TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Rational Krylov methods for $f(A) \mathbf{b}$

Michael Eiermann, Oliver G. Ernst, and Stefan Güttel

DWCAA09
September 8th, 2009

Problem

We consider the vector $f(A) \mathbf{b}$, where

- A is a large N-by- N matrix,
- b is a vector of length N,
- f is a suitable function.

Compute approximation $\mathbf{f}_{m} \approx f(A)$ b from a rational Krylov space.

What is a rational Krylov space?

Let $\left\{\xi_{1}, \xi_{2}, \ldots\right\} \subseteq \Xi \subset \overline{\mathbb{C}}$ be a given sequence of poles.
Define the polynomials

$$
q_{m}(z)=\prod_{\substack{j=1 \\ \xi_{j} \neq \infty}}^{m}\left(z-\xi_{j}\right) \in \mathcal{P}_{m} .
$$

Assume that $q_{m}(A)^{-1}$ exists. Then

$$
\mathcal{Q}_{m+1}(A, \mathbf{b})=\mathcal{K}_{m+1}\left(A, q_{m}(A)^{-1} \mathbf{b}\right)
$$

is the rational Krylov space associated with $\left(A, \mathbf{b}, q_{m}\right)$.

Special cases

- $\Xi=\{\infty\} \Rightarrow$ polynomial Krylov $\mathcal{Q}_{m+1}=\mathcal{K}_{m+1}$
[Nauts \& Wyatt 83] [van der Vorst 87] [Druskin \& Knizhnerman 88]
[Gallopoulos \& Saad 92] [Hochbruck \& Lubich 97] [Eiermann \& Ernst 06]
- $\Xi=\{\xi\} \Rightarrow$ shift-invert Krylov
[Moret \& Novati 04] [van den Eshof \& Hochbruck 06]
- $\Xi=\{0, \infty\} \Rightarrow$ extended Krylov
[Druskin \& Knizhnerman 98] [Knizhnerman \& Simoncini 08]
- Ξ arbitrary \Rightarrow rational Krylov
[Ruhe 84] [Beattie 04] [Beckermann \& Reichel 08] [Knizhnerman et al 08]

Rational Arnoldi algorithm [Ruhe 84/94]

Input: $A, \mathbf{b},\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}$
$\mathbf{v}_{1}:=\mathbf{b} /\|\mathbf{b}\|$
for $j=1,2, \ldots, m$ do
$\mathbf{x}:=\left(I-A / \xi_{j}\right)^{-1} A \mathbf{v}_{j}$
$H(1: j, j):=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{j}\right]^{*} \mathbf{x}$
$\mathbf{x}:=\mathbf{x}-\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{j}\right] H(1: j, j)$
$H(j+1, j):=\|\mathbf{x}\|$
$\mathbf{v}_{j+1}:=\mathbf{x} / H(j+1, j)$
end

Yields decomposition $A V_{m+1}\left(\underline{I_{m}}+\underline{H_{m}} X_{m}^{-1}\right)=V_{m+1} \underline{H_{m}}$.

Rational Krylov decompositions

Theorem (G., 2009): Let a general decomposition

$$
A V_{m+1} \underline{K_{m}}=V_{m+1} \underline{H_{m}}
$$

be given, where V_{m+1} has $m+1$ linearly independent columns, $\underline{K_{m}} \in \mathbb{C}^{(m+1) \times m}, \underline{H_{m}} \in \mathbb{C}^{(m+1) \times m}$, and $\underline{H_{m}}$ is of rank m.

Rational Krylov decompositions

Theorem (G., 2009): Let a general decomposition

$$
A V_{m+1} \underline{K_{m}}=V_{m+1} \underline{H_{m}}
$$

be given, where V_{m+1} has $m+1$ linearly independent columns,
$\underline{K_{m}} \in \mathbb{C}^{(m+1) \times m}, \underline{H_{m}} \in \mathbb{C}^{(m+1) \times m}$, and $\underline{H_{m}}$ is of rank m. Then

1. K_{m} is of rank m.
2. colspan $\left(V_{m+1}\right)=\mathcal{K}_{m+1}(A, \mathbf{q})$ for a vector \mathbf{q}.
3. For every vector $\mathbf{b} \in \operatorname{colspan}\left(V_{m+1}\right)$ there exists a unique polynomial q_{m}, $\operatorname{deg}\left(q_{m}\right) \leq m$, such that $\mathbf{b}=q_{m}(A) \mathbf{q}$. Hence, if $q_{m}(A)$ is invertible, colspan $\left(V_{m+1}\right)=\mathcal{Q}_{m+1}(A, \mathbf{b})$.

