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Problem
We consider the vector f (A)b, where

É A is a large N-by-N matrix,

É b is a vector of length N,

É f is a suitable function.

Compute approximation fm ≈ f (A)b from a rational Krylov space.



What is a rational Krylov space?
Let {ξ1, ξ2, . . .} ⊆  ⊂ C be a given sequence of poles.

De�ne the polynomials

qm(z) =
m∏

j=1
ξj 6=∞

(z− ξj) ∈ Pm.

Assume that qm(A)−1 exists. Then

Qm+1(A,b) = Km+1(A,qm(A)−1b)

is the rational Krylov space associated with (A,b, qm).



Special cases

É  = {∞} ⇒ polynomial Krylov Qm+1 = Km+1
[Nauts & Wyatt 83] [van der Vorst 87] [Druskin & Knizhnerman 88]

[Gallopoulos & Saad 92] [Hochbruck & Lubich 97] [Eiermann & Ernst 06]

É  = {ξ} ⇒ shift-invert Krylov

[Moret & Novati 04] [van den Eshof & Hochbruck 06]

É  = {0,∞} ⇒ extended Krylov

[Druskin & Knizhnerman 98] [Knizhnerman & Simoncini 08]

É  arbitrary ⇒ rational Krylov

[Ruhe 84] [Beattie 04] [Beckermann & Reichel 08] [Knizhnerman et al 08]



Rational Arnoldi algorithm [Ruhe 84/94]

Input: A, b, {ξ1, ξ2, . . . , ξm}

v1 := b/‖b‖

for j = 1,2, . . . ,m do
x := (I− A/ξj)−1Avj
H(1 : j, j) := [v1, . . . ,vj]∗x

x := x− [v1, . . . ,vj]H(1 : j, j)

H(j+ 1, j) := ‖x‖

vj+1 := x/H(j+ 1, j)

end

Yields decomposition AVm+1(Im +HmX−1m ) = Vm+1Hm.



Rational Krylov decompositions
Theorem (G., 2009): Let a general decomposition

AVm+1Km = Vm+1Hm

be given, where Vm+1 has m+ 1 linearly independent columns,

Km ∈ C(m+1)×m, Hm ∈ C(m+1)×m, and Hm is of rank m.

Then

1. Km is of rank m.

2. colspan(Vm+1) = Km+1(A,q) for a vector q.

3. For every vector b ∈ colspan(Vm+1) there exists a unique

polynomial qm, deg(qm) ≤m, such that b = qm(A)q.

Hence, if qm(A) is invertible, colspan(Vm+1) = Qm+1(A,b).



Rational Krylov decompositions
Theorem (G., 2009): Let a general decomposition

AVm+1Km = Vm+1Hm

be given, where Vm+1 has m+ 1 linearly independent columns,

Km ∈ C(m+1)×m, Hm ∈ C(m+1)×m, and Hm is of rank m. Then

1. Km is of rank m.

2. colspan(Vm+1) = Km+1(A,q) for a vector q.

3. For every vector b ∈ colspan(Vm+1) there exists a unique

polynomial qm, deg(qm) ≤m, such that b = qm(A)q.

Hence, if qm(A) is invertible, colspan(Vm+1) = Qm+1(A,b).



Rational Krylov approximations
A special case is the (reduced) decomposition

AVmKm = Vm+1Hm.

As an approximation to f (A)b we consider

fm := Vmf (HmK
−1
m
)V†

m
b.

Theorem (Interpolation): There holds

fm = rm(A)b =
pm−1

qm−1
(A)b,

where rm Hermite-interpolates f at Λ(HmK−1m
).



Example
The iteration

v1 = b,

βjvj+1 = (I− A/ξj)−1(A− αjI)vj, j = 1, . . . ,m,

yields a decomposition AVm+1Km = Vm+1Hm with

Vm+1 = [v1, . . . ,vm+1],

Km =




1

β1/ξ1 1

β2/ξ2
. . .

. . . 1

βm/ξm




and Hm =




α1

β1 α2

β2
. . .

. . . αm

βm


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.



