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Problem
We consider the vector f(A)b, where

» Ais alarge N-by-N matrix,
» b is a vector of length N,

» f is a suitable function.

Compute approximation f,, ~ f(A)b from a rational Krylov space.



What is a rational Krylov space?
Let {E1,&2,...} € = c C be a given sequence of poles.
Define the polynomials

gm(2)= | | z-§) €Pm.
G

Assume that gm(A)~1 exists. Then

Om+1(A, b) = Km+1(A, gm(A)~1b)

is the rational Krylov space associated with (A, b, gm).




Special cases

» Z = {00} = polynomial Krylov Om+1 = Km+1
[Nauts & Wyatt 83] [van der Vorst 87] [Druskin & Knizhnerman 88]
[Gallopoulos & Saad 92] [Hochbruck & Lubich 971 [Eiermann & Ernst 06]

» == {§} = shift-invert Krylov
[Moret & Novati 04] [van den Eshof & Hochbruck 06]

> =

{0, ®©} = extended Krylov

[Druskin & Knizhnerman 98] [Knizhnerman & Simoncini 08]

» Z arbitrary = rational Krylov

[Ruhe 84] [Beattie 04] [Beckermann & Reichel 08] [Knizhnerman et al 08]



Rational Arnoldi algorithm

Input: A, b, {§1,82,...,Em}
vi :=b/||b||
forj=1,2,..., mdo

x:=(/ —A/Ej)_lAVj
H(1:j,j):=[v1,...,vj]*x
x:=xX-[v1,...,ViJH(1:j,j)

HG+1,)) = [Ix]|
Vj+1:=Xx/H(+1,j)
end

Yields decomposition AVm+1(/Im + H_mX,}l) =Vm+1Hm.



Rational Krylov decompositions
Theorem (6., 2009): Let a general decomposition

AVm+1K_m = Vm+1H_m

be given, where Vi1 has m+ 1 linearly independent columns,

Km € Cm+Dxm Ho, e C(M+1)xm and Hp, is of rank m.



Rational Krylov decompositions
Theorem (6., 2009): Let a general decomposition

AVm+1K_m = Vm+1H_m

be given, where Vi1 has m+ 1 linearly independent columns,
Km € Cm+Dxm H, e C(M+1)xm and Hpy, is of rank m. Then
1. Km is of rank m.
2. colspan(Vm+1) = Km+1(A, q) for a vector q.
3. For every vector b € colspan(Vm41) there exists a unique
polynomial gm, deg(gm) < m, such that b = gm(A)q.
Hence, if gm(A) is invertible, colspan(Vm+1) = Om+1(A, b).



Rational Krylov approximations
A special case is the (reduced) decomposition

AVmKh==Vm+ﬂﬂQ
As an approximation to f(A)b we consider
fn 1= Vinf(HmK -1V b.

Theorem (Interpolation): There holds

Pm-1

fm =rm(A)b = (A)b,

m-1

where rm Hermite-interpolates f at A(HmK-1).



Example
The iteration
vi = b,
Bivit1 = (-A/E)YA-ai)vj, j=1,....m,
yields a decomposition AVm1+1Km = Vm+1Hm with

Vm+1 = [vlr ey Vm+1]/

1 o1
By/g; 1 g1 a2
Km = B/, . and H_m = B2

ﬁm/Em i




Example

The iteration
vi = b,
Bivit1 = (-A/E)YA-ai)vj, j=1,....m,

can be used for explicit rational interpolation:

By Theorem (Interpolation) we know that

Pm-1

fm= me(HmK,;,l)el =rm(A)b = (A)b,

m-1

where rm Hermite-interpolates f at A(HmK-1) = {a1,..., am}.



Example

The iteration

V1 =

Bivi+1 =
can be used for explicit rational interpolation:
By Theorem (Interpolation) we know that

fn = Vinf (HmK-1)e1 = rm(A)b = Pm-1

(A)b,

m-1

where rm Hermite-interpolates f at A(HmK-1) = {a1,..., am}.



Remarks

» 2 vectors storage need, O inner-products

» If all §j = oo = polynomial interpolation at {a1,..., am}

» Polynomial interpolation methods have been considered
before

> For {a1,...,am} use Leja points, scaled to a set of unit
capacity for stability

» No such scaling is necessary with the PAIN method:
simply choose B;j such that [[vj+1ll=1,j=1,...,m.

» For rational interpolation use Leja-Bagby points.



Compute: f(A)b = vAb, A =diag(l,...,1000), b=1[1,...,1]".
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Compute: f(A)b = vAb, A =diag(l,...,1000), b=1[1,...,1]".

(,Yj

1 Z 1000
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If good (or best) rational approximation r to f is known
explicitly, one can directly evaluate r (A)b =~ f(A)b.

However, using the poles &; of r and suitable interpolation
nodes a; as inputs for PAIN, we can achieve essentially the same

accuracy at the same computational cost.

