SPECK:
From Google Textual Guidelines to Automatic
Detection of Android Apps Vulnerabilities

Mauro Conti, Senior Member, IEEE, Eleonora Losiouk, and Roberto Rossini

Abstract—The success of the Android OS is due to its open source nature and its support towards developers to publish their own
apps. While being an open platform is a benefit, it also requires a reliable security model to protect mobile users from attacks. To
address this problem, Google published a set of textual guidelines describing how to prevent security and privacy issues.

In this paper, we “translate” the Google guidelines into 32 rules and propose SPECK: a rule-based static taint analysis system able to
analyze both the source code of an app (to support its developers) and the APK file of an app (to provide a security report to its users).
We manually verified the statistical precision of our tool in checking the rules against the apps (23 rules have a precision greater than
80%) and used them to analyze the top 100 popular apps on the Play Store. We found that each app has at least one violation, while
more than the 50% of the apps violates at least 17 rules. Few rules are violated by almost all the apps, while the 90.13% of violations is
located in external libraries. The developers more prone to errors are X-Flow (developer of Happy Color™), Voodoo (developer of Fire

Balls 3D, Ball Mayhem!, Hole.io, Paper.io 2, Helix Jump) and Full Fat (developer of Grass cut).

Index Terms—Mobile Applications; Mobile code security; Security and Privacy Protection

1 INTRODUCTION

Mobile Operating System (OS) are complex platforms, that
involve different actors, from mobile OS vendors to mo-
bile device manufacturers. Having a market share equal to
72,18% [1], Android is the leading mobile OS worldwide
and it has been designed as an open platform, encouraging
developers to publish their own apps on the Google Play
Store by paying a small subscription. At the same time,
mobile users rely on the Google Play Store as a market
place to choose the apps to be installed on their mobile
devices. Managing an open platform means also having a
robust security model, which provides mobile users a secure
ecosystem of apps and devices. Among several ones, Google
relies on two approaches to protect its platform: (i) the
Android Security Program; (ii) the cloud-based services for
monitoring apps. The Android Security Program aims at
identifying the vulnerabilities of the Android platform in
order to release the appropriate security patches. On the
other side, the cloud-based services aim at monitoring apps
published on the Google Play Store or installed on mobile
users devices. The Android Security Program involves four
phases: (i) vulnerability reporting; (ii) security patch devel-
opment; (iii) vulnerability and patch notification; (iv) patch
deployment. Anyone (e.g., an academic researcher, a mem-
ber of the Android security team, a device manufacturer)
can identify a security issue and responsibly disclose it to

e M. Conti and E.Losiouk are with the Department of Mathematics, Uni-
versity of Padova, Italy.
E-mail: conti@math.unipd.it, eleonora.losiouk@unipd.it

o R.Rossini is with the Department of Information Engineering, University
of Padova, Italy.
E-mail: robertorossini96@gmail.com

Manuscript received October 15, 2021.

Google. The Android security team, then, takes care of the
security patch development or of the integration of any
proposed solution with the Android Open Source Project
(AOSP). Once ready, the Android device manufacturers are
notified, so that they can integrate the patch into their
custom Android OS. Concerning the cloud-based services,
Google provides the following ones: Google Play, as an app
market that also provides community review, app license
verification and app security scanning; Android updates to
mobile devices; App services, to allow apps to use cloud
capabilities for saving data; Verify Apps, to warn about the
installation of harmful apps and to scan the ones installed on
devices; SafetyNet, an intrusion detection system to mitigate
security threats; SafetyNet Attestation.

The above-mentioned set of tools focuses on malicious
Android apps, while those that are not malicious might
anyway contain vulnerabilities due to an improper usage of
the Android Application Programming Interface (API) or an
inadequate knowledge of the Android security issues [2]. To
address this problem, Google proposed three solutions: (i) a
set of textual guidelines [3], including tips and suggestions
for developers to prevent them from introducing security
and privacy issues in their own apps; (ii) a code scanning
tool called Lint [4], that searches for issues related to correct-
ness, security, performance, usability, accessibility, and inter-
nationalization; (iii) a course on the Google Play Academy
platform!, to help developers with implementing the guide-
lines and adopting a “security by design” approach in their
apps. Despite the above-mentioned proposals, we believe
there is an urgent need in the Android community of a
solution that comprehensively analyzes both an Android

1. https:/ /playacademy.exceedlms.com/student/path/
63550-security-by-design

app source code, thus helping the developers to fix its issues,
and Android app compiled code, to provide mobile users a
security evaluation of the app they are going to install on
their devices.

In this paper, we first analyze the Google security and
privacy guidelines, which refer to several vulnerabilities
and provide suggestions for developers (in a textual for-
mat) to prevent their introduction in the app source code.
We considered each vulnerability described by Google and
“translated” the suggestion into a rule, aimed at detecting
the vulnerability. We ended up with the formalization of
32 rules. For each vulnerability described in the Google
guidelines, we also identified the associated attacks that
a malicious app can launch against the vulnerable one.
We, then, propose SPECK (Security and Privacy chECK
of Android apps vulnerabilities), a rule-based static taint
analysis system that automatically finds the violations to our
rules. In particular, for each violated rule, SPECK shows the
developer the specific line of code where the vulnerability
has been detected, thus prompting him to fix the issue.
SPECK is designed for both developers and users. Devel-
opers launch SPECK against their app source code and re-
ceive a report on the identified vulnerabilities; mobile users
install the SPECK app, through which they request a remote
server to analyze a specific app. We manually validated the
statistical precision of our tool in checking the rules against
the apps (23 rules out of 32 have a precision greater than
80%) and analyzed the Android ecosystem by launching
SPECK against 100 popular apps, to find an answer to the
following research questions: RQ1 - What is the occurrence
of vulnerabilities in Android apps? RQ2 - How long does
it take for SPECK to generate an app vulnerability report?
RQ3 - What is the origin of the vulnerabilities in Android
apps? RQ4 - Which developers are more prone to introduce
vulnerabilities in Android apps?. We found that each app
has at least one violation to our rules, while more than the
50% of them violates at least 17 rules. Few rules are violated
by almost all the apps (some of them even multiple times
by the same app). The majority of violations (90.13%) are
located in external libraries. The developers more prone to
errors are X-Flow (developer of Happy Color™), Voodoo
(developer of Fire Balls 3D, Ball Mayhem!, Hole.io, Paper.io
2, Helix Jump) and Full Fat (developer of Grass cut).