Example
The iteration

v1 = b,

βjvj+1 = (I− A/ξj)−1(A− αjI)vj, j = 1, . . . ,m,

can be used for explicit rational interpolation:

By Theorem (Interpolation) we know that

fm = Vmf (HmK
−1
m
)e1 = rm(A)b =

pm−1

qm−1
(A)b,

where rm Hermite-interpolates f at Λ(HmK−1m
) = {α1, . . . , αm}.

PAIN method

Preassigned Poles and Interpolation Nodes
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Remarks

É 2 vectors storage need, 0 inner-products

É If all ξj =∞ ⇒ polynomial interpolation at {α1, . . . , αm}

É Polynomial interpolation methods have been considered

before [Huisinga et al 99] [Bergamaschi, Caliari & Vianello 04]

É For {α1, . . . , αm} use Leja points, scaled to a set of unit

capacity for stability [Reichel 90].

É No such scaling is necessary with the PAIN method:

simply choose βj such that ‖vj+1‖ = 1, j = 1, . . . ,m.

É For rational interpolation use Leja-Bagby points.



Compute: f (A)b =
p
Ab, A = diag(1, . . . ,1000), b = [1, . . . ,1]T .



Compute: f (A)b =
p
Ab, A = diag(1, . . . ,1000), b = [1, . . . ,1]T .
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If good (or best) rational approximation r∗
m
to f is known

explicitly, one can directly evaluate r∗
m
(A)b ≈ f (A)b.

[Trefethen et al 06] [Frommer et al 06] [Schmelzer et al 07] [Hale et al 08]

However, using the poles ξj of r∗m and suitable interpolation

nodes αj as inputs for PAIN, we can achieve essentially the same

accuracy at the same computational cost.

Moreover, the PAIN method is implicitly based on exact

interpolation of f and hence robust to perturbations in r∗
m
:

limsupm→∞ ‖ f (A)b− fm ‖1/m ≤ R < 1

if αj, ξj are equilibrium-distributed on , .



Rayleigh-Ritz extraction
There is a way to automatically choose near-optimal interpolation

points {α1, . . . , αm} at iteration m:

1. Compute orthonormal basis Vm of Qm = q−1m−1Km.

2. �Determine� Rayleigh quotient Am = V∗
m
AVm.

3. Compute fm = Vmf (Am)V∗mb.

Theorem: {α1, . . . , αm} = Λ(Am).

Theorem: ‖f (A)b− fm‖ ≤ Cminp∈Pm−1 ‖f − p/qm−1‖F(A).

Price: m vectors storage need, m2/2 inner-products.



Compute: f (A)b = log(A)b, A normal with 1000 eigenvalues



Compute: f (A)b = log(A)b, A normal with 1000 eigenvalues
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Parameter-dependent problems
In practice, one often is not interested in f (A)b but in f τ(A)b,

for τ ∈ T from some parameter set T.

Given a single rational Krylov decomposition (as before)

AVmKm = Vm+1Hm, R(Vm) = Qm = q−1
m−1Km,

we compute several approximations

fτ
m
= Vmf

τ(HmK
−1
m
)V†

m
b = rτ

m
(A)b =

pτ
m−1

qm−1
(A)b,

where rτ
m
Hermite-interpolates f τ at Λ(HmK−1m

).



Example: Transfer function
f τ(z) = (z− τ)−1, spectrum  = [0,+∞), parameters T = i[1, c].

Let ωm(z) = (z− α1) · · · (z− αm), then

rτ
m
(z) =

1− qm−1(τ)
qm−1(z)

ωm(z)
ωm(τ)

z− τ
=
pτ
m−1

qm−1

Hermite-interpolates f τ at {α1, . . . , αm}. Hence, fτm = rτ
m
(A)b.

The relative error is

[f τ(z)− rτ
m
(z)]/ f τ(z) =

qm−1(τ)

qm−1(z)

ωm(z)

ωm(τ)
, z ∈ , τ ∈ T,

and if  = T, its minimization is related to the ADI problem.

[Knizhnerman, Druskin & Zaslavsky 08]
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In practical computations it is more convenient to have real poles,

i.e.,  = [−∞,0). How to select {ξ1, ξ2, . . .} ⊂ ?
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In practical computations it is more convenient to have real poles,

i.e.,  = [−∞,0). How to select {ξ1, ξ2, . . .} ⊂ ?