Moreover, the PAIN method is implicitly based on exact

interpolation of f and hence robust to perturbations in r:
lim SUPm_co I F(A)D — i IV <R <1

if a;j, &; are equilibrium-distributed on Z, =.



Rayleigh-Ritz extraction
There is a way to automatically choose near-optimal interpolation

points {a1,...,am} at iteration m:

1. Compute orthonormal basis Vm of Om = q;,l_liCm.

2. "Determine” Rayleigh quotient A = V> AV,
Theorem: {a1,...,am} =AN(Am).
Theorem: [[f(A)b — fm|| < Cminpep,,_; If — p/am-1lIF(A).

Price: m vectors storage need, m?/2 inner-products.



Compute: f(A)b =log(A)b, A normal with 1000 eigenvalues
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Compute: f(A)b =log(A)b, A normal with 1000 eigenvalues
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Parameter-dependent problems
In practice, one often is not interested in f(A)b but in f(A)b,

for T €T from some parameter set T.

Given a single rational Krylov decomposition (as before)
AVmKim =Vm+1Hm, R(Vm) = Qm =g, Km,
we compute several approximations

P,
1 = VinfT (Hmk- VI b=rT (A)b = —"=1(A)b,

m-1

where rT Hermite-interpolates f* at A(HmK~1).



Example: Transfer function
fT1(2) = (z—- 1)}, spectrum = = [0, +0), parameters T =i[1, c].

Let wm(2)=(z—0a1)---(z—am), then

_ qm-1(7) wm(2) T
r(z2) = Im-1(2) Wwm(7) _ Fm-1
m z-T dm-1

Hermite-interpolates f* at {a1,..., am}. Hence, f,Tn = rrTn(A)b.



Example: Transfer function
fT1(2) = (z—- 1)}, spectrum = = [0, +0), parameters T =i[1, c].

Let wm(2)=(z—0a1)---(z—am), then

_ Qm—lg'? wmgzg T
am-1(2) wm(T m—1
r(2)= “ = =
z-T dm-1
Hermite-interpolates f* at {a1,..., am}. Hence, f,Tn = rrTn(A)b.

The relative error is

dm-1(7) wm(2)

, Z€X,TET,
dm-1(2) wm(T)

[F'(2) =, (21/f(2) =

and if =Z=T, its minimization is related to the ADI problem.
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In practical computations it is more convenient to have real poles,

i.e.,, 2= [—00,0). How to select {&§1,&>,...} C =?
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In practical computations it is more convenient to have real poles,

i.e.,, 2= [—00,0). How to select {&§1,&>,...} C =?
Use standard tool to solve nonstandard approximation problem:

Assume to have a single repeated pole &. Then

L@ Pl @ _
= = (), Z2=(z-8)7,

L atayee Sl = s

i.e., we have a polynomial problem: among p € Pm-1

minimize [T +8)-p@)|s, E={zZ:zex}.



Apply Walsh's theory on polynomial approximation to obtain the

asymptotic convergence rate R1(§, T). For the transfer function:

= —7%/8%.

VBdY4 + 4dV/2 4 JBdV4 ) vz
, d

Rl(E,T)=(1+ 114

R,(&7)




Apply Walsh's theory on polynomial approximation to obtain the

asymptotic convergence rate R1(§, T). For the transfer function:

VBA¥4 4 4dV2 4 /B4 T -
Ri1(E, T)=|1+ , d=-T1°/&°.
1(&, 1) ( T+d ) &
1
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Apply Walsh's theory on polynomial approximation to obtain the

asymptotic convergence rate R1(§, T). For the transfer function:

VBA¥/4 4 4dV2 4 /B4 T -

Ri(E D=1+ , d=-—-T/E"“.
1(&, 1) ( T+d ) &

1

o«

0.2} £=_100

O 1

10° 10" 10°

imag(T)



Consider p poles {&1, ..., Ep} repeated cyclically.

The product form of the error

dm-1(T) wm(2)

f(2)=rT (2) = dm-1(2) wm(T)
(2) -1 (2) = =2enD

allows to conclude that
p

R({&1,.... &}, T) =] [Ru(E;, DYP

j=1

is the asymptotic convergence rate for this pole sequence.

= Find {Ef, e E;} minimizing the worst-case rate
maxrer R({&1, ..., Em}, T).



Find optim. poles by nonneg. minimization ||@ — MX||«. Here is the

optimal overall-convergence rate on T = i[1, c] depending on c.
2
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Find optim. poles by nonneg. minimization ||@ — MX||«. Here is the

optimal overall-convergence rate on T = i[1, c] depending on c.
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Find optim. poles by nonneg. minimization ||@ — MX||«. Here is the

optimal overall-convergence rate on T = i[1, c] depending on c.

2— :
—real poles
—imag poles
15F Tt ---log(imag)/log(real) |4

_____

convrate R(c)

05— — ]
0
10° 10" 10° 10° 10 10°

parameter spread ¢

Ex: If solve of complex system is 1.5 as expensive as real solve,

use imaginary poles only if ¢ < 10!



