TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Rational Krylov methods for *f*(*A*)**b**

Michael Eiermann, Oliver G. Ernst, and Stefan Güttel

DWCAA09

September 8th, 2009

Problem

We consider the vector $f(A)\mathbf{b}$, where

- A is a large N-by-N matrix,
- b is a vector of length N,
- f is a suitable function.

Compute approximation $\mathbf{f}_m \approx f(A)\mathbf{b}$ from a rational Krylov space.

-

What is a rational Krylov space? Let $\{\xi_1, \xi_2, ...\} \subseteq \Xi \subset \overline{\mathbb{C}}$ be a given sequence of poles. Define the polynomials

$$q_m(z) = \prod_{\substack{j=1\\\xi_j\neq\infty}}^m (z-\xi_j) \in \mathcal{P}_m.$$

Assume that $q_m(A)^{-1}$ exists. Then

$$\mathcal{Q}_{m+1}(A, \mathbf{b}) = \mathcal{K}_{m+1}(A, q_m(A)^{-1}\mathbf{b})$$

is the rational Krylov space associated with (A, \mathbf{b}, q_m) .

Special cases

► $\Xi = \{\infty\} \Rightarrow$ polynomial Krylov $Q_{m+1} = \mathcal{K}_{m+1}$

[Nauts & Wyatt 83] [van der Vorst 87] [Druskin & Knizhnerman 88] [Gallopoulos & Saad 92] [Hochbruck & Lubich 97] [Eiermann & Ernst 06]

• $\Xi = \{\xi\} \Rightarrow$ shift-invert Krylov

[Moret & Novati 04] [van den Eshof & Hochbruck 06]

► $\Xi = \{0, \infty\} \Rightarrow$ extended Krylov

[Druskin & Knizhnerman 98] [Knizhnerman & Simoncini 08]

► Ξ arbitrary ⇒ rational Krylov

[Ruhe 84] [Beattie 04] [Beckermann & Reichel 08] [Knizhnerman et al 08]

Rational Arnoldi algorithm [Ruhe 84/94]

Input: A, b, $\{\xi_1, \xi_2, ..., \xi_m\}$ $v_1 := b/||b||$ **for** *i* = 1, 2, . . . *m* **do** $\mathbf{x} := (I - A/\xi_j)^{-1} A \mathbf{v}_j$ $H(1:j,j) := [\mathbf{v}_1, \dots, \mathbf{v}_j]^* \mathbf{x}$ $\mathbf{x} := \mathbf{x} - [\mathbf{v}_1, \dots, \mathbf{v}_i] H(1:j,j)$ $H(j + 1, j) := ||\mathbf{x}||$ $\mathbf{v}_{j+1} := \mathbf{x}/H(j + 1, j)$ end

Yields decomposition $AV_{m+1}(\underline{I_m} + \underline{H_m}X_m^{-1}) = V_{m+1}\underline{H_m}$.

Rational Krylov decompositions Theorem (G., 2009): Let a general decomposition

 $AV_{m+1}\underline{K_m} = V_{m+1}\underline{H_m}$

be given, where V_{m+1} has m+1 linearly independent columns, $K_m \in \mathbb{C}^{(m+1)\times m}$, $H_m \in \mathbb{C}^{(m+1)\times m}$, and H_m is of rank m. Rational Krylov decompositions Theorem (G., 2009): Let a general decomposition

 $AV_{m+1}\underline{K_m} = V_{m+1}\underline{H_m}$

be given, where V_{m+1} has m+1 linearly independent columns, $\underline{K_m} \in \mathbb{C}^{(m+1)\times m}$, $\underline{H_m} \in \mathbb{C}^{(m+1)\times m}$, and $\underline{H_m}$ is of rank m. Then 1. K_m is of rank m.

- 2. colspan(V_{m+1}) = $\mathcal{K}_{m+1}(A, \mathbf{q})$ for a vector \mathbf{q} .
- 3. For every vector $\mathbf{b} \in \text{colspan}(V_{m+1})$ there exists a unique polynomial q_m , $\text{deg}(q_m) \leq m$, such that $\mathbf{b} = q_m(A)\mathbf{q}$. Hence, if $q_m(A)$ is invertible, $\text{colspan}(V_{m+1}) = \mathcal{Q}_{m+1}(A, \mathbf{b})$.