Rational Krylov approximations

A special case is the (reduced) decomposition

$$
A V_{m} K_{m}=V_{m+1} \underline{H_{m}} .
$$

As an approximation to $f(A) \mathbf{b}$ we consider

$$
\mathbf{f}_{m}:=V_{m} f\left(H_{m} K_{m}^{-1}\right) V_{m}^{\dagger} \mathbf{b}
$$

Theorem (Interpolation): There holds

$$
\mathbf{f}_{m}=r_{m}(A) \mathbf{b}=\frac{p_{m-1}}{q_{m-1}}(A) \mathbf{b}
$$

where r_{m} Hermite-interpolates f at $\Lambda\left(H_{m} K_{m}^{-1}\right)$.

Example

The iteration

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{b} \\
\beta_{j} \mathbf{v}_{j+1} & =\left(I-A / \xi_{j}\right)^{-1}\left(A-\alpha_{j} /\right) \mathbf{v}_{j}, \quad j=1, \ldots, m
\end{aligned}
$$

yields a decomposition $A V_{m+1} \underline{K_{m}}=V_{m+1} \underline{H_{m}}$ with $V_{m+1}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{m+1}\right]$,
$\underline{K_{m}}=\left[\begin{array}{cccc}1 & & & \\ \beta_{1} / \xi_{1} & 1 & & \\ & \beta_{2} / \xi_{2} & \ddots & \\ & & \ddots & 1 \\ \hline & & & \beta_{m} / \xi_{m}\end{array}\right]$ and $\underline{H_{m}}=\left[\begin{array}{cccc}\alpha_{1} & & & \\ \beta_{1} & \alpha_{2} & & \\ & \beta_{2} & \ddots & \\ & & \ddots & \alpha_{m} \\ \hline & & & \beta_{m}\end{array}\right]$.

Example

The iteration

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{b} \\
\beta_{j} \mathbf{v}_{j+1} & =\left(I-A / \xi_{j}\right)^{-1}\left(A-\alpha_{j} /\right) \mathbf{v}_{j}, \quad j=1, \ldots, m
\end{aligned}
$$

can be used for explicit rational interpolation:

By Theorem (Interpolation) we know that

$$
\mathbf{f}_{m}=V_{m} f\left(H_{m} K_{m}^{-1}\right) \mathbf{e}_{1}=r_{m}(A) \mathbf{b}=\frac{p_{m-1}}{q_{m-1}}(A) \mathbf{b},
$$

where r_{m} Hermite-interpolates f at $\Lambda\left(H_{m} K_{m}^{-1}\right)=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$.

Example

The iteration

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{b}, \\
\beta_{j} \mathbf{v}_{j+1} & =\left(I-A / \xi_{j}\right)^{-1}\left(A-\alpha_{j} I\right) \mathbf{v}_{j}, \quad j=1, \ldots, \text { mi, } N_{\text {oded }}
\end{aligned}
$$

can be used for explicit rational interpolation:

By Theorem (Interpolation) we know that

$$
\mathbf{f}_{m}=V_{m} f\left(H_{m} K_{m}^{-1}\right) \mathbf{e}_{1}=r_{m}(A) \mathbf{b}=\frac{p_{m-1}}{q_{m-1}}(A) \mathbf{b},
$$

where r_{m} Hermite-interpolates f at $\Lambda\left(H_{m} K_{m}^{-1}\right)=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$.

Remarks

- 2 vectors storage need, 0 inner-products
- If all $\xi_{j}=\infty \Rightarrow$ polynomial interpolation at $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$
- Polynomial interpolation methods have been considered before [Huisinga et al 99] [Bergamaschi, Caliari \& Vianello 04]
- For $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ use Leja points, scaled to a set of unit capacity for stability [Reichel 90].
- No such scaling is necessary with the PAIN method: simply choose β_{j} such that $\left\|\mathbf{v}_{j+1}\right\|=1, j=1, \ldots, m$.
- For rational interpolation use Leja-Bagby points.

Compute: $f(A) \mathbf{b}=\sqrt{A} \mathbf{b}, A=\operatorname{diag}(1, \ldots, 1000), \mathbf{b}=[1, \ldots, 1]^{T}$.