Compute: fT(A)b = (A - 1/)"1b,
A =diag(0,...,1ed4), Te T =i[10,1000], b =randn.
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Compute: fT(A)b = (A - 1/)"1b,
A =diag(0,...,1ed4), Te T =i[10,1000], b =randn.
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Compute: fT(A)b = (A - 1/)"1b,
A =diag(0,...,1ed4), Te T =i[10,1000], b =randn.
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Compute: fT(A)b = (A - 1/)"1b,
A =diag(0,...,1ed4), Te T =i[10,1000], b =randn.
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Summary

>

Have characterized the general form of a rational Krylov
decomposition.

All existing rational Krylov methods fit into this framework.
Propose "PAIN" as an efficient and robust rational Krylov
method for problems with known spectral properties.

Have presented simple method for finding constrained pole
sequences yielding asymptotically optimal convergence.
This method may be applied for general f by using Cauchy
integral representation.

Can explain superlinear convergence observed with
Rayleigh-Ritz extraction for Hermitian problems using

weighted potential theory




See my poster for “rational Ritz values" and “inexact solves":
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Matrix Functions

Given a square matrix A of size N x N, a vector b of length N and
a scalar function f (z),
F(A)b:=p(A)b,

where p € @y_, is a polynomial of degree <N — 1 that Hermite-
i f at the of A. In typical applications the
‘matrix A is large and sparse.

Some Applications

f(z)
(=)

ime-integration of linear ODE’s, exponential
integrators, e.g., in geophysics or chemistry,

model reduction in the frequency domain,

«f(z) = Viz: simulation of Brownian motion of molecules or

sampling from Gaussian Markov random fields,

*f(z) =sign(z,

imulations in quantum chromodynamics.

Rational Krylov Spaces

Definition: ~Given a sequence of polynomials
m1

am1(5) =[] G-&), m=12,
-1
&t

where £; € C\ A(A). Then the associated rational Krylov spaces
of order m are defined as

20n(4,b) = g1 () Hn (4, ),

where (A, b) = span{A®b,Ab,..., A" b},

o "TU Bergakademie Freiberg, Germany
Institut fiir Numerische Mathematik und Optimierung

Rational Ritz values
.... are the eigenvalues of the Rayleigh quotient Ay, = QpAQm
denoted by © = {6,..., 6}

Let A be Hermitian. Then the ;s lie in the spectral interval of A
and interlace the eigenvalues A(A4) = {A1,..., Ay}:

In any interval (6. 61 1) there is at least one

O cigenvalue Ay of A

Moreover, the rational Ritz values are zeros of orthogonal rational
functions and may be characterized as (see, e.g., [2, 3])

The 6)’s are the zeros of the minimizer of

C) | p(A)m—1(4)~1b | among all monic p € .

Logarithmic potential theory can explain the asymptotic distribu-
tion of the rational Ritz values. Therefore we consider
«a sequence of Hermitian matrices {Ay}, each of size N x N,
whose eigenvalue counting measures converge to a Borel prob-
ability measure o in the weak-* sense,
*a sequence of vectors {by}, each of length N,
« a ray sequence of integers {my} such that
my/N—te(0,1) asN - +oo,
« a sequence of polynomials {qy}, each of degree my — 1, whose
zero counting measures converge to a Borel measure v, [v]]

« the sequence {©y} of rational Ritz values of order my.

Tools from Potential Theory Associated with a (signed) Borel
measure 1 is the logarithmic potential
1

uti(z) dpp(x).

Rational Krylov methods and approximation of f (A)b

B. Beckermann?, M. Eiermann’, O. G. Ernst’, Stefan Giittel, and R. Vandebril*

*Université Lille 1, France
Equipe d’Analyse Numérique et d'Optimisation

Inexact solves & error estimators
In each iteration of the rational Arnoldi method a linear system of
the form (A~ &;T); = g; is solved. If the residuals are collected
in a matrix Ry, then (1) becomes
AQm+1Km = Qm+1Hm + Rm- @
Setting Ep, := ~RK ' Qp 1, W observe that we have computed
an exact Arnoldi decomposition
(A+ Em)Qm+1Km = Qm-+1Hm
for the matrix A+ Ey,. The Rayleigh quotient A, computed from
the data Ky and Hy satisfies
A = QA+ En)Qn
= QAQum +Qp(~Rim' Qp41)Qm
= A= QR

Here, Ay, := Q4,AQy is referred to as the corrected Rayleigh quo-
tient, because it is a compression of A instead of A+ Ey. It can be
computed from Ay, without explicit projection, only by additional
inner-products Q}Rpn.

We now decompose the error

IF(A)6 = finll <[ £(A)b — f(A+ Em) b+ | f (At Ep)b — finl],

sensitivity error ‘approximation error

and estimate
sensitivity error || f (Am) Qb = f (Arn)Q3;b 1l

It is advisable to terminate the rational Amnoldi method if the ap-






