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Figure: The unit circle (blue dashed), quintic polynomial
approximation given by Lyche and Mørken in 1995 (brown) and
the new quintic approximant (red).
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Parametric approximation

• Let
f (x , y) = 0, (x , y) ∈ D ⊂ R2,

be a segment of a regular smooth planar curve fffffffff .

• Suppose

rrrrrrrrr : I ⊂ R→ R2 : t 7→
(

xr (t)
yr (t)

)
is a parametric approximation of the curve segment fffffffff and

f (xr (t), yr (t)) = ε(t), t ∈ [a, b].
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• Consider the regular parameterization of rrrrrrrrr with respect to
the normal of fffffffff , i.e., every point (x , y) on a curve f
defines a unique parameter t := t(x , y) on a curve rrrrrrrrr :

f

rrrrrrrrr (x, y)

rrrrrrrrr(t)

• This provides an upper bound on Hausdorff and
parametric distance.
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Theorem
If the curve rrrrrrrrr can be regularly reparameterized by the normal
to f , and ε is small enough, the distance between curves is
bounded by

max
(x ,y)∈D

|ε(t(x , y))|√
f 2
x (x , y) + f 2

y (x , y)
+O(ε (t (x , y))2).
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Conic sections

• Only ellipse and hyperbola are interesting to consider (no
polynomial parameterization).

• A particular conic section is given as

f (x , y) := x2 ± y 2 − 1 = 0.

• The main problem: find two nonconstant polynomials xn

and yn of degree at most n, such that

x2
n (t)± y 2

n (t) = 1 + ε(t),

where ε is a polynomial of degree at most 2 n.
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• Assume that at least one point is interpolated, i.e.,
ε(0) = 0. In order to get ε as small as possible, it is
natural to choose ε(t) := t2n.

• If also a tangent direction is prescribed at the
interpolation point, we have

(xn(0), yn(0)) = (1, 0), (x ′n(0), y ′n(0)) = (0, 1).

• Thus

xn(t) = 1 +
n∑
`=1

a` t`,

yn(t) = t +
n∑
`=2

b` t`,

and
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•
x2
n (t)± y 2

n (t) = 1 +
(
a2
n ± b2

n

)
t2n.

• A reparameterization t 7→ 2n
√
|a2

n ± b2
n| t gives

xn(t) := 1 +
n∑
`=1

α` t`, yn(t) :=
n∑
`=1

β` t`, β1 > 0,

where

x2
n (t)± y 2

n (t) = 1 + sign(a2
n ± b2

n) t2n.

Many acceptable solutions exist.
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Table: The number of appropriate solutions in all three cases for
n = 1, 2, . . . , 10.

n 1 2 3 4 5 6 7 8 9 10

elliptic 1 1 3 6 15 27 63 120 246 495
hyp. a2

n < b2
n 1 0 1 2 5 8 19 32 68 120

hyp. a2
n > b2

n 0 1 0 2 0 9 0 32 0 125
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Solutions

• Solving the equation

x2
n (t)± y 2

n (t) = 1± t2n

is equivalent to solving

x2
n (t)± y 2

n (t) = 1

in the factorial ring R[t]/t2n.

• There are additional restrictions, classic algebraic tools
can not be applied.
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Idea

• Rewrite

(xn(t) + iiiiiiiii yn(t)) (xn(t)− iiiiiiiii yn(t)) =
2n−1∏
k=0

(
t − eiiiiiiiii 2k+1

2n
π
)
,

where the right-hand side is the factorization of 1 + t2n

over C.

• Thus

xn(t) + iiiiiiiii yn(t) = γ
n−1∏
k=0

(
t − eiiiiiiiii σk

2k+1
2n

π
)
, γ ∈ C, |γ| = 1,

where σk = ±1.
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Best solution
• The best solution should have the minimum error term ε.

• It turns out that this happens if

β1 =
1

sin π
2n

.

• Surprisingly, any solution for the elliptic case, for which xn

is even and yn is odd, can be transformed to the
hyperbolic solution by the map

xn(t) 7→ xn(iiiiiiiii t),

yn(t) 7→ −iiiiiiiii yn(iiiiiiiii t).

• In particular, this is true for the best solution too, thus it
is enough to consider the elliptic case only.
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Theorem
Coefficients of the best solution for the elliptic case are

αk =


k(n−k)∑

j=0

P(j , k , n − k) cos

(
k2π

2n
+
π

n
j

)
; k is even,

0; k is odd,

βk =


0; k is even,

k(n−k)∑
j=0

P(j , k , n − k) sin

(
k2π

2n
+
π

n
j

)
; k is odd,

where P(j , k , r) denotes the number of integer partitions of
j ∈ N with ≤ k parts, all between 1 and r , where k , r ∈ N,
and P(0, k , r) := 1.
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Examples

Table: Polynomial approximation of the unit circle and maximal
normal (radial) error.

n xn and yn error

3 x3(t)=1−2t2

y3(t)=2t−t3 2

4
x4(t)=1+(−2−

√
2)t2+t4

y4(t)=(
√

2+
√

2+
√

2−
√

2)(t−t3)
0.414213

5 x5(t)=1+(−3−
√

5)t2+(1+
√

5)t4

y5(t)=(1+
√

5)t+(−3−
√

5)t3+t5 0.089987

6 x6(t)=1−2(2+
√

3)t2+2(2+
√

3)t4−t6

y6(t)=(
√

2+
√

6)t−
√

2(3+2
√

3)t3+(
√

2+
√

6)t5 0.013886
...

...
...

15 . . . 1.07280 · 10−15

It can be shown that the error is O(n−2n).
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Figure: The unit circle.
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Figure: The unit circle and its polynomial approximant for n = 2.
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Figure: The unit circle and its polynomial approximant for n = 3.
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Figure: The unit circle and its polynomial approximant for n = 4.
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Figure: The unit circle and its polynomial approximant for n = 5.
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Figure: The unit circle and its polynomial approximant for n = 6.
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Figure: The unit circle and its polynomial approximant for n = 7.
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Approximants and curvatures
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Cycling

Figure: Unit circle together with the cycles of the approximant for
n = 20 and t ∈ [−1, 1].
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Höllig-Koch conjecture

Conjecture
A polynomial planar parametric curve of degree n can
interpolate 2n given points with an approximation order 2n.

Theorem
Höllig-Koch conjecture holds true for conic sections.

Idea of a proof:

• asymptotic approach,

• a particular nonlinear system has to be studied,

• an existence of a solution guarantees the optimal
approximation order,

• solution is obtained by canonical form and optimal
solutions for ellipse and hyperbola.
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Ellipse
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Figure: Approximation of the ellipse 1
2x2 + xy + 5

3y2 + y = 0 with
the best approximant of degree n = 5, 7.
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Hyperbola

2 4 6 8 10 12

-3

-2

-1

1

2 4 6 8 10 12

-3

-2

-1

1

Figure: Approximation of the hyperbola 1
5x2 + xy + 1

8y2 + y = 0
with the best approximant of degree n = 3, 4.
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Sphere approximation

Particular polynomials of degree 5 in u and v yield:
x(u, v) = (1 + (−3−

√
5)u2 + (1 +

√
5)u4)(1 + (−3−

√
5)v2 + (1 +

√
5)v4)

y(u, v) = ((1 +
√

5)u + (−3−
√

5)u3 + u5)(1 + (−3−
√

5)v2 + (1 +
√

5)v4)

z(u, v) = (1 +
√

5)v + (−3−
√

5)v3 + v5
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