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Figure: The unit circle (blue dashed), quintic polynomial
approximation given by Lyche and Mgrken in 1995 (brown) and
the new quintic approximant (red).
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Parametric approximation

o Let
f(x,y) =0, (x,y)€DCR?

be a segment of a regular smooth planar curve f.

)

is a parametric approximation of the curve segment f and

f(Xr(t)7yr(t)) = 5(1:)7 te [37 b]

e Suppose

4/28



e Consider the regular parameterization of r with respect to
the normal of f, i.e., every point (x, y) on a curve f
defines a unique parameter t := t(x,y) on a curve r:

e This provides an upper bound on Hausdorff and
parametric distance.
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Theorem

If the curve r can be regularly reparameterized by the normal

to f, and ¢ is small enough, the distance between curves is
bounded by

x|t )]
(NP2 y) + £2(x.)

+ O(e (t(x,)))-
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Conic sections

e Only ellipse and hyperbola are interesting to consider (no
polynomial parameterization).

e A particular conic section is given as
fx,y) =x*+ty*—1=0.

e The main problem: find two nonconstant polynomials x,
and y, of degree at most n, such that

X (t) £y (t) =1+ (1),

where ¢ is a polynomial of degree at most 2 n.
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e Assume that at least one point is interpolated, i.e.,
£(0) = 0. In order to get ¢ as small as possible, it is
natural to choose £(t) := t".

e If also a tangent direction is prescribed at the
interpolation point, we have

(Xn(0)7yn(0)) - (1v0)7 (X;,(O),y,/,(O)) - (07 1)
e Thus

() =14 at’,
(=1

yn(t) =t + Z bﬁ tga
(=2

and
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X2 (t) £yi(t) =1+ (a; £ b]) t*".
o A reparameterization t — %/|a2 4 b2| t gives

Xn(t) =1+ Zaé tga _yn(t) = Zﬁﬂ t£7 61 > 07
(=1 =1

where
x2(1) £ y2(t) = 1+ sign(a2 + B2) 7.

Many acceptable solutions exist.
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Table: The number of appropriate solutions in all three cases for

n=1,2,...,10.

. on [[1[2[3[4[5[6]7[8 |9 |10]
elliptic 171[3[6]15[27]63]120 ] 246 | 495
hyp. 2<b2||1]0|1 2|5 |8 |10] 32 | 68 | 120
hyp. 2>b2]|0[1/0[2] 0] 9]0 ]3] 0 |125
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Solutions

e Solving the equation
X (t) £ yp(t) =1+t
is equivalent to solving
X:(t) £yp(t) =1

in the factorial ring R[t]/t*".

e There are additional restrictions, classic algebraic tools
can not be applied.
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e Rewrite
(s0(8) + i 3o(8) Ga®) — i) = [ (e € 517).

where the right-hand side is the factorization of 1 + t2"
over C.

e Thus

Xn(t) + 1 ya(t —7H< ef 7475 ) yeC, |y=1,

where o, = £1.
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Best solution

The best solution should have the minimum error term «.
It turns out that this happens if

1

T
sm2n

b=

Surprisingly, any solution for the elliptic case, for which x,
is even and y, is odd, can be transformed to the
hyperbolic solution by the map

Xn(t) — x,(i t),

yn(t) = =i yn(l t)'

In particular, this is true for the best solution too, thus it
is enough to consider the elliptic case only.
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Theorem
Coefficients of the best solution for the elliptic case are

(e k’m w
ZPj,k n—k cos<—+—j); k is even,
Ok = 2n n
L 0; k is odd,
( 0; k is even,
k(n—k)
= k>
61( P(j7k7n_k)5in <_7T+z_/), k is Odd,
[ o 2n n

where P(j, k, r) denotes the number of integer partitions of
J € N with < k parts, all between 1 and r, where k,r € N,

and P(0,k,r) :=1.
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Examples

Table: Polynomial approximation of the unit circle and maximal
normal (radial) error.

n X, and y, error

3 e 2

4 ya(t)iﬁi}i%fyf,—’g;;3) 0.414213

> R RN 0.089987

6 | o ey | 0013886

i5 5 107280 10-©

It can be shown that the error is O(n~2").
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Figure: The unit circle.
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Figure: The unit circle and its polynomial approximant for n = 2.

17 / 28



151

Figure: The unit circle and its polynomial approximant for n = 3.
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Figure: The unit circle and its polynomial approximant for n = 4.
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Figure: The unit circle and its polynomial approximant for n = 5.
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Figure: The unit circle and its polynomial approximant for n = 6.
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Figure: The unit circle and its polynomial approximant for n = 7.
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Approximants and curvatures
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Cycling

Figure: Unit circle together with the cycles of the approximant for
n=20and t €[-1,1].
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Hollig-Koch conjecture

Conjecture

A polynomial planar parametric curve of degree n can
interpolate 2n given points with an approximation order 2n.

Theorem
Hollig-Koch conjecture holds true for conic sections.

Idea of a proof:
e asymptotic approach,
e a particular nonlinear system has to be studied,

e an existence of a solution guarantees the optimal
approximation order,

e solution is obtained by canonical form and optimal
solutions for ellipse and hyperbola.
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Ellipse

Figure: Approximation of the ellipse %xz + xy + %y2 + y = 0 with
the best approximant of degree n =5,7.

26 / 28



Hyperbola

Figure: Approximation of the hyperbola %xz + xy + %yz +y=0
with the best approximant of degree n = 3, 4.
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Sphere approximation

Particular polynomials of degree 5 in u and v yield:
x(u,v) = (1+ (=3 = VB + (1 + VB! (1 + (=3 — VBV + (1 + VB)VY)
y(u,v) = (14 VB)u + (=3 — VB + u®) (1 + (=3 — VBV + (1 + VB)vY)
z(u,v) = (14 \/g)v + (-3 - \/!';)v3 —+ v°
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