
Mining Frequent Patterns without Candidate Generation �

Jiawei Han, Jian Pei, and Yiwen Yin

School of Computing Science

Simon Fraser University

fhan, peijian, yiwenyg@cs.sfu.ca

Abstract

Mining frequent patterns in transaction databases, time-

series databases, and many other kinds of databases has

been studied popularly in data mining research. Most
of the previous studies adopt an Apriori-like candidate

set generation-and-test approach. However, candidate

set generation is still costly, especially when there exist
proli�c patterns and/or long patterns.

In this study, we propose a novel frequent pattern

tree (FP-tree) structure, which is an extended pre�x-

tree structure for storing compressed, crucial information

about frequent patterns, and develop an e�cient FP-tree-
based mining method, FP-growth, for mining the complete

set of frequent patterns by pattern fragment growth.

E�ciency of mining is achieved with three techniques: (1)
a large database is compressed into a highly condensed,

much smaller data structure, which avoids costly, repeated

database scans, (2) our FP-tree-based mining adopts a
pattern fragment growth method to avoid the costly

generation of a large number of candidate sets, and (3)

a partitioning-based, divide-and-conquer method is used
to decompose the mining task into a set of smaller tasks for

mining con�ned patterns in conditional databases, which

dramatically reduces the search space. Our performance

study shows that the FP-growth method is e�cient and

scalable for mining both long and short frequent patterns,

and is about an order of magnitude faster than the

Apriori algorithm and also faster than some recently

reported new frequent pattern mining methods.

�
The work was supported in part by the Natural Sciences

and Engineering Research Council of Canada (grant NSERC-

A3723), the Networks of Centres of Excellenceof Canada (grant

NCE/IRIS-3), and the Hewlett-Packard Lab, U.S.A.

1 Introduction

Frequent pattern mining plays an essential role in
mining associations [3, 12], correlations [6], causal-
ity [19], sequential patterns [4], episodes [14], multi-
dimensional patterns [13, 11], max-patterns [5], par-
tial periodicity [9], emerging patterns [7], and many
other important data mining tasks.

Most of the previous studies, such as [3, 12, 18, 16,
13, 17, 20, 15, 8], adopt an Apriori-like approach, which
is based on an anti-monotone Apriori heuristic [3]: if

any length k pattern is not frequent in the database,

its length (k+ 1) super-pattern can never be frequent.
The essential idea is to iteratively generate the set
of candidate patterns of length (k + 1) from the set
of frequent patterns of length k (for k � 1), and
check their corresponding occurrence frequencies in
the database.

The Apriori heuristic achieves good performance
gain by (possibly signi�cantly) reducing the size
of candidate sets. However, in situations with
proli�c frequent patterns, long patterns, or quite
low minimum support thresholds, an Apriori-like
algorithm may still su�er from the following two
nontrivial costs:

� It is costly to handle a huge number of candidate
sets. For example, if there are 104 frequent 1-
itemsets, the Apriori algorithm will need to gen-
erate more than 107 length-2 candidates and ac-
cumulate and test their occurrence frequencies.
Moreover, to discover a frequent pattern of size
100, such as fa1; : : : ; a100g, it must generate more
than 2100 � 1030 candidates in total. This is the
inherent cost of candidate generation, no matter
what implementation technique is applied.

� It is tedious to repeatedly scan the database
and check a large set of candidates by pattern
matching, which is especially true for mining long
patterns.

1

Is there any other way that one may reduce these
costs in frequent pattern mining? May some novel
data structure or algorithm help?

After some careful examination, we believe that
the bottleneck of the Apriori-like method is at the
candidate set generation and test. If one can avoid
generating a huge set of candidates, the mining
performance can be substantially improved.

This problem is attacked in the following three
aspects.

First, a novel, compact data structure, called fre-

quent pattern tree, or FP-tree for short, is constructed,
which is an extended pre�x-tree structure storing
crucial, quantitative information about frequent pat-
terns. Only frequent length-1 items will have nodes
in the tree, and the tree nodes are arranged in such
a way that more frequently occurring nodes will have
better chances of sharing nodes than less frequently
occurring ones.

Second, an FP-tree-based pattern fragment growth
mining method, is developed, which starts from a
frequent length-1 pattern (as an initial su�x pat-

tern), examines only its conditional pattern base (a
\sub-database" which consists of the set of frequent
items co-occurring with the su�x pattern), constructs
its (conditional) FP-tree, and performs mining re-
cursively with such a tree. The pattern growth is
achieved via concatenation of the su�x pattern with
the new ones generated from a conditional FP-tree.
Since the frequent itemset in any transaction is always
encoded in the corresponding path of the frequent pat-
tern trees, pattern growth ensures the completeness of
the result. In this context, our method is not Apriori-
like restricted generation-and-test but restricted test

only. The major operations of mining are count ac-
cumulation and pre�x path count adjustment, which
are usually much less costly than candidate genera-
tion and pattern matching operations performed in
most Apriori-like algorithms.

Third, the search technique employed in mining
is a partitioning-based, divide-and-conquer method

rather than Apriori-like bottom-up generation of fre-

quent itemsets combinations. This dramatically re-
duces the size of conditional pattern base generated
at the subsequent level of search as well as the size
of its corresponding conditional FP-tree. Moreover, it
transforms the problem of �nding long frequent pat-
terns to looking for shorter ones and then concatenat-
ing the su�x. It employs the least frequent items as
su�x, which o�ers good selectivity. All these tech-
niques contribute to substantial reduction of search
costs.

A performance study has been conducted to com-
pare the performance of FP-growth with Apriori and
TreeProjection, where TreeProjection is a recently pro-
posed e�cient algorithm for frequent pattern min-
ing [2]. Our study shows that FP-growth is at least
an order of magnitude faster than Apriori, and such
a margin grows even wider when the frequent pat-
terns grow longer, and FP-growth also outperforms
the TreeProjection algorithm. Our FP-tree-based min-
ing method has also been tested in large transaction
databases in industrial applications.

