd., 1974.
[7] U. M. Fayyad, G. Piatetsky-Shapiro, G. Smyth, and P. Uthu-

rusamy. Advancesin Knowledgediscoveryand Data Mining.
AAAI/MIT Press, 1996.

[8] M. A. Hamilton. Java and the shift to net-centric computing.
IEEE Computer, 29(8):31–39, 1996.

[9] J. Hartigan. Clustering Algorithms. New York: John Wiley
& Sons Inc., 1975.

[10] H. Lieberman. An agent that assist web browsing. In Proced-
ding of 14th Int. Joint Confernce on Artificial Intelligence,
pages 924–929, Mnotreal, Canada, 1995.

[11] G. Piatetsky-Shapiro, R. Braachman, T. Khabaza, W. Kloes-
gen, and E. Simoudis. An overview of issues in develop-
ing industrial data mining and knowledge discovery applica-
tions. In Proceedingof The Second Int. Confernceon Knowl-
edge Discovery and Data Mining, pages 89–95, 1996.

[12] See. http://hoohoo.ncsa.uiuc.edu.
[13] See. http://netpressence.com/accesswatch/.
[14] See. http://www.apache.org.
[15] See. http://www.ics.uci.edu/pub/ietf/http/rfc1945. In Re-

quest For Comments 1945.
[16] See. http://www.pathfinder.com.
[17] See.

http://www..public.iastate.edu/ cyberstacks/aristotle.html.
[18] See. http://www.usc.edu/dept/imsc/smcam.html.
[19] See. http://www.w3.org/pub/WWW/Daemon/User/Config

/Logging.html#common logfile format.
[20] See. http://www.w3.org/pub/WWW/TR.
[21] See. http://www.w3.org/pub/WWW/TR/WD-logfile.html.
[22] See.

http://www.ai.mit.edu/projects/iiip/conferences/survey96
/cfp.html. In Workshop on Internet Survey,Methodology and
Web Demographics, Cambridge, MA, January 29-30 1996.

[23] T. W.Yan, M. Jacobsen, H. Garcia-Molina, and U. Dayal.
From user acess patterns to dynamic hypertext linking. In
Proceedings of the � ��� International World-Wide Web Con-
ference, Paris, France, May 1996.

[24] A. Zarkesh and J. Adibi. Pathmining: Knowledge discovery
in patialy ordered databases. Submmitted to KDD-97.

[25] A. Zarkesh, J. Adibi, C. Shahabi, and V. Shah. Discovery of
the answers to hidden questionnairesbased on users web-site
navigation. In preparation.

Figure 1. Connectivity Graph for the Sample Site