Compute: $f(A) \mathbf{b}=\sqrt{A} \mathbf{b}, A=\operatorname{diag}(1, \ldots, 1000), \mathbf{b}=[1, \ldots, 1]^{T}$.

If good (or best) rational approximation r_{m}^{*} to f is known explicitly, one can directly evaluate $r_{m}^{*}(A) \mathbf{b} \approx f(A) \mathbf{b}$.
[Trefethen et al 06] [Frommer et al 06] [Schmelzer et al 07] [Hale et al 08]

However, using the poles ξ_{j} of r_{m}^{*} and suitable interpolation nodes α_{j} as inputs for PAIN, we can achieve essentially the same accuracy at the same computational cost.

Moreover, the PAIN method is implicitly based on exact interpolation of f and hence robust to perturbations in r_{m}^{*} :

$$
\limsup _{m \rightarrow \infty}\left\|f(A) \mathbf{b}-\mathbf{f}_{m}\right\|^{1 / m} \leq R<1
$$

if α_{j}, ξ_{j} are equilibrium-distributed on Σ, Ξ.

Rayleigh-Ritz extraction

There is a way to automatically choose near-optimal interpolation points $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ at iteration m :

1. Compute orthonormal basis V_{m} of $\mathcal{Q}_{m}=q_{m-1}^{-1} \mathcal{K}_{m}$.
2. "Determine" Rayleigh quotient $A_{m}=V_{m}^{*} A V_{m}$.
3. Compute $\mathbf{f}_{m}=V_{m} f\left(A_{m}\right) V_{m}^{*} \mathbf{b}$.

Theorem: $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}=\Lambda\left(A_{m}\right)$.
Theorem: $\left\|f(A) \mathbf{b}-\mathbf{f}_{m}\right\| \leq C \min _{p \in \mathcal{P}_{m-1}}\left\|f-p / q_{m-1}\right\|_{F(A)}$.
Price: m vectors storage need, $m^{2} / 2$ inner-products.

Compute: $f(A) \mathbf{b}=\log (A) \mathbf{b}, A$ normal with 1000 eigenvalues

Compute: $f(A) \mathbf{b}=\log (A) \mathbf{b}, A$ normal with 1000 eigenvalues

Parameter-dependent problems

In practice, one often is not interested in $f(A) \mathbf{b}$ but in $f^{\tau}(A) \mathbf{b}$, for $\tau \in T$ from some parameter set T.

Given a single rational Krylov decomposition (as before)

$$
A V_{m} K_{m}=V_{m+1} \underline{H_{m}}, \quad \mathcal{R}\left(V_{m}\right)=\mathcal{Q}_{m}=q_{m-1}^{-1} \mathcal{K}_{m},
$$

we compute several approximations

$$
\mathbf{f}_{m}^{\tau}=V_{m} f^{\tau}\left(H_{m} K_{m}^{-1}\right) V_{m}^{\dagger} \mathbf{b}=r_{m}^{\tau}(A) \mathbf{b}=\frac{p_{m-1}^{\tau}}{q_{m-1}}(A) \mathbf{b}
$$

where r_{m}^{τ} Hermite-interpolates f^{τ} at $\Lambda\left(H_{m} K_{m}^{-1}\right)$.

Example: Transfer function

$f^{\tau}(z)=(z-\tau)^{-1}$, spectrum $\Sigma=[0,+\infty)$, parameters $T=i[1, c]$.
Let $\omega_{m}(z)=\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{m}\right)$, then

$$
r_{m}^{\tau}(z)=\frac{1-\frac{q_{m-1}(\tau)}{q_{m-1}(z)} \frac{\omega_{m}(z)}{\omega_{m}(\tau)}}{z-\tau}=\frac{p_{m-1}^{\tau}}{q_{m-1}}
$$

Hermite-interpolates f^{τ} at $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$. Hence, $\mathbf{f}_{m}^{\tau}=r_{m}^{\tau}(A) \mathbf{b}$.