The remaining of the paper is organized as follows.
Section 2 introduces the FP-tree structure and its
construction method. Section 3 develops an FP-tree-
based frequent pattern mining algorithm, FP-growth .
Section 4 presents our performance study. Section 5
discusses the issues on scalability and improvements
of the method. Section 6 summarizes our study and
points out some future research issues.

2 Frequent Pattern Tree: Design

and Construction

Let I = fa1; a2; : : : ; amg be a set of items, and
a transaction database DB = hT1; T2; : : : ; Tni,
where Ti (i 2 [1::n]) is a transaction which contains
a set of items in I. The support1 (or occurrence
frequency) of a pattern A, which is a set of items, is
the number of transactions containing A in DB. A,
is a frequent pattern if A's support is no less than
a prede�ned minimum support threshold, �.

Given a transaction database DB and a minimum
support threshold, �, the problem of �nding the

complete set of frequent patterns is called the frequent
pattern mining problem.

2.1 Frequent Pattern Tree

To design a compact data structure for e�cient fre-
quent pattern mining, let's �rst examine an example.

Example 1 Let the transaction database, DB, be
(the �rst two columns of) Table 1 and � = 3.

A compact data structure can be designed based on
the following observations.

1. Since only the frequent items will play a role in the
frequent pattern mining, it is necessary to perform
one scan ofDB to identify the set of frequent items
(with frequency count obtained as a by-product).

1Notice that support is de�ned here as absolute occurrence

frequency, not the relative one as in some literature.

2

2. If we store the set of frequent items of each
transaction in some compact structure, it may
avoid repeatedly scanning of DB.

3. If multiple transactions share an identical frequent
item set, they can be merged into one with the
number of occurrences registered as count. It is
easy to check whether two sets are identical if the
frequent items in all of the transactions are sorted
according to a �xed order.

4. If two transactions share a common pre�x, accord-
ing to some sorted order of frequent items, the
shared parts can be merged using one pre�x struc-
ture as long as the count is registered properly. If
the frequent items are sorted in their frequency de-

scending order, there are better chances that more
pre�x strings can be shared.

TID Items Bought (Ordered) Frequent Items

100 f; a; c; d; g; i; m;p f; c; a;m; p

200 a; b; c; f; l;m; o f; c;a; b;m

300 b; f; h; j; o f; b

400 b; c; k; s; p c; b; p

500 a; f; c; e; l; p;m;n f; c; a;m; p

Table 1: A transaction database as running example.

item

c

p

m

b

a

f

head of
node-links

root

f:4

c:3 b:1

a:3

m:2

p:2

b:1

m:1

c:1

b:1

p:1

Header table

Figure 1: The FP-tree in Example 1.

With these observations, one may construct a
frequent pattern tree as follows.

First, a scan of DB derives a list of frequent items,
h(f :4); (c:4); (a:3); (b:3); (m:3); (p:3)i, (the number af-
ter \:" indicates the support), in which items ordered
in frequency descending order. This ordering is im-
portant since each path of a tree will follow this or-
der. For convenience of later discussions, the frequent
items in each transaction are listed in this ordering in
the rightmost column of Table 1.

Second, one may create the root of a tree, labeled
with \null". Scan the DB the second time. The scan
of the �rst transaction leads to the construction of the
�rst branch of the tree: h(f :1); (c:1); (a:1); (m:1); (p:1)i.
Notice that the frequent items in the transaction is
ordered according to the order in the list of frequent
items. For the second transaction, since its (ordered)
frequent item list hf; c; a; b;mi shares a common pre-
�x hf; c; ai with the existing path hf; c; a;m; pi, the
count of each node along the pre�x is incremented by
1, and one new node (b:1) is created and linked as
a child of (a:2) and another new node (m:1) is cre-
ated and linked as the child of (b:1). For the third
transaction, since its frequent item list hf; bi shares
only the node hfi with the f-pre�x subtree, f 's count
is incremented by 1, and a new node (b:1) is created
and linked as a child of (f :3). The scan of the fourth
transaction leads to the construction of the second
branch of the tree, h(c:1); (b:1); (p:1)i. For the last
transaction, since its frequent item list hf; c; a;m; pi
is identical to the �rst one, the path is shared with
the count of each node along the path incremented
by 1.

To facilitate tree traversal, an item header table is
built in which each item points to its occurrence in
the tree via a head of node-link. Nodes with the same
item-name are linked in sequence via such node-links.
After scanning all the transactions, the tree with the
associated node-links is shown in Figure 1. 2

This example leads to the following design and
construction of a frequent pattern tree.

De�nition 1 (FP-tree) A frequent pattern tree

(or FP-tree in short) is a tree structure de�ned below.

1. It consists of one root labeled as \null", a set of
item pre�x subtrees as the children of the root, and
a frequent-item header table.

2. Each node in the item pre�x subtree consists
of three �elds: item-name, count, and node-

link, where item-name registers which item this
node represents, count registers the number of
transactions represented by the portion of the path
reaching this node, and node-link links to the next
node in the FP-tree carrying the same item-name,
or null if there is none.

3. Each entry in the frequent-item header table con-
sists of two �elds, (1) item-name and (2) head of

node-link, which points to the �rst node in the
FP-tree carrying the item-name. 2

Based on this de�nition, we have the following
FP-tree construction algorithm.

3

Algorithm 1 (FP-tree construction)

Input: A transaction database DB and a minimum
support threshold �.

Output: Its frequent pattern tree, FP-tree

Method: The FP-tree is constructed in the following
steps.

1. Scan the transaction database DB once. Collect
the set of frequent items F and their supports.
Sort F in support descending order as L, the list

of frequent items.