Rational Krylov approximations

A special case is the (reduced) decomposition

 $AV_m K_m = V_{m+1} \underline{H_m}.$

As an approximation to $f(A)\mathbf{b}$ we consider

$$\mathbf{f}_m := V_m f(H_m K_m^{-1}) V_m^{\dagger} \mathbf{b}.$$

Theorem (Interpolation): There holds

$$\mathbf{f}_m = r_m(A)\mathbf{b} = \frac{p_{m-1}}{q_{m-1}}(A)\mathbf{b},$$

where r_m Hermite-interpolates f at $\Lambda(H_m K_m^{-1})$.

Example

The iteration

 $\mathbf{v}_1 = \mathbf{b},$ $\beta_j \mathbf{v}_{j+1} = (I - A/\xi_j)^{-1} (A - \alpha_j I) \mathbf{v}_j, \quad j = 1, \dots, m,$ yields a decomposition $AV_{m+1} \underline{K_m} = V_{m+1} \underline{H_m}$ with

 $V_{m+1}=[\mathbf{v}_1,\ldots,\mathbf{v}_{m+1}],$

Example

The iteration

 $v_1 = b$,

$$\beta_j \mathbf{v}_{j+1} = (I - A/\xi_j)^{-1} (A - \alpha_j I) \mathbf{v}_j, \quad j = 1, ..., m,$$

can be used for explicit rational interpolation:

By Theorem (Interpolation) we know that

$$\mathbf{f}_m = V_m f(H_m K_m^{-1}) \mathbf{e}_1 = r_m(A) \mathbf{b} = \frac{p_{m-1}}{q_{m-1}}(A) \mathbf{b},$$

where r_m Hermite-interpolates f at $\Lambda(H_m K_m^{-1}) = \{\alpha_1, \dots, \alpha_m\}$.

Example

The iteration

V1 b,

ration

$$\mathbf{v}_1 = \mathbf{b},$$

 $\beta_j \mathbf{v}_{j+1} = (I - A/\xi_j)^{-1}(A - \alpha_j I)\mathbf{v}_j, \quad j = 1, \dots, m,$

can be used for explicit rational interpolation:

By Theorem (Interpolation) we know that

$$\mathbf{f}_m = V_m f(H_m K_m^{-1}) \mathbf{e}_1 = r_m(A) \mathbf{b} = \frac{p_{m-1}}{q_{m-1}}(A) \mathbf{b},$$

where r_m Hermite-interpolates f at $\Lambda(H_m K_m^{-1}) = \{\alpha_1, \ldots, \alpha_m\}$.

Remarks

- > 2 vectors storage need, 0 inner-products
- ► If all $\xi_j = \infty \Rightarrow$ polynomial interpolation at $\{\alpha_1, \ldots, \alpha_m\}$
- Polynomial interpolation methods have been considered before [Huisinga et al 99] [Bergamaschi, Caliari & Vianello 04]
 - For {α₁,..., α_m} use Leja points, scaled to a set of unit capacity for stability [Reichel 90].
 - No such scaling is necessary with the PAIN method: simply choose β_j such that ||v_{j+1}|| = 1, j = 1, ..., m.
- For rational interpolation use Leja-Bagby points.

Compute:
$$f(A)\mathbf{b} = \sqrt{A}\mathbf{b}, A = \text{diag}(1, ..., 1000), \mathbf{b} = [1, ..., 1]^T$$
.

Compute:
$$f(A)\mathbf{b} = \sqrt{A}\mathbf{b}, A = \text{diag}(1, ..., 1000), \mathbf{b} = [1, ..., 1]^T$$
.

If good (or best) rational approximation r_m^* to f is known explicitly, one can directly evaluate $r_m^*(A)\mathbf{b} \approx f(A)\mathbf{b}$.

[Trefethen et al 06] [Frommer et al 06] [Schmelzer et al 07] [Hale et al 08]

However, using the poles ξ_j of r_m^* and suitable interpolation nodes α_j as inputs for PAIN, we can achieve essentially the same accuracy at the same computational cost.

Moreover, the PAIN method is implicitly based on exact interpolation of f and hence robust to perturbations in r_m^* :

$$\limsup_{m \to \infty} \|f(A)\mathbf{b} - \mathbf{f}_m\|^{1/m} \le R < 1$$

if α_j , ξ_j are equilibrium-distributed on Σ , Ξ .

Rayleigh-Ritz extraction

There is a way to automatically choose near-optimal interpolation points $\{\alpha_1, \ldots, \alpha_m\}$ at iteration m:

- 1. Compute orthonormal basis V_m of $Q_m = q_{m-1}^{-1} \mathcal{K}_m$.
- 2. "Determine" Rayleigh quotient $A_m = V_m^* A V_m$.