Example: Transfer function

$f^{\tau}(z)=(z-\tau)^{-1}$, spectrum $\Sigma=[0,+\infty)$, parameters $T=i[1, c]$.
Let $\omega_{m}(z)=\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{m}\right)$, then

$$
r_{m}^{\tau}(z)=\frac{1-\frac{q_{m-1}(\tau)}{q_{m-1}(z)} \frac{\omega_{m}(z)}{\omega_{m}(\tau)}}{z-\tau}=\frac{p_{m-1}^{\tau}}{q_{m-1}}
$$

Hermite-interpolates f^{τ} at $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$. Hence, $\mathbf{f}_{m}^{\tau}=r_{m}^{\tau}(A) \mathbf{b}$.
The relative error is

$$
\left[f^{\tau}(z)-r_{m}^{\tau}(z)\right] / f^{\tau}(z)=\frac{q_{m-1}(\tau)}{q_{m-1}(z)} \frac{\omega_{m}(z)}{\omega_{m}(\tau)}, \quad z \in \Sigma, \tau \in T
$$

and if $\Xi=T$, its minimization is related to the ADI problem.
[Knizhnerman, Druskin \& Zaslavsky 08]

In practical computations it is more convenient to have real poles, i.e., $\Xi=[-\infty, 0)$. How to select $\left\{\xi_{1}, \xi_{2}, \ldots\right\} \subset \Xi$?

In practical computations it is more convenient to have real poles, i.e., $\Xi=[-\infty, 0)$. How to select $\left\{\xi_{1}, \xi_{2}, \ldots\right\} \subset \Xi$?

Use standard tool to solve nonstandard approximation problem:

Assume to have a single repeated pole ξ. Then

$$
r_{m}^{\tau}(z)=\frac{p_{m-1}^{\tau}(z)}{q_{m-1}(z)}=\frac{p_{m-1}^{\tau}(z)}{(z-\xi)^{m-1}}=\hat{p}_{m-1}^{\tau}(\widehat{z}), \quad \widehat{z}=(z-\xi)^{-1}
$$

i.e., we have a polynomial problem: among $p \in \mathcal{P}_{m-1}$

$$
\operatorname{minimize}\left\|f^{\tau}\left(\widehat{z}^{-1}+\xi\right)-p(\widehat{z})\right\|_{\widehat{\Sigma}}, \quad \widehat{\Sigma}=\{\widehat{z}: z \in \Sigma\}
$$

Apply Walsh's theory on polynomial approximation to obtain the asymptotic convergence rate $R_{1}(\xi, \tau)$. For the transfer function:
$R_{1}(\xi, \tau)=\left(1+\frac{\sqrt{8} d^{3 / 4}+4 d^{1 / 2}+\sqrt{8} d^{1 / 4}}{1+d}\right)^{-1 / 2}, \quad d=-\tau^{2} / \xi^{2}$.

Apply Walsh's theory on polynomial approximation to obtain the asymptotic convergence rate $R_{1}(\xi, \tau)$. For the transfer function:
$R_{1}(\xi, \tau)=\left(1+\frac{\sqrt{8} d^{3 / 4}+4 d^{1 / 2}+\sqrt{8} d^{1 / 4}}{1+d}\right)^{-1 / 2}, \quad d=-\tau^{2} / \xi^{2}$.

Apply Walsh's theory on polynomial approximation to obtain the asymptotic convergence rate $R_{1}(\xi, \tau)$. For the transfer function:
$R_{1}(\xi, \tau)=\left(1+\frac{\sqrt{8} d^{3 / 4}+4 d^{1 / 2}+\sqrt{8} d^{1 / 4}}{1+d}\right)^{-1 / 2}, \quad d=-\tau^{2} / \xi^{2}$.

Consider p poles $\left\{\xi_{1}, \ldots, \xi_{p}\right\}$ repeated cyclically.
The product form of the error

$$
f^{\tau}(z)-r_{m}^{\tau}(z)=\frac{\frac{q_{m-1}(\tau)}{q_{m-1}(z)} \frac{\omega_{m}(z)}{\omega_{m}(\tau)}}{z-\tau}
$$

allows to conclude that

$$
R\left(\left\{\xi_{1}, \ldots, \xi_{p}\right\}, \tau\right)=\prod_{j=1}^{p} R_{1}\left(\xi_{j}, \tau\right)^{1 / p}
$$

is the asymptotic convergence rate for this pole sequence.
\Rightarrow Find $\left\{\xi_{1}^{*}, \ldots, \xi_{m}^{*}\right\}$ minimizing the worst-case rate $\max _{\tau \in T} R\left(\left\{\xi_{1}, \ldots, \xi_{m}\right\}, \tau\right)$.

Find optim. poles by nonneg. minimization $\|\mathbf{e}-M \mathbf{x}\|_{\infty}$. Here is the optimal overall-convergence rate on $T=i[1, c]$ depending on c.