Contributions. The contributions of this paper are as
follows:

o Formalization of the Google security and privacy guidelines:
we formalized 32 rules and we manually verified their
statistical precision.

o Vulnerabilities exploitation: for each vulnerability tar-
geted by a rule, we identified the possible attacks a
malicious app can launch against the vulnerable one.

e SPECK system: we designed and developed SPECK, a
rule-based static taint analysis system that finds vio-
lations of our rules in Android apps (the code® and
demo videos of user mode® and developer mode* are
available online).

2. https:/ /github.com/SPRITZ-Research-Group /SPECK

3. https:/ /github.com /SPRITZ-Research-
Group/SPECK /blob/main/demo/usermode.gif

4. https:/ /github.com/SPRITZ-Research-
Group/SPECK/blob/main/demo/developermode.gif

2

o Analysis of the Android ecosystem: we used SPECK to
analyze the 100 top popular Android apps on the
Google Play Store, finding that each one has at least
one violation to our rules, while more than the 50% of
them violates at least 17 rules.

2 BACKGROUND

Android apps are written in Java, while native code and
shared libraries are developed in C/C++. The bottom layer
of the Android architecture is a Linux kernel, specifically
customized for embedded environments with limited re-
sources. On the top of the Linux kernel, the native libraries
developed in C/C++ support high performance third-party
reusable, shared libraries. The Android framework provides
the set of Java libraries for app developers.

The Android Application Package (APK) file is a zip
archive consisting of several files and folders, where the
app is packaged. In particular, the AndroidManifest .xml
stores the meta-data such as package name, permis-
sions, definitions of one or more components like
Activities, Services, Broadcast Receivers or
Content Providers, minimum and maximum version
support, libraries to be linked etc. The executable file
classes.dex stores the Dalvik bytecode to be executed
in the Dalvik Virtual Machine (DVM). As a matter of fact,
Android apps are written in Java code, which is then com-
piled into .class files, an intermediate Java-bytecode. Then,
all .class files are merged into a single Dalvik Executable
(.dex) file, which is run in the DVM.

The main Android app components are the following
ones:

e Activity: this is the wuser interface component
of an app, which has to be declared in the
AndroidManifest.xml file. Apart from some prede-
fined task, an Activity can also return the result to its
caller. Activities are launched using Intents.

e Service: this component performs background tasks
without any UI (e.g., playing an audio or downloading
data from the network). Services are launched using

Intents.
e Broadcast Receiver: this component listens
to the Android system generated events (e.g.,

SMS_RECEIVED) and to the application-defined
events broadcasted by other apps.

e Content Provider: this component works as a data-
store, that provides an interface for data access for both
the app declaring the component and an external app.

Android app has multiple entry-points, according to the
number of declared components, which can be invoked
or executed independently, since the communication with
them is asynchronous. App components are accessible by
other apps only if they are explicitly exported.

Android Kernel implements the Linux Discretionary
Access Control (DAC). Each app process is assigned a
Unique ID (UID) and runs within an isolated sand-
box. The sandboxing restrains apps or their system ser-
vices from interfering among each other. To restrict an
app from accessing sensitive resources (e.g., telephony,
GPS, network, power-management), Android provides a

permission-based security model in the application frame-
work. Developers must declare the permissions required
in AndroidManifest.xml. At the install time, if an app
has the permissions for accessing a protected resource (e.g.,
Bluetooth), the app process is assigned to the corresponding
Group ID (GID). Thus, apart from UID, each app process
may be assigned one or more GID. Android permissions are
divided into the following four protection-levels: (i) normal,
if permissions have a minimal risk on the user, system app
or device. Normal permissions are granted by default at the
install time; (ii) dangerous, if permissions fall within the high
risk group due to their capability of accessing the private
data and important sensors of the device. A user can grant
dangerous permissions at the install time or when the app
accesses the protected resources at run-time; (iii) signature,
only if the app requesting a permission is signed with the
same developer certificate of the app that declared that
permission; (iv) SignatureOrSystem, if the requesting app
asking for permissions is signed with the same certificate
as the Android system image or with an app that declares
these permissions.

3 RELATED WORK

Over the years, researchers provided several static analysis
tools aimed at detecting vulnerabilities in Android apps
by relying on different approaches: taint analysis, reach-
ability analysis, symbolic execution, APK rewriting, inter-
component flow graph, inter-component flow analysis and
rule-based analysis. Due to the high amount of sensitive
information stored in a mobile device, information leakage
is the most addressed concern [5], [6], [7], [8], [9], [10],
(11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24]. Other significant issues somehow related to
sensitive information leakage are: over-permissioning [9],
[11], [12], [18], [25], [26], [27], intent spoofing [10], [28],
[29], [30] and unauthorized intent receipt [10], [28], [30].
Finally, other solutions have been proposed to address
cryptography misuse [31], [32] and anti-plagiarism detec-
tion [33], [34], [35]. In addition to research papers, the An-
droid community has provided several static analysis tools,
among which: Lint [4], the official Android code scanning
tool, Amandroid [36], Androwarn [37], ApkAnalyser [38],
APKInspector [39], APKLeaks [40], apkx [41], BlueSeal [9],
[42], CFGScanDroid [43], ClassyShark [44], ConDroid [45],
DidFail [10], DroidLegacy [46], DroidRA [47], DroidSafe [6],
[48], JAADAS [49], Madrolyzer [50], Quark-Engine [51],
RiskInDroid [52], [53], Smali-CFGs [54], SmaliSCA [55],
SPARTA [56], StaCoAn [57], SUPER [58]. Table 1 provides
an overview of the above-mentioned tools and research
papers, specifying the criteria used for finally selecting
the ones to be used in the experimental evaluation of
SPECK. For each tool, we analyzed the logic to find pos-
sible mappings with the SPECK rules, we searched for its
public repository and we finally tried to install and run the
tool. At the end of this analysis, we identified seven tools
that could be compared with SPECK: Argus-Amandroid,
Androwarn, Lint, Quark-Engine, RiskInDroid, SUPER and
CERT TAPIOCA. For more details about the comparison
analysis, please, see Section 6.7.