3. Compute
$$\mathbf{f}_m = V_m f(A_m) V_m^* \mathbf{b}$$

Theorem:
$$\{\alpha_1, \ldots, \alpha_m\} = \Lambda(A_m).$$

Theorem: $||f(A)\mathbf{b} - \mathbf{f}_m|| \le C \min_{p \in \mathcal{P}_{m-1}} ||f - p/q_{m-1}||_{F(A)}$.

Price: *m* vectors storage need, $m^2/2$ inner-products.

Compute: $f(A)\mathbf{b} = \log(A)\mathbf{b}$, A normal with 1000 eigenvalues

Compute: $f(A)\mathbf{b} = \log(A)\mathbf{b}$, A normal with 1000 eigenvalues

Parameter-dependent problems

In practice, one often is not interested in $f(A)\mathbf{b}$ but in $f^{\tau}(A)\mathbf{b}$, for $\tau \in T$ from some parameter set T.

Given a single rational Krylov decomposition (as before)

$$AV_m K_m = V_{m+1} \underline{H_m}, \quad \mathcal{R}(V_m) = \mathcal{Q}_m = q_{m-1}^{-1} \mathcal{K}_m,$$

we compute several approximations

$$\mathbf{f}_m^{\tau} = V_m f^{\tau} (H_m K_m^{-1}) V_m^{\dagger} \mathbf{b} = r_m^{\tau} (A) \mathbf{b} = \frac{p_{m-1}^{\tau}}{q_{m-1}} (A) \mathbf{b},$$

where r_m^{τ} Hermite-interpolates f^{τ} at $\Lambda(H_m K_m^{-1})$.

Example: Transfer function $f^{\tau}(z) = (z - \tau)^{-1}$, spectrum $\Sigma = [0, +\infty)$, parameters T = i[1, c]. Let $\omega_m(z) = (z - \alpha_1) \cdots (z - \alpha_m)$, then

$$r_{m}^{\tau}(z) = \frac{1 - \frac{q_{m-1}(\tau)}{q_{m-1}(z)} \frac{\omega_{m}(z)}{\omega_{m}(\tau)}}{z - \tau} = \frac{p_{m-1}^{\tau}}{q_{m-1}}$$

Hermite-interpolates f^{τ} at $\{\alpha_1, \ldots, \alpha_m\}$. Hence, $\mathbf{f}_m^{\tau} = r_m^{\tau}(A)\mathbf{b}$.

Example: Transfer function $f^{\tau}(z) = (z - \tau)^{-1}$, spectrum $\Sigma = [0, +\infty)$, parameters T = i[1, c]. Let $\omega_m(z) = (z - \alpha_1) \cdots (z - \alpha_m)$, then

$$r_{m}^{\tau}(z) = \frac{1 - \frac{q_{m-1}(\tau)}{q_{m-1}(z)} \frac{\omega_{m}(z)}{\omega_{m}(\tau)}}{z - \tau} = \frac{p_{m-1}^{\tau}}{q_{m-1}}$$

Hermite-interpolates f^{τ} at $\{\alpha_1, \ldots, \alpha_m\}$. Hence, $\mathbf{f}_m^{\tau} = r_m^{\tau}(A)\mathbf{b}$. The relative error is

$$[f^{\tau}(z) - r_m^{\tau}(z)]/f^{\tau}(z) = \frac{q_{m-1}(\tau)}{q_{m-1}(z)} \frac{\omega_m(z)}{\omega_m(\tau)}, \quad z \in \Sigma, \tau \in T,$$

and if $\Xi = T$, its minimization is related to the ADI problem. [Knizhnerman, Druskin & Zaslavsky 08]

In practical computations it is more convenient to have real poles, i.e., $\Xi = [-\infty, 0)$. How to select $\{\xi_1, \xi_2, \ldots\} \subset \Xi$?

In practical computations it is more convenient to have real poles, i.e., $\Xi = [-\infty, 0)$. How to select $\{\xi_1, \xi_2, \ldots\} \subset \Xi$?

Use standard tool to solve nonstandard approximation problem:

Assume to have a single repeated pole ξ . Then

$$r_m^{\tau}(z) = \frac{p_{m-1}^{\tau}(z)}{q_{m-1}(z)} = \frac{p_{m-1}^{\tau}(z)}{(z-\xi)^{m-1}} = \hat{p}_{m-1}^{\tau}(\hat{z}), \quad \hat{z} = (z-\xi)^{-1},$$

i.e., we have a polynomial problem: among $p \in \mathcal{P}_{m-1}$

minimize
$$\|f^{\tau}(\widehat{z}^{-1}+\xi)-p(\widehat{z})\|_{\widehat{\Sigma}}$$
, $\widehat{\Sigma}=\{\widehat{z}:z\in\Sigma\}$.