2. Create the root of an FP-tree, T , and label it as
\null". For each transaction Trans in DB do the
following.

Select and sort the frequent items in Trans

according to the order of L. Let the sorted
frequent item list in Trans be [pjP], where p is
the �rst element and P is the remaining list. Call
insert tree([pjP]; T).

The function insert tree([pjP]; T) is performed as
follows. If T has a child N such that N.item-name

= p.item-name, then increment N 's count by 1;
else create a new node N , and let its count be 1,
its parent link be linked to T , and its node-link
be linked to the nodes with the same item-name

via the node-link structure. If P is nonempty, call
insert tree(P;N) recursively.

Analysis. From the FP-tree construction process, we
can see that one needs exactly two scans of the
transaction database, DB: the �rst collects the set
of frequent items, and the second constructs the
FP-tree. The cost of inserting a transaction Trans

into the FP-tree is O(jTransj), where jTransj is the
number of frequent items in Trans. We will show
that the FP-tree contains the complete information for
frequent pattern mining. 2

2.2 Completeness and Compactness of

FP-tree

Several important properties of FP-tree can be ob-
served from the FP-tree construction process.

Lemma 2.1 Given a transaction database DB and a

support threshold �, its corresponding FP-tree contains

the complete information of DB in relevance to

frequent pattern mining.

Rationale. Based on the FP-tree construction process,
each transaction in the DB is mapped to one path in
the FP-tree, and the frequent itemset information in

each transaction is completely stored in the FP-tree.
Moreover, one path in the FP-tree may represent fre-
quent itemsets in multiple transactions without am-
biguity since the path representing every transaction
must start from the root of each item pre�x subtree.
Thus we have the lemma. 2

Lemma 2.2 Without considering the (null) root, the
size of an FP-tree is bounded by the overall occurrences

of the frequent items in the database, and the height of

the tree is bounded by the maximal number of frequent

items in any transaction in the database.

Rationale. Based on the FP-tree construction process,
for any transaction T inDB, there exists a path in the
FP-tree starting from the corresponding item pre�x
subtree so that the set of nodes in the path is exactly
the same set of frequent items in T . Since no frequent
item in any transaction can create more than one node
in the tree, the root is the only extra node created not
by frequent item insertion, and each node contains
one node-link and one count information, we have the
bound of the size of the tree stated in the Lemma. The
height of any p-pre�x subtree is the maximumnumber
of frequent items in any transaction with p appearing
at the head of its frequent item list. Therefore, the
height of the tree is bounded by the maximal number
of frequent items in any transaction in the database,
if we do not consider the additional level added by the
root. 2

Lemma 2.2 shows an important bene�t of FP-tree:
the size of an FP-tree is bounded by the size of its
corresponding database because each transaction will
contribute at most one path to the FP-tree, with the
length equal to the number of frequent items in that
transaction. Since there are often a lot of sharing
of frequent items among transactions, the size of the
tree is usually much smaller than its original database.
Unlike the Apriori-like method which may generate
an exponential number of candidates in the worst
case, under no circumstances, may an FP-tree with
an exponential number of nodes be generated.

FP-tree is a highly compact structure which stores
the information for frequent pattern mining. Since a
single path \a1 ! a2 ! � � � ! an" in the a1-pre�x
subtree registers all the transactions whose maximal
frequent set is in the form of \a1 ! a2 ! � � � !

ak" for any 1 � k � n, the size of the FP-tree is
substantially smaller than the size of the database and
that of the candidate sets generated in the association
rule mining.

The items in the frequent item set are ordered in the
support-descending order: More frequently occurring

4

items are arranged closer to the top of the FP-tree and
thus are more likely to be shared. This indicates
that FP-tree structure is usually highly compact.
Our experiments also show that a small FP-trees is
resulted by compressing some quite large database.
For example, for the database Connect-4 used in
MaxMiner [5], which contains 67,557 transactions with
43 items in each transaction, when the support
threshold is 50% (which is used in the MaxMiner

experiments [5]), the total number of occurrences of
frequent items is 2,219,609, whereas the total number
of nodes in the FP-tree is 13,449 which represents a
reduction ratio of 165.04, while it withholds hundreds
of thousands of frequent patterns! (Notice that
for databases with mostly short transactions, the
reduction ratio is not that high.)

Nevertheless, one cannot assume that an FP-tree can
always �t in main memory for any large databases.
Methods for highly scalable FP-growthmining will be
discussed in Section 5.

3 Mining Frequent Patterns using

FP-tree

Construction of a compact FP-tree ensures that sub-
sequent mining can be performed with a rather com-
pact data structure. However, this does not automat-
ically guarantee that it will be highly e�cient since
one may still encounter the combinatorial problem of
candidate generation if we simply use this FP-tree to
generate and check all the candidate patterns.

In this section, we will study how to explore the
compact information stored in an FP-tree and develop
an e�cient miningmethod for mining the complete set

of frequent patterns (also called all patterns).

We observe some interesting properties of the
FP-tree structure which will facilitate frequent pattern
mining.

Property 3.1 (Node-link property) For any fre-

quent item ai, all the possible frequent patterns that

contain ai can be obtained by following ai's node-links,

starting from ai's head in the FP-tree header.

This property is based directly on the construction
process of FP-tree. It facilitates the access of all the
pattern information related to ai by traversing the
FP-tree once following ai's node-links.

Example 2 Let us examine the mining process based
on the constructed FP-tree shown in Figure 1. Based
on Property 3.1, we collect all the patterns that a
node ai participates by starting from ai's head (in

the header table) and following ai's node-links. We
examine the mining process by starting from the
bottom of the header table.