Use standard tool to solve nonstandard approximation problem:

Assume to have a single repeated pole ξ. Then

rτ
m
(z) =

pτ
m−1(z)

qm−1(z)
=

pτ
m−1(z)

(z− ξ)m−1
= bpτ

m−1(bz), bz = (z− ξ)−1,

i.e., we have a polynomial problem: among p ∈ Pm−1

minimize


 f τ(bz−1 + ξ)− p(bz)



b , b = �bz : z ∈ 	 .



Apply Walsh's theory on polynomial approximation to obtain the

asymptotic convergence rate R1(ξ, τ). For the transfer function:

R1(ξ, τ) =

 
1+

p
8d3/4 + 4d1/2 +

p
8d1/4

1+ d

!−1/2
, d = −τ2/ξ2.
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Apply Walsh's theory on polynomial approximation to obtain the

asymptotic convergence rate R1(ξ, τ). For the transfer function:
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Apply Walsh's theory on polynomial approximation to obtain the

asymptotic convergence rate R1(ξ, τ). For the transfer function:

R1(ξ, τ) =

 
1+

p
8d3/4 + 4d1/2 +

p
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Consider p poles {ξ1, . . . , ξp} repeated cyclically.

The product form of the error

f τ(z)− rτ
m
(z) =

qm−1(τ)
qm−1(z)

ωm(z)
ωm(τ)

z− τ

allows to conclude that

R({ξ1, . . . , ξp}, τ) =
p∏

j=1

R1(ξj, τ)1/p

is the asymptotic convergence rate for this pole sequence.

⇒ Find {ξ∗
1
, . . . , ξ∗

m
} minimizing the worst-case rate

maxτ∈T R({ξ1, . . . , ξm}, τ).



Find optim. poles by nonneg. minimization ‖e−Mx‖∞. Here is the

optimal overall-convergence rate on T = i[1, c] depending on c.
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Find optim. poles by nonneg. minimization ‖e−Mx‖∞. Here is the

optimal overall-convergence rate on T = i[1, c] depending on c.
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Find optim. poles by nonneg. minimization ‖e−Mx‖∞. Here is the

optimal overall-convergence rate on T = i[1, c] depending on c.
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Ex: If solve of complex system is 1.5 as expensive as real solve,

use imaginary poles only if c < 10!



Compute: f τ(A)b = (A− τI)−1b,
A = diag(0, . . . ,1e4), τ ∈ T = i[10,1000], b = randn.
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Compute: f τ(A)b = (A− τI)−1b,
A = diag(0, . . . ,1e4), τ ∈ T = i[10,1000], b = randn.
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Compute: f τ(A)b = (A− τI)−1b,
A = diag(0, . . . ,1e4), τ ∈ T = i[10,1000], b = randn.
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⇐= superlinear!



Compute: f τ(A)b = (A− τI)−1b,
A = diag(0, . . . ,1e4), τ ∈ T = i[10,1000], b = randn.
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Summary
É Have characterized the general form of a rational Krylov

decomposition.

É All existing rational Krylov methods �t into this framework.

É Propose �PAIN� as an ef�cient and robust rational Krylov

method for problems with known spectral properties.

É Have presented simple method for �nding constrained pole

sequences yielding asymptotically optimal convergence.

É This method may be applied for general f by using Cauchy

integral representation.

É Can explain superlinear convergence observed with

Rayleigh-Ritz extraction for Hermitian problems using

weighted potential theory [Beckermann, G. & Vandebril 09].



See my poster for �rational Ritz values� and �inexact solves�:

Rational Krylov methods and approximation of f (A)b
B. Beckermann‡, M. Eiermann†, O. G. Ernst†, Stefan Güttel†, and R. Vandebril‡

†TU Bergakademie Freiberg, Germany ‡Université Lille 1, France
Institut für Numerische Mathematik und Optimierung Equipe d’Analyse Numérique et d’Optimisation

Matrix Functions

Given a square matrix A of size N ×N , a vector b of length N and
a scalar function f (z),

f (A)b := p(A)b,

where p ∈ PN−1 is a polynomial of degree ≤ N −1 that Hermite-
interpolates f at the eigenvalues of A. In typical applications the
matrix A is large and sparse.