4 RULES

In this section, we illustrate our formalization of 32 rules,
designed through the analysis of the Google security and
privacy guidelines [3]. Such guidelines describe several An-
droid vulnerabilities and illustrate how developers should
write their apps source code to prevent it from being vulner-
able. For each vulnerability described in the guidelines, we
formalized a rule aimed at detecting it and we identified the
attacks that a malicious app can launch against the vulner-
able one. In Table 2, we provide all the 32 rules, which have
been classified according to the following Open Web Appli-
cation Security Project (OWASP) top 10 mobile risks [69]:
improper platform usage, insecure data storage, insecure
communication, insecure authentication, insufficient cryp-
tography, insecure authorization, client code quality, code
tampering, reverse engineering, extraneous functionality.

Out of the 32 designed rules, here we illustrate the five
most interesting and violated ones (i.e., Rule 1, Rule 5, Rule
6, Rule 11, and Rule 29). For each rule, we provide first
the Google guideline, then the pseudo-code of the rule we
formalized and, finally, the set of attacks a malicious app can
perform against a vulnerable one. The remaining 27 rules
are described in Appendix A. The source code of all the
rules is available online’.

4.1 Rule 1 - Show an app chooser

Google Guideline. If an implicit intent can launch at least
two possible apps on a user’s device, explicitly show an app
chooser. This interaction strategy allows users to transfer sensitive
information to an app that they trust.

Intent intent = Intent (Intent .ACTION_SEND) ;

List<ResolveInfo> possibleActivitiesList =
queryIntentActivities (intent, PackageManager.
MATCH_ALL) ;

// Verify that an activity in at least two apps on

// the user’s device can handle the intent.

// Otherwise, start the intent only if an app on

// the user’s device can handle the intent.
(possibleActivitiesList.size () > 1) {

// Create intent to show chooser.
// Title is something similar to "Share this
// photo with".

String title = getResources () .getString(R.string.
chooser_title);
Intent chooser =
title);

startActivity (chooser) ;

} (intent.resolveActivity (
getPackageManager ()) !=) |
startActivity (intent);

}

Listing 1. Show an app chooser

Intent.createChooser (intent,

Pseudo-code. The Rule 1 pseudo-code is shown in Algo-
rithm 1.

Attack. The attack aims at intercepting an implicit
Intent, thatis originally sent to a legitimate app, but that is
intercepted by a malicious one without any user notification.
To complete the attack, a malicious app exploits the implicit

5. https://github.com/SPRITZ-Research-
Group/SPECK/tree/main/server/codeAnalysis

TABLE 1

Overview of the state-of-art static analysis tools.

Paper/Tool Addressed Vulnerabilities SPECK Rules Overlap Comment
S. Arzt et al. [5] - - SPECK embeds Flowdroid
M. C. Grace et al. [7] Risks of in-app advertisement libraries - No overlap with SPECK
L. Luetal. [8] Component hijacking - No public repository
Blueseal [9], [42] Malware - Deprecated
W. Klieber et al. [10] Inter/intra-component data flows - Deprecated

L. Wu et al. [12]

Issues in customized Android images

No overlap with SPECK

K. Lu et al. [13]

Privacy leaks

R8, R9, R10, R11, R12

No public repository

X. Xiao et al. [14] Private data usage and leakage R8, R9, R10, R11, R12 No public repository
K. O. Elish et al. [15] Violations to legitimate dataflow patterns - No overlap with SPECK
X. Chen et al. [16] Privacy leaks R8, R9, R10, R11, R12 No public repository
J. Kim et al. [17] Privacy leaks R8, R9, R10, R11, R12 No public repository
X. Cui et al. [18] Detect privilege escalation vulnerabilities - No public repository
J. P. Achara et al. [20] Privacy implications of - No public repository

the ACCESS_WIFI_STATE permission

Y. Feng et al. [21]

Malware

No overlap with SPECK

M. A. El-Zawawy et al. [22]

Next-intent vulnerabilities

No overlap with SPECK

M. A. El-Zawawy et al. [23]

Webview vulnerabilities

No overlap with SPECK

A. P. Felt et al. [25]

Overprivileges

No public repository

K. W. Y. Au et al. [26]

No overlap with SPECK

A. Bartel et al. [27] Detecting permission gaps R3 No public repository
D. Octeau et al. [28] Inter-component communication R1 No public repository
E. Chin et al. [30] Application communication vulnerabilities R1 No public repository
S. Fahl t al. [31] MITM attacks R5

M. Egele et al. [59] Cryptographic misuses R22, R29, R30 No public repository

J. Chen et al. [33]

No overlap with SPECK

M. Sun et al. [34]

No overlap with SPECK

F. Zhang et al. [35]

No overlap with SPECK

J. Tang et al. [60]

SSL security

R5

No public repository

S. Salva et al. [61]

Intent-based vulnerabilities

R1, R18

Missing files

P. Gadient et al. [62]

Traces for prospect vulnerabilities

R1, R3, R5, R6, R7, R8, R12, R13, R17, R18,
R1, R20, R22, R24, R26, R29, R30

It does not analyze apk files

R1, R3, R4, R5, R6, RS, R12, R17, R18,

J. Gajrani et al. [63] Several vulnerabilities R22, R23, R25, R26, R29 No public repository
H. Shahriar et al. [64] Content provider leakage vulnerability R2 No public repository
D. Bassole et al. [65] Vulnerabilities in the permissions system R3, R4, R15 No public repository
B. F. Demissie et al. [66] Permission re-delegation vulnerabilities R3, R4 No public repository
D. Wu et al. [67] File:// vulnerabilities R9 No public repository
Amandroid [36] Security vetting of Android apps R5, R22, R29 Comparable with SPECK
Androwarn [37] Apps malicious behaviours R21 Comparable with SPECK
ApkAnalyser [38] - - Deprecated
APKInspector [39] - - Deprecated
APKLeaks [40] URIs, endpoints and secrets - No overlap with SPECK
apkx [41] - - No overlap with SPECK
CERT TAPIOCA [68] MITM R5 Comparable with SPECK
CFGScanDroid [43] - - No overlap with SPECK
ClassyShark [44] - - No overlap with SPECK
ConDroid [45] - - Deprecated
DidFail [10] - - No overlap with SPECK
DroidRA [47] - - No overlap with SPECK
DroidSafe [6], [48] Malicious code detection - Installation issues
JAADAS [49] Several vulnerabilities - Installation issues
Madrolyzer [50] Malware detection - No overlap with SPECK
Quark-Engine [51] Several vulnerabilities R24 Comparable with SPECK
RiskInDroid [52], [53] Overpermissioning R3 Comparable with SPECK