For node p, it derives a frequent pattern (p:3)
and two paths in the FP-tree : hf :4; c:3; a:3;m:2; p:2i
and hc:1; b:1; p:1i. The �rst path indicates that
string \(f; c; a;m; p)" appears twice in the database.
Notice although string hf; c; ai appears three times
and hfi itself appears even four times, they only
appear twice together with p. Thus to study which
string appear together with p, only p's pre�x path
hf :2; c:2; a:2;m:2i counts. Similarly, the second path
indicates string \(c; b; p)" appears once in the set of
transactions in DB, or p's pre�x path is hc:1; b:1i.
These two pre�x paths of p, \f(f :2; c:2; a:2;m:2),
(c:1; b:1)g", form p's sub-pattern base, which is called
p's conditional pattern base (i.e., the sub-pattern base
under the condition of p's existence). Construction
of an FP-tree on this conditional pattern base (which
is called p's conditional FP-tree) leads to only one
branch (c:3). Hence only one frequent pattern (cp:3)
is derived. (Notice that a pattern is an itemset and
is denoted by a string here.) The search for frequent
patterns associated with p terminates.

For node m, it derives a frequent pattern (m:3) and
two paths hf :4; c:3; a:3;m:2iand hf :4; c:3; a:3; b:1;m:1i.
Notice p appears together with m as well, however,
there is no need to include p here in the analysis
since any frequent patterns involving p has been an-
alyzed in the previous examination of p. Similar
to the above analysis, m's conditional pattern base
is, f(f :2; c:2; a:2), (f :1; c:1; a:1; b:1)g. Constructing
an FP-tree on it, we derive m's conditional FP-tree ,
hf :3; c:3; a:3i, a single frequent pattern path. Then
one can call FP-tree-based mining recursively, i.e., call
mine(hf :3; c:3; a:3ijm).

Figure 2 shows \mine(hf :3; c:3; a:3ijm)" involves
mining three items (a), (c), (f) in sequence. The
�rst derives a frequent pattern (am:3), and a call
\mine(hf :3; c:3ijam)"; the second derives a frequent
pattern (cm:3), and a call \mine(hf :3ijcm)"; and
the third derives only a frequent pattern (fm:3).
Further recursive call of \mine(hf :3; c:3ijam)" derives
(cam:3), (fam:3), and a call \mine(hf :3ijcam)",
which derives the longest pattern (fcam:3). Similarly,
the call of \mine(hf :3ijcm)", derives one pattern
(fcm:3). Therefore, the whole set of frequent patterns
involving m is f(m:3), (am:3), (cm:3), (fm:3),
(cam:3), (fam:3), (fcam:3), (fcm:3)g. This indicates
a single path FP-tree can be mined by outputting all

the combinations of the items in the path.

Similarly, node b derives (b:3) and three paths:
hf :4; c:3; a:3; b:1i, hf :4; b:1i, and hc:1; b:1i. Since b's

5

root

f:3

c:3

root

f:3

root

f:3

root

f:3

root

f:4

c:3 b:1

a:3

m:2

p:2

b:1

m:1

c:1

b:1

p:1

Global FP-tree

(f:2, c:2, a:2)

(f:1, c:1, a:1, b:1)

Conditional pattern base of "m"

Conditional FP-tree of "m"

Header table

item

c
a

f

a:3

head of node-links

Conditional FP-tree of "am"

Conditional pattern base of "am": (f:3, c:3) Conditional pattern base of "cam": (f:3)

c:3

Conditional FP-tree of "cam"

Conditional pattern base of "cm": (f:3)

Conditional FP-tree of "cm"

Figure 2: A conditional FP-tree built for m, i.e, \FP-tree j m"

conditional pattern base: f(f :1; c:1; a:1), (f :1), (c:1)g
generates no frequent item, the mining terminates.
Node a derives one frequent pattern f(a:3)g, and one
subpattern base, f(f :3; c:3)g, a single path conditional
FP-tree. Thus, its set of frequent patterns can be gen-
erated by taking their combinations. Concatenating
them with (a:3), we have f(fa:3), (ca:3), (fca:3)g.
Node c derives (c:4) and one subpattern base, f(f :3)g,
and the set of frequent patterns associated with (c:3)
is f(fc:3)g. Node f derives only (f :4) but no condi-
tional pattern base.

item conditional pattern base conditional

FP-tree

p f(f :2; c:2; a:2; m:2),

(c:1; b:1)g
f(c:3)gjp

m f(f :4; c:3; a:3;m:2),

(f :4; c:3; a:3; b:1;m:1)g
f(f :3; c:3;

a:3)gjm

b f(f :4; c:3; a:3; b:1), (f :4; b:1),
(c:1; b:1)g

;

a f(f :3; c:3)g f(f :3; c:3)gja

c f(f :3)g f(f :3)gjc

f ; ;

Table 2: Mining of all-patterns by creating condi-
tional (sub)-pattern bases

The conditional pattern bases and the conditional
FP-trees generated are summarized in Table 2. 2

The correctness and completeness of the process in
Example 2 should be justi�ed. We will present a few
important properties related to the mining process.

Property 3.2 (Pre�x path property) To calcu-

late the frequent patterns for a node ai in a path P ,

only the pre�x subpath of node ai in P need to be ac-

cumulated, and the frequency count of every node in

the pre�x path should carry the same count as node

ai.

Rationale. Let the nodes along the path P be labeled
as a1; : : : ; an in such an order that a1 is the root of the
pre�x subtree, an is the leaf of the subtree in P , and
ai (1 � i � n) is the node being referenced. Based
on the process of construction of FP-tree presented in
Algorithm 1, for each pre�x node ak (1 � k < i), the
pre�x subpath of the node ai in P occurs together
with ak exactly ai:count times. Thus every such pre�x
node should carry the same count as node ai. Notice
that a post�x node am (for i < m � n) along the
same path also co-occurs with node ai. However, the
patterns with am will be generated at the examination
of the post�x node am, enclosing them here will lead
to redundant generation of the patterns that would
have been generated for am. Therefore, we only need
to examine the pre�x subpath of ai in P . 2

For example, in Example 2, node m is involved in a
path hf :4; c:3; a:3;m:2; p:2i, to calculate the frequent
patterns for node m in this path, only the pre�x
subpath of node m, which is hf :4; c:3; a:3i, need to
be extracted, and the frequency count of every node
in the pre�x path should carry the same count as node
m. That is, the node counts in the pre�x path should
be adjusted to hf :2; c:2; a:2i.