Some Applications

• f (z) = (z− iω)−1: model reduction in the frequency domain,

• f (z) = exp(−tz): time-integration of linear ODE’s, exponential
integrators, e.g., in geophysics or chemistry,

• f (z) =
p

tz: simulation of Brownian motion of molecules or
sampling from Gaussian Markov random fields,

• f (z) = sign(z): simulations in quantum chromodynamics.

Rational Krylov Spaces

Definition: Given a sequence of polynomials

qm−1(z) =
m−1∏
j=1
ξ j 6=∞

(z−ξ j), m = 1,2, . . . ,

where ξ j ∈ C \Λ(A). Then the associated rational Krylov spaces
of order m are defined as

Qm(A,b) := qm−1(A)−1Km(A,b),

where Km(A,b) = span{A0b, A1b, . . . , Am−1b }.

Properties: Let M be the invariance index of Km(A,b). Then

• Qm 'Pm−1/qm−1 for m≤ M ,

• span{b}=Q1 ⊂Q2 ⊂ · · · ⊂ QM =KM(A,b),

• f (A)b ∈QM(A,b).

The main aims are always

1. choose qm−1 such that dist( f (A)b,Qm) is small
(not considered on this poster, see e.g., [4]),

2. extract near-best approximation fm ∈Qm.

Rayleigh-Ritz extraction

1. Compute orthonormal basis Qm of Qm,

2. Define Rayleigh quotient Am := Q∗mAQm,

3. Define fm := Qm f (Am)Q∗mb.

Typically, the rational Arnoldi method [6] is used to compute the
basis Qm iteratively. It yields rational Arnoldi decompositions

AQm+1Km = Qm+1Hm, where (1)

Qm+1 collects orthonormal basis vectors of Qm+1,

Km is an m + 1×m upper Hessenberg matrix,

Hm is an m + 1×m unreduced upper Hessenberg matrix.

The Rayleigh quotient Am can be obtained without explicit projec-
tion. The eigenvalues Λ(Am) are called rational Ritz values.

Interpolation property: There holds

fm = qm−1(A)−1pm−1(A)b,

where pm−1 Hermite-interpolates (qm−1 · f ) at Λ(Am).

The eigenvalues of Am are called rational Ritz values.

In what follows we assume that A be Hermitian, then so is Am.
If all poles ξ j are at ∞, i.e., for a polynomial Krylov method, the
following rule of thumb has been stated by Trefethen and Bau [7]:

The polynomial Ritz values tend to converge to regions of
“too little charge” for an equilibrium distribution.

As an extension of this rule to rational Krylov spaces we propose
the following:

The rational Ritz values behave like electrons placed on the
spectral interval of A, being attracted by protons (the poles ξ j)
and nowhere denser than the eigenvalues Λ(A).

Let us quantify this rule.

Rational Ritz values

. . . are the eigenvalues of the Rayleigh quotient Am = Q∗mAQm,
denoted by Θ = {θ1, . . . ,θm}.
Let A be Hermitian. Then the θk’s lie in the spectral interval of A
and interlace the eigenvalues Λ(A) = {λ1, . . . ,λN}:

(*)
In any interval (θκ,θκ+1) there is at least one
eigenvalue λk of A.

Moreover, the rational Ritz values are zeros of orthogonal rational
functions and may be characterized as (see, e.g., [2, 3])

(**)
The θk’s are the zeros of the minimizer of
‖ p(A)qm−1(A)−1b ‖ among all monic p ∈ P∞m .

Logarithmic potential theory can explain the asymptotic distribu-
tion of the rational Ritz values. Therefore we consider

• a sequence of Hermitian matrices {AN}, each of size N × N ,
whose eigenvalue counting measures converge to a Borel prob-
ability measure σ in the weak-* sense,

• a sequence of vectors {bN}, each of length N ,

• a ray sequence of integers {mN} such that

mN /N → t ∈ (0,1) as N →+∞,

• a sequence of polynomials {qN}, each of degree mN −1, whose
zero counting measures converge to a Borel measure ν , ‖ν‖= t,

• the sequence {ΘN} of rational Ritz values of order mN .