Find optim. poles by nonneg. minimization $\|\mathbf{e}-M \mathbf{x}\|_{\infty}$. Here is the optimal overall-convergence rate on $T=i[1, c]$ depending on c.

Find optim. poles by nonneg. minimization $\|\mathbf{e}-M \mathbf{x}\|_{\infty}$. Here is the optimal overall-convergence rate on $T=i[1, c]$ depending on c.

Ex: If solve of complex system is 1.5 as expensive as real solve, use imaginary poles only if $c<10$!

Compute: $f^{\tau}(A) \mathbf{b}=(A-\tau /)^{-1} \mathbf{b}$,
$A=\operatorname{diag}(0, \ldots, 1 e 4), \tau \in T=i[10,1000], \mathbf{b}=$ randn.

Compute: $f^{\tau}(A) \mathbf{b}=(A-\tau /)^{-1} \mathbf{b}$,
$A=\operatorname{diag}(0, \ldots, 1 e 4), \tau \in T=i[10,1000], \mathbf{b}=$ randn.

Compute: $f^{\tau}(A) \mathbf{b}=(A-\tau /)^{-1} \mathbf{b}$,

$$
A=\operatorname{diag}(0, \ldots, 1 e 4), \tau \in T=i[10,1000], \mathbf{b}=\text { randn } .
$$

Compute: $f^{\tau}(A) \mathbf{b}=(A-\tau /)^{-1} \mathbf{b}$,
$A=\operatorname{diag}(0, \ldots, 1 e 4), \tau \in T=i[10,1000], \mathbf{b}=$ randn.

Summary

- Have characterized the general form of a rational Krylov decomposition.
- All existing rational Krylov methods fit into this framework.
- Propose "PAIN" as an efficient and robust rational Krylov method for problems with known spectral properties.
- Have presented simple method for finding constrained pole sequences yielding asymptotically optimal convergence.
- This method may be applied for general f by using Cauchy integral representation.
- Can explain superlinear convergence observed with Rayleigh-Ritz extraction for Hermitian problems using weighted potential theory [Beckermann, G. \& Vandebril 09].

See my poster for "rational Ritz values" and "inexact solves":

क TECHNISCHE 3 ๓ UNIVERSITÄT $\vec{\pi}$

Rational Krylov methods and approximation of $f(A) b$

B. Beckermann ${ }^{*}$, M. Eiermann ${ }^{\dagger}$, O. G. Ernst ${ }^{\dagger}$, Stefan Güttel ${ }^{\dagger}$, and R. Vandebril ${ }^{*}$
${ }^{\dagger}$ TU Bergakademie Freiberg, Germany
Institut für Numerische Mathematik und Optimierung
${ }^{*}$ Université Lille 1, France
Equipe d'Analyse Numérique et d'Optimisation

Matrix Functions

Given a square matrix A of size $N \times N$, a vector b of length N and a scalar function $f(z)$,

$$
f(A) \boldsymbol{b}:=p(A) b
$$

where $p \in \mathscr{F}_{N-1}$ is a polynomial of degree $\leq N-1$ that Hermiteinterpolates f at the eigenvalues of A. In typical applications the matrix A is large and sparse.

Some Applications

- $f(z)=(z-i \omega)^{-1}$: model reduction in the frequency domain,
- $f(z)=\exp (-t z)$: time-integration of linear ODE's, exponential integrators, e.g., in geophysics or chemistry,
- $f(z)=\sqrt{t z}$: simulation of Brownian motion of molecules or sampling from Gaussian Markov random fields,
- $f(z)=\operatorname{sign}(z)$: simulations in quantum chromodynamics.

Rational Krylov Spaces

Definition: Given a sequence of polynomials

$$
q_{m-1}(z)=\prod_{\substack{j=1 \\ \xi_{j} \neq \infty}}^{m-1}\left(z-\xi_{j}\right), \quad m=1,2, \ldots
$$

where $\xi_{j} \in \overline{\mathbb{C}} \backslash \Lambda(A)$. Then the associated rational Krylov spaces of order m are defined as

$$
\mathscr{Q}_{m}(A, b):=q_{m-1}(A)^{-1} \mathscr{K}_{m}(A, b)
$$

where $\mathscr{K}_{m}(A, b)=\operatorname{span}\left\{A^{0} b, A^{1} b, \ldots, A^{m-1} b\right\}$.