Based on this property, the pre�x subpath of node
ai in a path P can be copied and transformed into
a count-adjusted pre�x subpath by adjusting the
frequency count of every node in the pre�x subpath to
the same as the count of node ai. The so transformed
pre�x path is called the transformed pre�xed path

of ai for path P .

Notice that the set of transformed pre�x paths of
ai form a small database of patterns which co-occur
with ai. Such a database of patterns occurring with
ai is called ai's conditional pattern base, and
is denoted as \pattern base j ai". Then one can
compute all the frequent patterns associated with

6

ai in this ai-conditional pattern base by creating a
small FP-tree, called ai's conditional FP-tree and
denoted as \FP-tree j ai". Subsequent mining can
be performed on this small, conditional FP-tree. The
processes of construction of conditional pattern bases
and conditional FP-trees have been demonstrated in
Example 2.

This process is performed recursively, and the
frequent patterns can be obtained by a pattern growth
method, based on the following lemmas and corollary.

Lemma 3.1 (Fragment growth) Let � be an item-

set in DB, B be �'s conditional pattern base, and �

be an itemset in B. Then the support of �[� in DB

is equivalent to the support of � in B.

Rationale. According to the de�nition of conditional
pattern base, each (sub)transaction in B occurs under
the condition of the occurrence of � in the original
transaction database DB. If an itemset � appears
in B times, it appears with � in DB times as
well. Moreover, since all such items are collected in
the conditional pattern base of �, �[� occurs exactly
 times in DB as well. Thus we have the lemma. 2

From this lemma, we can easily derive an important
corollary.

Corollary 3.1 (Pattern growth) Let � be a fre-

quent itemset in DB, B be �'s conditional pattern

base, and � be an itemset in B. Then � [� is fre-

quent in DB if and only if � is frequent in B.

Rationale. This corollary is the case when � is a
frequent itemset in DB, and when the support of � in
�'s conditional pattern base B is no less than �, the
minimum support threshold. 2

Based on Corollary 3.1, mining can be performed
by �rst identifying the frequent 1-itemset, �, in
DB, constructing their conditional pattern bases, and
then mining the 1-itemset, �, in these conditional
pattern bases, and so on. This indicates that the
process of mining frequent patterns can be viewed as
�rst mining frequent 1-itemset and then progressively
growing each such itemset by mining its conditional
pattern base, which can in turn be done similarly.
Thus we successfully transform a frequent k-itemset
mining problem into a sequence of k frequent 1-
itemset mining problems via a set of conditional
pattern bases. What we need is just pattern growth.
There is no need to generate any combinations of
candidate sets in the entire mining process.

Finally, we provide the property on mining all the
patterns when the FP-tree contains only a single path.

Lemma 3.2 (Single FP-tree path pattern gener-

ation) Suppose an FP-tree T has a single path P . The

complete set of the frequent patterns of T can be gen-

erated by the enumeration of all the combinations of

the subpaths of P with the support being the minimum

support of the items contained in the subpath.

Rationale. Let the single path P of the FP-tree be
ha1:s1 ! a2:s2 ! � � � ! ak:ski. The support
frequency si of each item ai (for 1 � i � k) is the
frequency of ai co-occurring with its pre�x string.
Thus any combination of the items in the path, such
as hai; � � � ; aji (for 1 � i; j � k), is a frequent
pattern, with their co-occurrence frequency being the
minimum support among those items. Since every
item in each path P is unique, there is no redundant
pattern to be generated with such a combinational
generation. Moreover, no frequent patterns can be
generated outside the FP-tree. Therefore, we have the
lemma. 2

Based on the above lemmas and properties, we have
the following algorithm for mining frequent patterns
using FP-tree.

Algorithm 2 (FP-growth: Mining frequent pat-

terns with FP-tree by pattern fragment growth)

Input: FP-tree constructed based on Algorithm 1,
using DB and a minimum support threshold �.

Output: The complete set of frequent patterns.

Method: Call FP-growth (FP-tree ; null).

Procedure FP-growth (Tree; �)
f

(1) if Tree contains a single path P
(2) then for each combination (denoted as �)

of the nodes in the path P do

(3) generate pattern � [� with support =
minimum support of nodes in �;

(4) else for each ai in the header of Tree do f
(5) generate pattern � = ai [� with

support = ai:support;
(6) construct �'s conditional pattern base and

then �'s conditional FP-tree Tree� ;
(7) if Tree� 6= ;

(8) then call FP-growth (Tree� ; �) g

g

Analysis. With the properties and lemmas in
Sections 2 and 3, we show that the algorithm
correctly �nds the complete set of frequent itemsets
in transaction database DB.

7

As shown in Lemma2.1, FP-tree ofDB contains the
complete information of DB in relevance to frequent
pattern mining under the support threshold �.