Smali-CFGs [54]

No overlap with SPECK

SmaliSCA [55]

No overlap with SPECK

SPARTA [56]

Type-checking based malware detection

No overlap with SPECK

StaCoAn [57]

Several vulnerabilities

Installation issues

SUPER [58]

Several vulnerabilities

R7, R8, R14, R21, R29

Comparable with SPECK

TABLE 2

Rules formalized from the Google

security and privacy guidelines.

Rule N Rule Name OWASP Mobile Risks

Rule 1 Show an app chooser Improper Platform Usage

Rule 2 Content provider access control Improper Platform Usage, Insecure Data Storage
Rule 3 Provide the right permissions Improper Platform Usage

Rule 4 Use intents to defer permissions Improper Platform Usage

Rule 5 Use SSL traffic Insecure Communication

Rule 6 Use HTML message channels Client Code Quality, Code Tampering

Rule 7 Use WebView objects carefully Code Tampering

Rule 8 Store private data within internal storage Insecure Data Storage

Rule 9 Share data securely across apps Improper Platform Usage, Insecure Communication
Rule 10 Use scoped directory access Insecure Data Storage

Rule 11 Store only non-sensitive data in cache files Insecure Data Storage

Rule 12 Use SharedPreferences in private mode Improper Platform Usage

Rule 13 Keep services and dependencies up-to-date Insecure Data Storage

Rule 14 Check validity of data Insecure Data Storage

Rule 15 Create permissions Improper Platform Usage

Rule 16 Erase data in WebView cache Insecure Data Storage, Client Code Quality
Rule 17 Avoid SQL injections Insecure Data Storage, Code Tampering

Rule 18 Prefer explicit intents Improper Platform Usage

Rule 19 Use IP networking Insecure Communication, Extraneous Functionality
Rule 20 Use services Insecure Authentication, Improper Platform Usage
Rule 21 Use telephony networking Improper Platform Usage, Insecure Communication
Rule 22 Use cryptography Insufficient Cryptography

Rule 23 Use broadcast receivers Improper Platform Usage, Insecure Authentication
Rule 24 Dynamically load code Code Tampering

Rule 25 | Common problems with hostname verification Insecure Communication

Rule 26 Warnings about using SSLSocket directly Insecure Communication

Rule 27 Configure CAs for debugging Extraneous Functionality

Rule 28 Opt out of cleartext traffic Insecure Communication, Code Tampering
Rule 29 Choose a recommended algorithm Insufficient Cryptography

Rule 30 Deprecated cryptographic functionality Insufficient Cryptography

Rule 31 Migrate existing data Insecure Data Storage

Rule 32 Access device encrypted storage Insecure Data Storage

Rule 1: Show an app chooser

begin

implicitIntents ¢ getApplmplicitintents()

chooserIntents ¢ getAppChooserIntents()

foreach cIntent in chooserIntents do

respected <« False

foreach intent in implicitIntents do
if cIntent = intent then

respected < True

break
end

end

if not respected then
Rule 1 is not respected.

end

end

end

Intent forwarding system of the Android OS and the
absence of an app chooser. Thus, by declaring the Intent
Filter associated to the target implicit Intent with the
highest priority, the malicious app becomes the recipient of
the implicit Intent, which will be successfully delivered to
the malicious app since no app chooser will be shown.

4.2 Rule 5 - Use SSL traffic

Google Guideline. If your app communicates with a web server
that has a certificate issued by a well-known, trusted CA, the

HTTPS request is very simple:

URL url URL ("https://www.google.com") ;

HttpsURLConnection urlConnection = (
HttpsURLConnection) url.openConnection();

urlConnection.connect () ;

InputStream in urlConnection.getInputStream() ;

Listing 2. Use SSL traffic

Pseudo-code. The Rule 5 pseudo-code is shown in Algo-
rithm 5.

Attack. The sSLSocketFactory can be used to vali-
date the identity of an HTTPS server against a list of trusted
certificates and to authenticate to the HTTPS server using a
private key.

If HTTPS is not used, or it is used without a validation
of the HTTPS server through the SSLSocketFactory, a
Man-in-the-Middle attack can be performed, i.e., an attacker
can secretly relay and alter the communication between two
parties.

4.3 Rule 6 - Use HTML message channels

Google Guideline. Because WebView consumes web content
that can include HTML and JavaScript, improper use can in-
troduce common web security issues such as cross-site-scripting
(JavaScript injection). Android includes a number of mechanisms
to reduce the scope of these potential issues by limiting the
capability of WebView to the minimum functionality required
by your application.

If your application doesn’t directly use JavaScript within a
WebView, do not call setJavaScriptEnabled(). Some

Rule 5: Use SSL traffic

begin

openConns < getOpenConnVars()
httpsOpenConns < getHttpsOpenConnVars()
httpsConnSSLs <— getConnSSLSockFactVars()
foreach openConn in openConns do
respected < False

foreach httpsConn in httpsOpenConns do

if openConn = httpsConn then
respected - True

break
end

if not respected then
Rule 5 is not respected.
end
end
end
foreach ss1Conn in httpsConnSSLs do
respected « False
foreach httpsConn in httpsOpenConns do
if sslConn = httpsConn then
respected « True
break
en
if not respected then
if not catchesException(ss1Conn)

then
Rule 5 is not respected.
end
end
end
end
end

sample code uses this method, which you might repurpose in
production application, so remove that method call if it’s not
required. By default, WebView does not execute JavaScript, so
cross-site-scripting is not possible.