Rational Ritz values

\ldots are the eigenvalues of the Rayleigh quotient $A_{m}=Q_{m}^{*} A Q_{m}$, denoted by $\Theta=\left\{\theta_{1}, \ldots, \theta_{m}\right\}$.
Let A be Hermitian. Then the θ_{k} 's lie in the spectral interval of A and interlace the eigenvalues $\Lambda(A)=\left\{\lambda_{1}, \ldots, \lambda_{N}\right\}$:

> (*) In any interval $\left(\theta_{\kappa}, \theta_{\kappa+1}\right)$ there is at least one eigenvalue λ_{k} of A.

Moreover, the rational Ritz values are zeros of orthogonal rational functions and may be characterized as (see, e.g., $[2,3]$)

$$
\begin{aligned}
& \text { (**) The } \theta_{k} \text { 's are the zeros of the minimizer of } \\
& \text { (**) }\left\|p(A) q_{m-1}(A)^{-1} b\right\| \text { among all monic } p \in \mathscr{P}_{m}^{\infty} \text {. }
\end{aligned}
$$

Logarithmic potential theory can explain the asymptotic distribution of the rational Ritz values. Therefore we consider

- a sequence of Hermitian matrices $\left\{A_{N}\right\}$, each of size $N \times N$, whose eigenvalue counting measures converge to a Borel probability measure σ in the weak-* sense,
- a sequence of vectors $\left\{b_{N}\right\}$, each of length N,
- a ray sequence of integers $\left\{m_{N}\right\}$ such that

$$
m_{N} / N \rightarrow t \in(0,1) \quad \text { as } N \rightarrow+\infty,
$$

- a sequence of polynomials $\left\{q_{N}\right\}$, each of degree $m_{N}-1$, whose zero counting measures converge to a Borel measure $v,\|v\|=t$,
- the sequence $\left\{\Theta_{N}\right\}$ of rational Ritz values of order m_{N}.

Tools from Potential Theory Associated with a (signed) Borel measure μ_{1} is the logarithmic potential

$$
U^{\mu_{1}}(z):=\int \frac{1}{} \mathrm{~d} \mu_{1}(x) .
$$

Inexact solves \& error estimators

In each iteration of the rational Arnoldi method a linear system of the form $\left(A-\xi_{j} I\right) \boldsymbol{x}_{j}=\boldsymbol{q}_{j}$ is solved. If the residuals are collected in a matrix R_{m}, then (1) becomes

$$
\begin{equation*}
A Q_{m+1} \underline{K_{m}}=Q_{m+1} \underline{H_{m}}+R_{m} \tag{2}
\end{equation*}
$$

Setting $E_{m}:=-R_{m} K_{m}{ }^{\dagger} Q_{m+1}^{*}$, we observe that we have computed an exact Arnoldi decomposition

$$
\left(A+E_{m}\right) Q_{m+1} \underline{K_{m}}=Q_{m+1} \underline{H_{m}}
$$

for the matrix $A+E_{m}$. The Rayleigh quotient \tilde{A}_{m} computed from the data K_{m} and $\underline{H_{m}}$ satisfies

$$
\begin{aligned}
\tilde{A}_{m} & =Q_{m}^{*}\left(A+E_{m}\right) Q_{m} \\
& =Q_{m}^{*} A Q_{m}+Q_{m}^{*}\left(-R_{m} K_{m}^{\dagger} Q_{m+1}^{*}\right) Q_{m} \\
& =\widehat{A}_{m}-Q_{m}^{*} R_{m} K_{m}^{\dagger} I_{m}
\end{aligned}
$$

Here, $\widehat{A}_{m}:=Q_{m}^{*} A Q_{m}$ is referred to as the corrected Rayleigh quotient, because it is a compression of A instead of $A+E_{m}$. It can be computed from \widetilde{A}_{m} without explicit projection, only by additional inner-products $Q_{m}^{*} R_{m}$.
We now decompose the error

$$
\left\|f(A) b-f_{m}\right\| \leq \underbrace{\left\|f(A) b-f\left(A+E_{m}\right) b\right\|}_{\text {sensitivity error }}+\underbrace{\left\|f\left(A+E_{m}\right) b-\boldsymbol{f}_{m}\right\|}_{\text {approximation error }},
$$

and estimate

$$
\text { sensitivity error } \approx\left\|f\left(\widetilde{A}_{m}\right) Q_{m}^{*} b-f\left(\widehat{A}_{m}\right) Q_{m}^{*} b\right\| \text {. }
$$

It is advisable to terminate the rational Arnoldi method if the ap-