If an FP-tree contains a single path, according to
Lemma 3.2, its generated patterns are the combina-
tions of the nodes in the path, with the support be-
ing the minimum support of the nodes in the sub-
path. Thus we have lines (1)-(3) of the procedure.
Otherwise, we construct conditional pattern base and
mine its conditional FP-tree for each frequent item-
set ai. The correctness and completeness of pre�x
path transformation are shown in Property 3.2, and
thus the conditional pattern bases store the complete
information for frequent pattern mining. According
to Lemmas 3.1 and its corollary, the patterns suc-
cessively grown from the conditional FP-trees are the
set of sound and complete frequent patterns. Espe-
cially, according to the fragment growth property, the
support of the combined fragments takes the support
of the frequent itemsets generated in the conditional
pattern base. Therefore, we have lines (4)-(8) of the
procedure. 2

Let's now examine the e�ciency of the algorithm.
The FP-growth mining process scans the FP-tree of
DB once and generates a small pattern-base Bai

for each frequent item ai, each consisting of the
set of transformed pre�x paths of ai. Frequent
pattern mining is then recursively performed on the
small pattern-base Bai by constructing a conditional
FP-tree for Bai . As reasoned in the analysis of
Algorithm 1, an FP-tree is usually much smaller than
the size of DB. Similarly, since the conditional
FP-tree, \FP-tree j ai", is constructed on the pattern-
base Bai , it should be usually much smaller and
never bigger than Bai . Moreover, a pattern-base
Bai is usually much smaller than its original FP-tree,
because it consists of the transformed pre�x paths
related to only one of the frequent items, ai. Thus,
each subsequent mining process works on a set of
usually much smaller pattern bases and conditional
FP-trees. Moreover, the mining operations consists
of mainly pre�x count adjustment, counting, and
pattern fragment concatenation. This is much less
costly than generation and test of a very large number
of candidate patterns. Thus the algorithm is e�cient.

From the algorithm and its reasoning, one can see
that the FP-growth mining process is a divide-and-
conquer process, and the scale of shrinking is usu-
ally quite dramatic. If the shrinking factor is around
20�100 for constructing an FP-tree from a database,
it is expected to be another hundreds of times reduc-
tion for constructing each conditional FP-tree from its

already quite small conditional frequent pattern base.

Notice that even in the case that a database may
generate an exponential number of frequent patterns,
the size of the FP-tree is usually quite small and
will never grow exponentially. For example, for a
frequent pattern of length 100, \a1; : : : ; a100", the
FP-tree construction results in only one path of length
100 for it, such as \ha1;! � � � ! a100i". The
FP-growth algorithm will still generate about 1030

frequent patterns (if time permits!!), such as \a1, a2,
: : :, a1a2, : : :, a1a2a3, : : :, a1 : : :a100". However, the
FP-tree contains only one frequent pattern path of 100
nodes, and according to Lemma 3.2, there is even no
need to construct any conditional FP-tree in order to
�nd all the patterns.

4 Experimental Evaluation and

Performance Study

In this section, we present a performance comparison
of FP-growth with the classical frequent pattern
mining algorithm Apriori, and a recently proposed
e�cient method TreeProjection.

All the experiments are performed on a 450-
MHz Pentium PC machine with 128 megabytes main
memory, running on Microsoft Windows/NT. All the
programs are written in Microsoft/Visual C++6.0.
Notice that we do not directly compare our absolute
number of runtime with those in some published
reports running on the RISC workstations because
di�erent machine architectures may di�er greatly
on the absolute runtime for the same algorithms.
Instead, we implement their algorithms to the best
of our knowledge based on the published reports
on the same machine and compare in the same
running environment. Please also note that run time

used here means the total execution time, i.e., the
period between input and output, instead of CPU

time measured in the experiments in some literature.
Also, all reports on the runtime of FP-growth include
the time of constructing FP-trees from the original
databases.

The synthetic data sets which we used for our
experiments were generated using the procedure
described in [3].

We report experimental results on two data sets.
The �rst one is T25:I10:D10K with 1K items, which
is denoted as D1. In this data set, the average
transaction size and average maximal potentially
frequent itemset size are set to 25 and 10, respectively,
while the number of transactions in the dataset
is set to 10K. The second data set, denoted as
D2, is T25:I20:D100K with 10K items. There are

8

exponentially numerous frequent itemsets in both
data sets, as the support threshold goes down. There
are pretty long frequent itemsets as well as a large
number of short frequent itemsets in them. They
contain abundant mixtures of short and long frequent
itemsets.

4.1 Comparison of FP-growth and Apriori

The scalability of FP-growth and Apriori as the sup-
port threshold decreases from 3% to 0:1% is shown in
Figure 3.

Figure 3: Scalability with threshold.

FP-growth scales much better than Apriori. This
is because as the support threshold goes down, the
number as well as the length of frequent itemsets
increase dramatically. The candidate sets that
Apriori must handle becomes extremely large, and the
pattern matching with a lot of candidates by searching
through the transactions becomes very expensive.

Figure 4 shows that the run time per itemset of
FP-growth. It shows that FP-growth has good scala-
bility with the reduction of minimum support thresh-
old. Although the number of frequent itemsets grows
exponentially, the run time of FP-growth increases in
a much more conservative way. Figure 4 indicates as
the support threshold goes down, the run time per
itemset decreases dramatically (notice rule time in
the �gure is in exponential scale). This is why the
FP-growth can achieve good scalability with the sup-
port threshold.

To test the scalability with the number of trans-
actions, experiments on data set D2 are used. The
support threshold is set to 1:5%. The results are pre-
sented in Figure 5.

Both FP-growth and Apriori algorithms show linear
scalability with the number of transactions from

Figure 4: Run time of FP-growth per itemset versus
support threshold.

Figure 5: Scalability with number of transactions.

10K to 100K. However, FP-growth is much more
scalable than Apriori. As the number of transactions
grows up, the di�erence between the two methods
becomes larger and larger. Overall, FP-growth is
about an order of magnitude faster than Apriori in
large databases, and this gap grows wider when the
minimum support threshold reduces.

4.2 Comparison of FP-growth and

TreeProjection

TreeProjection is an e�cient algorithm recently pro-
posed in [2]. The general idea of TreeProjection is
that it constructs a lexicographical tree and projects a
large database into a set of reduced, item-based sub-
databases based on the frequent patterns mined so
far. The number of nodes in its lexicographic tree is
exactly that of the frequent itemsets. The e�ciency
of TreeProjection can be explained by two main fac-
tors: (1) the transaction projection limits the sup-
port counting in a relatively small space; and (2) the
lexicographical tree facilitates the management and

9

counting of candidates and provides the exibility of
picking e�cient strategy during the tree generation
and transaction projection phrases. [2] reports that
their method is up to one order of magnitude faster
than other recent techniques in literature.