Tools from Potential Theory Associated with a (signed) Borel
measure µ1 is the logarithmic potential

Uµ1(z) :=
∫

1

log |x − z| dµ1(x).

The mutual logarithmic energy of the measures µ1 and µ2 is

I(µ1,µ2) :=
∫

Uµ1(z)dµ2(z), I(µ1) := I(µ1,µ1).

We also define the set of σ-constrained measures of mass t,

Mσt := {µ1 Borel measure : µ1 ≤ σ, ‖µ1‖= t }.
With this notation, (*) and (**) can be translated into a con-
strained weighted minimal energy problem from potential theory:

(*’) Among all µ ∈Mσt
(**’) minimize I(µ− ν) = I(µ)−2I(µ,ν) + I(ν) ≥ 0.

Under moderate assumptions on (AN ,bN , qN ) we can prove

Theorem (see [2]): The counting measures of (ΘN ) converge
to a positive Borel measure µ being the unique minimizer of

I(µ)−2I(µ,ν) among µ ∈Mσt .

Let F be the maximum of Uµ−ν in the complex plane and
Σ∗t := { z ∈ C : Uµ−ν(z) = F }. In a closed interval J ⊂R \Σ∗t
all eigenvalue sequences J 3 λk(N)→ λ satisfy

lim
N→∞dist(λk(N), ΘN )1/N = e2(Uµ−ν(λ)−F).
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Figure 1: Top: Energy problem, where the constraint σ stems
from a matrix A with equispaced ev’s in [−1,1], ν = tδ0.
Bottom: Rational Ritz values. The colors blue, green, yellow,
red indicate the distance to the ev’s in decreasing order. The
black curve is the predicted region of converged Ritz values.

Inexact solves & error estimators

In each iteration of the rational Arnoldi method a linear system of
the form (A−ξ j I)x j = q j is solved. If the residuals are collected
in a matrix Rm, then (1) becomes

AQm+1Km = Qm+1Hm + Rm. (2)

Setting Em := −RmKm
†Q∗m+1, we observe that we have computed

an exact Arnoldi decomposition

(A+ Em)Qm+1Km = Qm+1Hm

for the matrix A+ Em. The Rayleigh quotient eAm computed from
the data Km and Hm satisfies

eAm = Q∗m(A+ Em)Qm

= Q∗mAQm +Q∗m(−RmKm
†Q∗m+1)Qm

= bAm−Q∗mRmKm
†Im.

Here, bAm := Q∗mAQm is referred to as the corrected Rayleigh quo-
tient, because it is a compression of A instead of A+ Em. It can be
computed from eAm without explicit projection, only by additional
inner-products Q∗mRm.

We now decompose the error

‖ f (A)b − fm ‖ ≤ ‖ f (A)b − f (A+ Em)b ‖︸ ︷︷ ︸
sensitivity error

+‖ f (A+ Em)b − fm ‖︸ ︷︷ ︸
approximation error

,

and estimate

sensitivity error≈ ‖ f (eAm)Q∗mb − f (bAm)Q∗mb ‖.

It is advisable to terminate the rational Arnoldi method if the ap-
proximation error falls below the sensitivity error, because after
this happens we only improve approximations to a sequence of
“wrong” problems { f (A+ Em)b}.
Together with an estimator for the approximation error we hence
obtain a practical stopping criterion. One such estimator results
by adding ` interpolation nodes to the Rayleigh-Ritz approximant,
i.e., constructing an approximation

efm+` = qm−1(A)−1pm−1+`(A)b,

where pm−1+` interpolates (qm−1 · f ) at the rational Ritz values
θ1, . . . ,θm and some auxiliary nodes ϑ1, . . . ,ϑ` (cf. [1]). Then

approximation error≈ ‖ fm− efm+` ‖.
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Figure 2: Convergence of the inexact, corrected and exact
Rayleigh-Ritz approximations and error estimators for solving
the 2D heat equation on the unit square with 100 interior grid
points, f (z) = exp(−tz), t = 0.1, all ξ j = 1. We also show the
convergence curve of the shift-invert method (see, e.g., [5])
with inexact solves.
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