Apply Walsh's theory on polynomial approximation to obtain the asymptotic convergence rate $R_1(\xi, \tau)$. For the transfer function:

$$R_1(\xi,\tau) = \left(1 + \frac{\sqrt{8}d^{3/4} + 4d^{1/2} + \sqrt{8}d^{1/4}}{1+d}\right)^{-1/2}, \quad d = -\tau^2/\xi^2.$$

Apply Walsh's theory on polynomial approximation to obtain the asymptotic convergence rate $R_1(\xi, \tau)$. For the transfer function:

$$R_1(\xi,\tau) = \left(1 + \frac{\sqrt{8}d^{3/4} + 4d^{1/2} + \sqrt{8}d^{1/4}}{1+d}\right)^{-1/2}, \quad d = -\tau^2/\xi^2.$$

Apply Walsh's theory on polynomial approximation to obtain the asymptotic convergence rate $R_1(\xi, \tau)$. For the transfer function:

$$R_1(\xi,\tau) = \left(1 + \frac{\sqrt{8}d^{3/4} + 4d^{1/2} + \sqrt{8}d^{1/4}}{1+d}\right)^{-1/2}, \quad d = -\tau^2/\xi^2.$$

Consider p poles $\{\xi_1, \ldots, \xi_p\}$ repeated cyclically.

The product form of the error

$$f^{\tau}(z) - r_m^{\tau}(z) = \frac{\frac{q_{m-1}(\tau)}{q_{m-1}(z)} \frac{\omega_m(z)}{\omega_m(\tau)}}{z - \tau}$$

allows to conclude that

$$R(\{\xi_1,\ldots,\xi_p\},\tau) = \prod_{j=1}^p R_1(\xi_j,\tau)^{1/p}$$

is the asymptotic convergence rate for this pole sequence. $\Rightarrow \text{ Find } \{\xi_1^*, \dots, \xi_m^*\} \text{ minimizing the worst-case rate} \\ \max_{\tau \in T} R(\{\xi_1, \dots, \xi_m\}, \tau).$ Find optim. poles by nonneg. minimization $\|\mathbf{e} - M\mathbf{x}\|_{\infty}$. Here is the optimal overall-convergence rate on T = i[1, c] depending on c.

Find optim. poles by nonneg. minimization $\|\mathbf{e} - M\mathbf{x}\|_{\infty}$. Here is the optimal overall-convergence rate on T = i[1, c] depending on c.

Find optim. poles by nonneg. minimization $\|\mathbf{e} - M\mathbf{x}\|_{\infty}$. Here is the optimal overall-convergence rate on T = i[1, c] depending on c.

Ex: If solve of complex system is 1.5 as expensive as real solve, use imaginary poles only if c < 10!

Compute: $f^{\tau}(A)\mathbf{b} = (A - \tau I)^{-1}\mathbf{b}$, $A = \text{diag}(0, \dots, 1e4), \ \tau \in T = i[10, 1000], \ \mathbf{b} = \text{randn.}$

Compute: $f^{\tau}(A)\mathbf{b} = (A - \tau I)^{-1}\mathbf{b}$, $A = \text{diag}(0, \dots, 1e4), \ \tau \in T = i[10, 1000], \ \mathbf{b} = \text{randn.}$

Summary

- Have characterized the general form of a rational Krylov decomposition.
- > All existing rational Krylov methods fit into this framework.
- Propose "PAIN" as an efficient and robust rational Krylov method for problems with known spectral properties.
- Have presented simple method for finding constrained pole sequences yielding asymptotically optimal convergence.
- This method may be applied for general f by using Cauchy integral representation.
- Can explain superlinear convergence observed with Rayleigh-Ritz extraction for Hermitian problems using weighted potential theory [Beckermann, G. & Vandebril 09].

See my poster for "rational Ritz values" and "inexact solves":

Rational Krylov methods and approximation of f(A)b

B. Beckermann^{\dagger}, M. Eiermann^{\dagger}, O. G. Ernst^{\dagger}, <u>Stefan Güttel^{\dagger}</u>, and R. Vandebril^{\ddagger}

[†]**TU Bergakademie Freiberg, Germany** Institut für Numerische Mathematik und Optimierung [‡]Université Lille 1, France Equipe d'Analyse Numérique et d'Optimisation

Matrix Functions

Given a square matrix A of size $N\times N,$ a vector \boldsymbol{b} of length N and a scalar function $f\left(z\right),$

f(A)b := p(A)b,

where $p \in \partial_{N-1}$ is a polynomial of degree $\leq N - 1$ that Hermiteinterpolates f at the eigenvalues of A. In typical applications the matrix A is large and sparse.