Use addJavaScriptInterface () with particular care be-
cause it allows JavaScript to invoke operations that are nor-
mally reserved for Android applications. If you use it, ex-
pose addJavaScriptInterface () only to web pages from
which all input is trustworthy. If untrusted input is allowed,
untrusted JavaScript may be able to invoke Android meth-
ods within your app. In general, we recommend exposing
addJavaScriptInterface () only to JavaScript that is con-
tained within your application APK.

If your app must use JavaScript interface support on devices
running Android 6.0 (API level 23) and higher, use HTML
message channels instead of communicate between a website and
your app, as shown in the following code snippet:

WebView myWebView =
webview) ;

(WebView) findViewById(R.id.

// messagePorts[0] and messagePorts[l] represent

// the two ports. They are already tangled to each

// other and have been started.

WebMessagePort [] channel = myWebView.
createWebMessageChannel () ;

// Create handler for channel[0]
// messages.

to receive

6

channel [0] .setWebMessageCallback (new WebMessagePort
.WebMessageCallback () {
QOverride
public void onMessage (WebMessagePort port,
WebMessage message) {
Log.d(TAG, "On port " + port + "
message: " + message);
}
b

received this

// Send a message from channel[l] to channel[O0].
channel[1l] .postMessage (new WebMessage ("My secure
message"));

Listing 3. Use HTML message channels

Pseudo-code. The Rule 6 pseudo-code is shown in Algo-
rithm 6.

Rule 6: Use HTML message channels
begin
sl ¢ “setJavaScriptEnabled”
s2 ¢ “true”
arr < [“evaluateJavascript”, “
erface”]
methods < getAllCalledMethods()
foreach method in methods do
if method in arr then
Rule 6 is not respected.
end
if method = s1 then
if getSecondArg(method) = s2 then
Rule 6 is not respected.
end
end
end
end

add]avascriptInt-

Attack. An insecure handling of JavaScript code can lead
to Cross-Site Scripting (XSS) attacks.

4.4 Rule 11 - Store only non-sensitive data in cache
files

Google Guideline. To provide quicker access to non-sensitive
app data, store it in the device’s cache. For caches larger than
1 MB in size, use getExternalCacheDir (); otherwise, use
getCacheDir (). Each method provides you with the File
object that contains your app’s cached data.

The following code snippet shows how to cache a file that your app
recently downloaded:

File cacheDir = getCacheDir();

File fileToCache = new File (myDownloadedFileUri);
String fileToCacheName = fileToCache.getName () ;

File cacheFile = new File (cacheDir.getPath(),
fileToCacheName) ;

Listing 4. Store only non-sensitive data in cache files

Note: if you use getExternalCacheDir () to place your
app’s cache within shared storage, the user might eject the media
containing this storage while your app is running. You should
include logic to gracefully handle the cache miss that this user
behavior causes.

Caution: there is no security enforced on these files. Therefore,
any app that has the WRITE_EXTERNAL_ STORAGE permission
can access the contents of this cache.

Pseudo-code. The Rule 11 pseudo-code is shown in
Algorithm 11.

Rule 11: Store only non-sensitive data in cache files

begin
arr < [“getCacheDir”, “getExternalCacheDir "]
methods < getAllCalledMethods()
foreach method in methods do

if method in arr then

Rule 11 is not respected.

end
end
end

Attack. A malicious app can access any data saved
in the device cache, even the sensitive ones. Moreover,
if the legitimate app accesses the cache through the
getExternalCacheDir () API it is using an external
storage directory accessible by any other app on the same
device.

4.5 Rule 29 - Choose a recommended algorithm

Google Guideline. When you have the freedom to choose which
algorithm to use (such as when you do not require compatibility
with a third-party system), we recommend using the following
algorithms:
e Cipher class: AES in either CBC or GCM mode with 256-
bit keys (such as AES/GCM/NoPadding)
e MessageDigest class: SHA-2 family (e.g., SHA-256)
e Mac class: SHA-2 family HMAC (e.g., HMACSHA256)
e Signature class: SHA-2 family with ECDSA (e.g.,
SHA256withECDSA)
Pseudo-code. The Rule 29 pseudo-code is shown in
Algorithm 29.

Rule 29: Choose a recommended algorithm

begin
cryptoMethods < getAllCryptoMethods()
foreach method in cryptoMethods do

if not usesRecommendedClassArgs(method)

then
Rule 29 is not respected.

end
end
end

Attack. If an app does not properly use cryptographic
algorithms or it uses insecure ones, a malicious app can
break and access to any data or communication, which
should have been protected by cryptography.

5 SPECK SYSTEM

In this section, we describe the design and implementation
of SPECK (the code is available online®), our proposal that
relies on the rules described in Section 4 to automatically
detect the vulnerabilities of an Android app. SPECK is a

6. https:/ / github.com /SPRITZ-Research-Group /SPECK

7

rule-based, static taint analysis system, that encompasses
the following three components:

e The SPECK App - it lists all the apps installed on
a mobile device and allows a user to choose which
one will be analyzed by the SPECK Static Analyzer on
the SPECK Server. Once the app has been processed,
the SPECK App shows the user the final vulnerability
report. We developed the SPECK App as an Android
app.

o The SPECK Static Analyzer - it analyzes an Android app
by executing the rules we designed from the Google
security and privacy guidelines. We developed the
SPECK Static Analyzer by using the Python program-
ming language. Since some rules (i.e., Rulel, Rule?,
Rule9, Rulel6, Rulel8, Rule22, Rule25, Rule26, Rule30)
require a static taint analysis approach to follow the
flow of specific data (e.g., Intent objects), they rely on
the FlowDroid tool [5], [70].

e The SPECK Server - it is responsible for fetching an
app APK from the APKPure store, once the name of
the target app is known, or directly from the user
device. It extracts the app source code though the JADX
Decompiler and it, finally, launches the SPECK Static
Analyzer against the app source code to generate the
vulnerability report.