Based on the techniques reported in [2], we im-
plemented a memory-based version of TreeProjection.
Our implementation does not deal with cache block-

ing, which was proposed as an e�cient technique
when the matrix is too large to �t in main memory.
However, our experiments are conducted on data sets
in which all matrices as well as the lexicographic tree
can be held in main memory (with our 128 mega-
bytes main memory machine). We believe that based
on such constraints, the performance data are in gen-
eral comparable and fair. Please note that the experi-
ments reported in [2] use di�erent datasets and di�er-
ent machine platforms. Thus it makes little sense to
directly compare the absolute numbers reported here
with [2].

According to our experimental results, both meth-
ods are e�cient in mining frequent patterns. Both run
much faster than Apriori, especially when the support
threshold is pretty low. However, a close study shows
that FP-growth is better than TreeProjection when
support threshold is very low and database is quite
large.

Figure 6: Scalability with support threshold.

As shown in Figure 6, both TreeProjection and
FP-growth have good performance when the support
threshold is pretty low, but FP-growth is better. As
shown in Figure 7, in which the support threshold
is set to 1%, both FP-growth and TreeProjection have
linear scalability with the number of transactions, but
FP-growth is more scalable.

The main costs in TreeProjection are computing of

Figure 7: Scalability with number of transactions.

matrices and transaction projections. In a database
with a large number of frequent items, the matrices
can become quite large, and the computation cost
could become high. Also, in large databases, trans-
action projection may become costly. The height of
FP-tree is limited by the length of transactions, and
each branch of an FP-tree shares many transactions
with the same pre�x paths in the tree, which saves
nontrivial costs. This explains why FP-growth has dis-
tinct advantages when the support threshold is low
and when the number of transactions is large.

5 Discussions

In this section, we discuss several issues related
to further improvements of the performance and
scalability of FP-growth.

1. Construction of FP-trees for projected databases.

When the database is large, and it is unrealistic to
construct a main memory-based FP-tree, an interest-
ing alternative is to �rst partition the database into
a set of projected databases and then construct an
FP-tree and mine it in each projected database.

The partition-based projection can be implemented
as follows: Scan DB to �nd the set of frequent items
and sort them into a frequent item list L in frequency
descending order. Then scan DB again and project
the set of frequent items (except i) of a transaction
T into the i-projected database (as a transaction),
where i is in T and there is no any other item in T
ordered after i in L. This ensures each transaction is
projected to at most one projected database and the
total size of the project databases is smaller than the
size of DB.

Then scan the set of projected databases, in the
reverse order of L, and do the following. For the j-
projected databases, construct its FP-tree and project

10

the set of items (except j and i) in each transaction Tj
in the j-projected database into i-projected database
as a transaction, if i is in Tj and there is no any other
item in Tj ordered after i in L.

By doing so, an FP-tree is constructed and mined
for each frequent item, which is much smaller than
the whole database. If a projected database is still
too big to have its FP-tree �t in main memory, its
FP-tree construction can be postponed further.

2. Construction of a disk-resident FP-tree.

Another alternative at handling large databases is
to construct a disk-resident FP-tree.

The B+-tree structure has been popularly used in
relational databases, and it can be used to index
FP-tree as well. The top level nodes of the B+tree
can be split based on the roots of item pre�x sub-
trees, and the second level based on the common
pre�x paths, and so on. When more than one page
are needed to store a pre�x sub-tree, the information
related to the shared pre�x paths need to be registered
as page header information to avoid extra page access
to fetch such frequently used crucial information.

To reduce the I/O costs by following node-links,
mining should be performed in a group accessing

mode, i.e., when accessing nodes following node-links,
one should exhaust the node traversal tasks in main
memory before fetching the nodes on disks.

Notice that one may also construct node-link-free

FP-trees. In this case, when traversing a tree path, one
should project the pre�x subpaths of all the nodes into
the corresponding conditional pattern bases. This is
feasible if both FP-tree and one page of each of its
one-level conditional pattern bases can �t in memory.
Otherwise, additional I/Os will be needed to swap in
and out the conditional pattern bases.

3. Materialization of an FP-tree.

Although an FP-tree is rather compact, its con-
struction needs two scans of a transaction database,
which may represent a nontrivial overhead. It could
be bene�cial to materialize an FP-tree for regular fre-
quent pattern mining.

One di�culty for FP-tree materialization is how
to select a good minimum support threshold � in
materialization since � is usually query-dependent. To
overcome this di�culty, one may use a low � that
may usually satisfy most of the mining queries in the
FP-tree construction. For example, if we notice that
98% queries have � � 20, we may choose � = 20 as the
FP-tree materialization threshold: that is, only 2% of
queries may need to construct a new FP-tree. Since
an FP-tree is organized in the way that less frequently

occurring items are located at the deeper paths of the
tree, it is easy to select only the upper portions of the
FP-tree (or drop the low portions which do not satisfy
the support threshold) when mining the queries with
higher thresholds. Actually, one can directly work on
the materialized FP-tree by starting at an appropriate
header entry since one just need to get the pre�x paths
no matter how low support the original FP-tree is.

4. Incremental updates of an FP-tree.

Another issue related to FP-tree materialization is
how to incrementally update an FP-tree, such as
when adding daily new transactions into a database
containing records accumulated for months.

If the materialized FP-tree takes 1 as its minimum
support (i.e., it is just a compact version of the origi-
nal database), the update will not cause any problem
since adding new records is equivalent to scanning
additional transactions in the FP-tree construction.
However, a full FP-tree may be an undesirably large.