Some Applications

- $f(z) = (z i\omega)^{-1}$: model reduction in the frequency domain,
- $f(z) = \exp(-tz)$: time-integration of linear ODE's, exponential integrators, e.g., in geophysics or chemistry,
- $f(z) = \sqrt{tz}$: simulation of Brownian motion of molecules or sampling from Gaussian Markov random fields,
- f(z) = sign(z): simulations in quantum chromodynamics.

Rational Krylov Spaces

Definition: Given a sequence of polynomials

$$q_{m-1}(z) = \prod_{\substack{j=1\\ \xi_j \neq \infty}}^{m-1} (z - \xi_j), \quad m = 1, 2, \dots,$$

where $\xi_j \in \overline{\mathbb{C}} \setminus \Lambda(A)$. Then the associated rational Krylov spaces of order *m* are defined as

$$\mathcal{Q}_m(A, b) := q_{m-1}(A)^{-1} \mathcal{K}_m(A, b)$$

where $\mathscr{K}_m(A, b) = \operatorname{span}\{A^0b, A^1b, \dots, A^{m-1}b\}$.

Rational Ritz values

... are the eigenvalues of the Rayleigh quotient $A_m = Q_m^* A Q_m$, denoted by $\Theta = \{\theta_1, \ldots, \theta_m\}$.

Let A be Hermitian. Then the θ_k 's lie in the spectral interval of A and interlace the eigenvalues $\Lambda(A) = \{\lambda_1, \dots, \lambda_N\}$:

(*) In any interval $(\theta_{\kappa}, \theta_{\kappa+1})$ there is at least one eigenvalue λ_k of A.

Moreover, the rational Ritz values are zeros of orthogonal rational functions and may be characterized as (see, e.g., [2, 3])

Logarithmic potential theory can explain the *asymptotic* distribution of the rational Ritz values. Therefore we consider

- a sequence of Hermitian matrices {A_N}, each of size N × N, whose eigenvalue counting measures converge to a Borel probability measure σ in the weak-* sense,
- a sequence of vectors {b_N}, each of length N,
- a ray sequence of integers $\{m_N\}$ such that

 $m_N/N \to t \in (0,1) \quad \text{as } N \to +\infty,$

- a sequence of polynomials {q_N}, each of degree m_N − 1, whose zero counting measures converge to a Borel measure v, ||v|| = t,
- the sequence {Θ_N} of rational Ritz values of order m_N.

Tools from Potential Theory Associated with a (signed) Borel measure μ_1 is the logarithmic potential

$$U^{\mu_1}(z) := \int \frac{1}{1-|y|-1|} d\mu_1(x).$$

Inexact solves & error estimators

In each iteration of the rational Arnoldi method a linear system of the form $(A - \xi_j I) x_j = q_j$ is solved. If the residuals are collected in a matrix R_m , then (1) becomes

$$AQ_{m+1}\underline{K}_{m} = Q_{m+1}\underline{H}_{m} + R_{m}.$$
 (2)

Setting $E_m := -R_m \underline{K_m}^{\dagger} Q_{m+1}^*$, we observe that we have computed an exact Arnoldi decomposition

$$(A + E_m)Q_{m+1}\underline{K_m} = Q_{m+1}\underline{H_m}$$

for the matrix $A+E_m.$ The Rayleigh quotient \widetilde{A}_m computed from the data K_m and H_m satisfies

$$\begin{split} \widetilde{A}_m &= Q_m^*(A+E_m)Q_m \\ &= Q_m^*AQ_m + Q_m^*(-R_m\underline{K_m}^{\dagger}Q_{m+1}^*)Q_m \\ &= \widehat{A}_m - Q_m^*R_m\underline{K_m}^{\dagger}\underline{I_m}. \end{split}$$

Here, $\hat{A}_m := Q_m^* A Q_m$ is referred to as the corrected Rayleigh quotient, because it is a compression of A instead of $A + E_m$. It can be computed from \hat{A}_m without explicit projection, only by additional inner-products $Q_m^* R_m$.

We now decompose the error

$$|| f(A)b - f_m || \le || \underbrace{f(A)b - f(A + E_m)b}_{\text{sensitivity error}} || \underbrace{+ || f(A + E_m)b - f_m ||}_{\text{approximation error}}$$

and estimate

sensitivity error
$$\approx \|f(\widetilde{A}_m)Q_m^*b - f(\widehat{A}_m)Q_m^*b\|$$
.

It is advisable to terminate the rational Arnoldi method if the ap-