SPECK supports the User Mode (the demo video is available
online”) and the Developer Mode (the demo video is available
online®) shown in Fig. 1 and Fig. 2, respectively. In the
first scenario, the user sends through the SPECK App an
app name to the SPECK Server (ie., Step 1). Then, the
SPECK Server first checks whether the vulnerability report
for that app already exists. If this is the case, the SPECK
Server immediately returns the existing report. Otherwise, it
downloads the apk from the APKPure store (i.e., Step 2) and
extracts the source code through the JADX Decompiler (i.e.,
Step 3). The SPECK Server, then, launches the SPECK Static
Analyzer (i.e., Step 4) and returns the Vulnerability Report to
the mobile user (i.e., Step 5 and Step 6). The request sent by
the SPECK App towards the SPECK Server is completely non-
blocking and asynchronous, and the user receives a back-
ground notification when the Vulnerability Report has been
downloaded. In the Developer Mode, an Android developer
launches the SPECK Static Analyzer against the source code
of his app (i.e., Step 1 and Step 2) and inspects the identified
violations specified in the Vulnerability Report to fix them
afterwards (i.e., Step 3 and Step 4).

6 RESULTS AND EVALUATION

Here, we illustrate our evaluation of the 32 rules and of the
SPECK system. We first describe our experimental setup in
Section 6.1 and then the results obtained to answer to our
four research questions in Section 6.2, Section 6.3, Section 6.4
and Section 6.5, respectively. In Section 6.6, we provide the
precision of the 32 rules, after performing a manual valida-
tion of the output returned by SPECK launched against ten

7. https:/ / github.com /SPRITZ-Research-
Group/SPECK/blob/main/demo/usermode.gif

8. https:/ / github.com /SPRITZ-Research-
Group/SPECK/blob/main/demo/developermode.gif

S
0%
ooV Py‘(\
pee
m @ App App Source
Name Code
- =
@ Sp, Decompiler
Android SPECK T, S04
Mobile App SPECK Zoi SPECK Static

User Analyzer

FlowDroid

%

Analysis

@Vulnerability '1 @
Report Ef Output

da)
Vulnerability
Report

Fig. 1. The SPECK system in User Mode.

@ SPECK Static

Analyzer i 1
P App Source y: Analysis VE
@ Code @ Output E a
i e 0
¢ 1 Vulnerability

Android
Developer

Rules FlowDroid Report

@Vulnerability
Report

Fig. 2. The SPECK system in Developer Mode.

of the considered apps. Finally, in Section 6.7, we compare
SPECK with existing static analysis tools.

6.1 Experimental Setup

To perform our experiments, we downloaded the top
100 popular apps from the Play Store according to App-
Brain [71] (the full list of apps is available in Appendix
C), we decompiled them through JADX and we launched
SPECK against them. We executed all the experiments on
an Amazon Web Service.

6.2 RQ1: What is the occurrence of vulnerabilities in
Android apps?

To answer the first research question, we measured the
number of apps violating a rule and the number of times
the apps violate it. As shown in Fig. 3, we found that 17
rules are violated by more than the 50% of the apps, while
other rules (i.e., Rule 3, Rule 9, Rule 15, Rule 21, Rule 27,
Rule 28 and Rule 31) have been violated by zero or almost
Z€ero apps.

As shown in Fig. 4 (raw data is available in Table 2 in
Appendix D), there are few rules violated a high number of
times by a high number of apps. On the contrary, in terms
of number of apps violating a rule, the majority of rules
are equally distributed: some of them are violated by many
apps, while some others by just a few of them.

6.3 RQ2: How long does it take for SPECK to generate
an app vulnerability report?

The second research question can be addressed by measur-
ing the average execution time required by a rule to analyze
an app. In Fig. 5 (raw data is available in Table 3 and Table
4 in Appendix D), we plot the distribution of the average

suolie|oiA

100

80

10 15

Rules

20 25 30

Fig. 3. Number of apps violating the rules.

Fig. 4. Distribution of the number of violations of a rule for an app.

compilation times required by each rule to analyze one of
the 100 popular apps. As shown in the plot, the rules have
two clear different trends: either a very low (i.e., close to
zero) or a significantly high processing time.

6.4 RQ3: What is the origin of the vulnerabilities in
Android apps?

The third research question aims to determine whether a
rule violation is embedded in custom code written by the
developers or it belongs to Android/third-party libraries.
To achieve such classification, we consider the vulnerability
location within the app source code. More specifically, we
consider a violation as introduced by the app developers,
if this is contained in the AndroidManifest.xml file or
in a Java file under the path that shares the name with
the app package name. In any other case, we consider the
vulnerability as belonging to the Android libraries or to
third-party components. Fig. 6 shows that most violations
are not introduced by developers custom code, but by third-
party libraries, which developers rely on to enhance their
apps with new functionalities.

6.5 RQ4: Which developers are more prone to intro-
duce vulnerabilities in Android apps?

We investigated which app developers are more prone to
introduce vulnerabilities in their own apps and we found
that they are X-Flow (developer of Happy Color™), Voodoo
(developer of Fire Balls 3D, Ball Mayhem!, Hole.io, Paper.io
2, Helix Jump) and Full Fat (developer of Grass cut), as
shown in Fig. 7.

3500
3000
2500

2000
1500

pelaNy

[s]owiL

1000
500

uolNdaX3 @

Fig. 5. Average execution time required by each rule to analyze an app.

[Developers violations

25001 mmm Android Framework & 3rd-party libraries

2000
[%)]
C
o
= 1500
K
o
> 1000

500 J J

ol 1 i, J ull H BLa I P |
1 5 10 15 20 25 30

Fig. 6. Classification of the vulnerabilities introduced in Android apps
according to developer code, Android framework or third-party libraries.

6.6 Rules Precision

To calculate the the statistical precision of our tool in check-
ing the rules against the apps, we manually double-checked
the correctness of the vulnerability report generated by
SPECK for 10 apps out the 100 ones used in the evaluation
(i.e., Instagram, Spotify, Wish, Idle Supermarket Tycoon,
TextNow, Grass Cut, Samsung Notes, Twitter, Skype, Ama-
zon). In particular, we retrieved the Java file and line of
code associated to the identified vulnerability and manually
verified whether it was correctly detected by SPECK. For
each rule, we calculated the precision as follows:

TruePositive/(TruePositive + FalsePositive).