In the general case, we can register the occurrence
frequency of every items in F1 and track them in
updates. This is not too costly but it bene�ts
the incremental updates of an FP-tree as follows.
Suppose an FP-tree was constructed based on a
validity support threshold (called \watermark") =
0:1% in a DB with 108 transactions. Suppose
an additional 106 transactions are added in. The
frequency of each item is updated. If the highest
relative frequency among the originally infrequent
items (i.e., not in the FP-tree) goes up to, say 12%,
the watermark will need to go up accordingly to
 > 0:12% to exclude such item(s). However, with
more transactions added in, the watermark may even
drop since an item's relative support frequency may
drop with more transactions added in. Only when
the FP-tree watermark is raised to some undesirable
level, the reconstruction of the FP-tree for the new
DB becomes necessary.

6 Conclusions

We have proposed a novel data structure, frequent

pattern tree (FP-tree), for storing compressed, crucial
information about frequent patterns, and developed
a pattern growth method, FP-growth, for e�cient
mining of frequent patterns in large databases.

There are several advantages of FP-growth over
other approaches: (1) It constructs a highly com-
pact FP-tree, which is usually substantially smaller
than the original database, and thus saves the costly
database scans in the subsequent mining processes.
(2) It applies a pattern growth method which avoids

11

costly candidate generation and test by successively
concatenating frequent 1-itemset found in the (con-
ditional) FP-trees : In this context, mining is not
Apriori-like (restricted) generation-and-test but fre-

quent pattern (fragment) growth only. The major op-
erations of mining are count accumulation and pre�x
path count adjustment, which are usually much less
costly than candidate generation and pattern match-
ing operations performed in most Apriori-like algo-
rithms. (3) It applies a partitioning-based divide-
and-conquer method which dramatically reduces the
size of the subsequent conditional pattern bases and
conditional FP-trees. Several other optimization tech-
niques, including direct pattern generation for single
tree-path and employing the least frequent events as
su�x, also contribute to the e�ciency of the method.

We have implemented the FP-growth method, stud-
ied its performance in comparison with several in-
uential frequent pattern mining algorithms in large
databases. Our performance study shows that the
method mines both short and long patterns e�-
ciently in large databases, outperforming the current
candidate pattern generation-based algorithms. The
FP-growth method has also been implemented in the
new version of DBMiner system and been tested in
large industrial databases, such as in London Drugs
databases, with satisfactory performance

There are a lot of interesting research issues related
to FP-tree-based mining, including further study
and implementation of SQL-based, highly scalable
FP-tree structure, constraint-based mining of frequent
patterns using FP-trees, and the extension of the
FP-tree-based mining method for mining sequential
patterns [4], max-patterns [5], partial periodicity [10],
and other interesting frequent patterns.

Acknowledgements

We would like to express our thanks to Charu
Aggarwal and Philip Yu for promptly sending us
the IBM Technical Reports [2, 1], and to Runying
Mao and Hua Zhu for their implementation of several
variations of FP-growth in the DBMiner system and
for their testing of the method in London Drugs
databases.

References

[1] R. Agarwal, C. Aggarwal, and V. V. V. Prasad.

Depth-�rst generation of large itemsets for associa-

tion rules. IBM Tech. Report RC21538, July 1999.

[2] R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A

tree projection algorithm for generation of frequent

itemsets. In J. Parallel and Distributed Computing,

2000.

[3] R. Agrawal and R. Srikant. Fast algorithms for

mining association rules. In VLDB'94, pp. 487{499.

[4] R. Agrawal and R. Srikant. Mining sequential

patterns. In ICDE'95, pp. 3{14.

[5] R. J. Bayardo. E�ciently mining long patterns from

databases. In SIGMOD'98, pp. 85{93.

[6] S. Brin, R. Motwani, and C. Silverstein. Beyond

market basket: Generalizing association rules to

correlations. In SIGMOD'97, pp. 265{276.

[7] G. Dong and J. Li. E�cient mining of emerging

patterns: Discovering trends and di�erences. In
KDD'99, pp. 43{52.

[8] G. Grahne, L. Lakshmanan, and X. Wang. E�cient
mining of constrained correlated sets. In ICDE'00.

[9] J. Han, G. Dong, and Y. Yin. E�cient mining of
partial periodic patterns in time series database. In

ICDE'99, pp. 106{115.

[10] J. Han, J. Pei, and Y. Yin. Mining partial periodicity

using frequent pattern trees. In CS Tech. Rep. 99-10,

Simon Fraser University, July 1999.

[11] M. Kamber, J. Han, and J. Y. Chiang. Metarule-

guided mining of multi-dimensional association rules
using data cubes. In KDD'97, pp. 207{210.

[12] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivo-
nen, and A.I. Verkamo. Finding interesting rules

from large sets of discovered association rules. In

CIKM'94, pp. 401{408.

[13] B. Lent, A. Swami, and J. Widom. Clustering

association rules. In ICDE'97, pp. 220{231.

[14] H. Mannila, H Toivonen, and A. I. Verkamo. Dis-

covery of frequent episodes in event sequences. Data
Mining and Knowledge Discovery, 1:259{289, 1997.

[15] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang.
Exploratory mining and pruning optimizations of

constrained associations rules. In SIGMOD'98, pp.

13{24.

[16] J.S. Park, M.S. Chen, and P.S. Yu. An e�ective

hash-based algorithm for mining association rules. In

SIGMOD'95, pp. 175{186.

[17] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating

association rule mining with relational database sys-

tems: Alternatives and implications. In SIGMOD'98,

pp. 343{354.

[18] A. Savasere, E. Omiecinski, and S. Navathe. An

e�cient algorithm for mining association rules in

large databases. In VLDB'95, pp. 432{443.

[19] C. Silverstein, S. Brin, R. Motwani, and J. Ullman.
Scalable techniques for mining causal structures. In

VLDB'98, pp. 594{605.

[20] R. Srikant, Q. Vu, and R. Agrawal. Mining associ-

ation rules with item constraints. In KDD'97, pp.

67{73.

12