As shown in Table 3 (more details are available in Table
5 in Appendix D), 14 rules have a precision equal to 100%
(i.e., Rule 2, Rule 4, Rule 9, Rule 10, Rule 11, Rule 12, Rule
13, Rule 16, Rule 19, Rule 21, Rule 23, Rule 24, Rule 30, Rule
32); 9 rules have a precision greater than 80% (i.e., Rule 5,
Rule 6, Rule 7, Rule 8, Rule 14, Rule 20, Rule 25, Rule 26,

Rule 29); 5 rules have a precision below 80% (i.e., Rule 1,
Rule 3, Rule 17, Rule 18, Rule 22); no violation to Rule 15,
Rule 27, Rule 28 and Rule 31 were detected, thus we were
not able to calculate the precision.

6.7 Comparison with Previous Works

In this section, we provide the experimental comparison we
performed to evaluate the SPECK tool against the existing
ones. To achieve this aim, we inspected each tool to identify
any match with the vulnerabilities detected by SPECK and
then launched it against ten apps of our dataset (i.e., In-
stagram, Spotify, Wish, Idle Supermarket Tycoon, TextNow,
Grass Cut, Samsung Notes, Twitter, Skype, Amazon). Ta-
ble 4 shows the comparison between each tool and SPECK

Argus-Amandroid. Argus-Amandroid is a static analy-
sis framework based on the Java language, that generates
an inter-component data flow graph with all the reachable
components and performs on top of it a low- and context-
sensitive data flow analysis. Argus-Amandroid can be used
to search for security problems emerging from the inter-
action among components belonging to the same app or
to different ones. We used Argus-Amandroid to find cryp-
tographic and SSL/TLS related misuses. Concerning the
cryptographic misuses, we compared the output of Argus-
Amandroid with the SPECK Rule 22 and Rule 29. We found
that SPECK detects fewer violations to Rule 22 and more to
Rule 29 with respect to Argus-Amandroid. In the first case,
the mismatch is due to the different approaches used by
the two tools, while, in the second case, SPECK finds many
more vulnerabilities because of the higher number of cryp-
tographic algorithms considered by Rule 29. The SSL/TLS
misuses detected by Argus-Amandroid can be compared
with SPECK Rule 5. In this case, the different methodology
leads to a significantly mismatch in the detection between
the two tools.

400

w
o
o

Violations
N
3

100

Telepathic

5
388
3

2E8
ady
ac
£
§
o

Feelingtouch

Full Fat

Ratech
X-Flow
Voodoo

Lion Studios

Lucky Day Ente

Brainium
SoundCloud

T
Paypal
Amanotes
Wordfun Games
Madbox
SayGames
OfferUp
Gameloft
The Weather Channel
Playgendary
Codigames
Microsoft
Miniclip
PeopleFun
Good Job Games
Easybrain
TextNow

Redepti

Developers

Fig. 7. Distribution of number of apps violations according to apps’ developers.

TABLE 3
Rules precision, calculated by manually verifying the SPECK vulnerability report generated from the analysis of 10 apps.
R1 R2 R3 R4 R5 Ré6 R7 R8 R9 | R10 | R11 | R12 | R13 | R14 | R15 | R16
0.78 1 0.61 1 0.86 | 098 | 0.98 | 0.94 1 1 1 1 1 0.98 - 1
R17 | R18 | R19 | R20 | R21 | R22 | R23 | R24 | R25 | R26 | R27 | R28 | R29 | R30 | R31 | R32 \
[0.66 | 0.64 1 0.94 1 0.50 1 1 0.85 | 0.81 - 1 0.96 1 - 1 \
TABLE 4

Comparison between the number of violations found by SPECK and the ones found by existing static analysis tools for Android apps. The numer
of SPECK violations in the cells are all true positive, and are consistent with Table 5 in Appendix D. Only for the CERT TAPIOCA tool the values in
the cell refer to the number of apps found vulnerable and not to the number of vulnerabilities.

R2 R3 R5 R6 R7 R8 R13 R14 R20 R21 R22 R23 R24 R25 R26 R27 R29 R30
AMANDROID (AM) e AN e
ANDROWARN (AN) Ao
CERT TAPIOCA (CT) o
LINT (L) S:3 S:197 S: 287 S:17 S:3 S:17 S8 S: 87 S: 6 S: 11 S: 50 S:0 S: 36
L:0 L:0 L:0 L:0 L:0 L:0 L:0 L:0 L:0 L:0 L:0 L:0 L:0
QUARK-ENGINE (QE) SEéé
RISKINDROID (R) SR 22%
S

Androwarn. Androwarn is a static analysis tool search-
ing for app’s malicious behaviours through the inspection
of specific APIs in the app’s Dalvik bytecode. Among the
malicious behaviours addressed by Androwarn, we found a
possible comparison between the telephony services abuse
and SPECK Rule 21. The mismatch is due to the different
approaches used by the two tools.

CERT TAPIOCA. CERT TAPIOCA is a network-layer
man-in-the-middle proxy, aimed to verify whether apps val-
idate certificates and to inspect the HTTP/HTTPS network
traffic. We identified a mapping between the first functional-
ity of CERT TAPIOCA and SPECK Rule 5. After validating
the ten apps, we found that grasscut and idle supermarket
tycoon are the only two apps not validating the certificates
according to CERT TAPIOCA, while SPECK finds the same

vulnerability in nine apps out of ten.

Lint. Lint is the Android official scanning code tool
integrated into the Android Studio IDE and aimed at
identifying potential bugs related to correctness, security,
performance, usability, accessibility, and internationaliza-
tion. Its main purpose is to detect poorly structured code
that can affect the reliability and efficiency of an Android
app. In terms of detected vulnerabilities, Lint checks [72]
map with several SPECK rules: “SignatureOrSystemPermis-
sions”, “ExportedContentProvider” with Rule 2; “SSLCer-
tificateSocketFactoryCreateSocket”, “SSLCertificateSocket-
FactoryGetInsecure”, “TrustAlIX509TrustManager”, “Us-
ingHttp” with Rule 5; “SetJavaScriptEnabled”, “Add-
JavascriptInterface”, “JavascriptInterface” with Rule 6; “Set-
WorldReadable”, “SetWorldWritable”, “WorldReadable-

Files”, “WorldWriteableFiles” with Rule 8; “RiskyLibrary”
with Rule 13; “ExportedService” with Rule 20; “SecureRan-
dom”, “TrulyRandom” with Rule 22; “UnprotectedSMS-
BroadcastReceiver”, “ExportedReceiver”, “UnsafeProtect-
edBroadcastReceiver” with Rule 23; “UnsafeDynamical-
lyLoadedCode”, “UnsafeNativeCodeLocation” with Rule
24; “BadHostnameVerifier” with Rule 25; “AllowAllHost-
nameVerifier” with Rule 26, “HardcodedDebugMode”
with Rule 27; “DeletedProvider”, “DeprecatedProvider”,
“Getlnstance” with Rule 30. However, Lint is designed to
analyze source code of Android projects and not Android
APK files. We decompiled the ten apps APK files and
launched Lint against the decompiled source code, but Lint
was not able to detect any security related issue.

Quark-Engine. Quark-Engine is a an Android malware
detector, that searches for malicious activities by inspecting
app’s requested permissions, app’s invoked native API,
combination of native API, calling sequence of native API
and APIs that handle the same register. Quark-Engine relies
on a set of rules to inspect which APIs are invoked in the
Dalvik bytecode of an app. SPECK and Quark-Engine can
be compared only in terms of detection of any dynamic code
loading procedure (i.e., SPECK Rule 24 and Quark-Engine
Rule 21). Despite the different approach, both tools find the
same vulnerabilities.

RiskInDroid. RiskInDroid calculates the risk of an An-
droid app according to its permissions. In particular, RiskIn-
Droid relies on a machine learning approach through which
a classifier is trained over a huge dataset of apps to be able
to determine whether an app is malicious or not accord-
ing to its permissions. RiskInDroid identifies four types of
permissions by inferring which permissions are used and
which not: declared permissions (i.e., the ones declared in the
app manifest); exploited permissions (i.e., the ones declared
and used by the app); ghost permissions (i.e., the ones not
declared, but used by the app); useless permissions (i.e., the
ones declared, but never used by the app). The identification
of useless permissions performed by RiskInDroid matches
with SPECK Rule 3. The mismatch in the number of unused
permissions detected by the two tools is due to the database
that SPECK relies on (https:/ /github.com/reddr/axplorer),
which needed to be updated.

SUPER. SUPER analyzes APK files by applying a set of
rules that search for vulnerabilities. Such rules are a com-
bination of regular expressions and whitelisted keywords.
To compare SUPER and SPECK rules, we considered only
SUPER rules having a regex matching a vulnerability ad-
dressed by a SPECK rule either completely (e.g., SUPER rule
“"Weak Algorithms” and SPECK Rule 29) or partially (e.g.,
SUPER rule "WebView XSS” and SPECK Rule 7). Overall,
SUPER finds fewer violations with respect to SPECK, since
regular expressions are not as flexible as the algorithms used
in SPECK.

7 DISCUSSION

In this section, we discuss about the results obtained
through the analysis of the Android ecosystem described
in Section 6 (i.e., Section 7.1) and we illustrate the SPECK
limitations (i.e., Section 7.2).

7.1 Analysis of the Android ecosystem

RQ1. To evaluate how much the 32 rules we designed are
violated, we consider both the number of apps violating a
specific rule and the number of violations of the apps with
respect to a specific rule. Despite considering possible false
positives, when SPECK finds an app violating a rule, we can
claim that the app is not compliant with the guideline asso-
ciated to our rule. Thus, the app might be vulnerable to the
set of exploits relying on the specific vulnerability. Consid-
ering the classification of the rules according to the OWASP
top ten mobile risks, the Insecure Data Storage category is
the one with the highest number of violations, followed by
Code Tampering, Client Code Quality, Insufficient Cryptography,
Improper Platform Usage, Insecure Communication and Insecure
Authentication. The Extraneous Functionality category is the
one with the lowest number of violations. The most violated
rules are Rule 5, Rule 6, Rule 11, Rule 29. Rule 5 refers to
the use of the SSL protocol in network communications.
Misuses in encrypting network communications have been
already found by previous works [31], [73], that identified
1,074 apps with SSL/TLS code potentially vulnerable to
Man-in-the-Middle attacks and 645 apps having WebView
HTTPS vulnerable connections, respectively. Rule 6 refers to
the malicious web code that can run in a WebView object,
which has been already addressed by previous works [74],
[75], and on the defence mechanisms that developers should
introduce. The high number of violations to Rule 11 can
be due to a lack of knowledge or an improper use of the
associated API. Finally, Rule 29 refers to misuses of the
cryptographic libraries in Android apps, which is an issue
widely addressed by previous works [32], [76]. Although we
found that the number of violations to the rules varies from
rule to rule and some rules are not violated so often, each
vulnerability is a possible attack surface and it, therefore,
requires the same attention.

RQ2. Considering the time required to analyze an app,
our rules have either a very low (i.e., close to zero) process-
ing time or a significantly high one: low processing time is
due to the analysis of just the AndroidManifest file, while
the reason for such high processing time lies in the adoption
of FlowDroid tool [5], [70], which is required by some rules
(i.e., Rule 1, Rule 7, Rule 9, Rule 16, Rule 18, Rule 22, Rule
25, Rule 26, Rule 30) to perform a static analysis of the apps.
In particular, FlowDroid is a static taint analysis tool that
builds the call-graph of an app to search for the connection
between a source and a sink object. The generation of such
graph, as well as the modeling of Android lifecycles and
callbacks, is a time-consuming task. The rules requiring
the use of FlowDroid have a varying performance which
depends on the number of violations and on the inherent
complexity of the app under analysis.

RQ3. Our findings, illustrated in Section 6.4, confirm
that the majority of apps vulnerabilities are introduced by
third-party libraries. Previous works [77], [78], [79] already
identified the possible threats introduced by third-party
libraries: in [77], M. Backes et al. propose an efficient ap-
proach for detecting third-party libraries within Android
apps and performed a large-scale analysis to finally identify
61 library versions affecting 296 top apps, by exposing
them to crypto-analytic attacks; [78] proposes FlexDroid,

an extension of the Android permission model that allows
developers to define which private information third-party
libraries can have access to; in [79], M. Sun et al. developed
a framework to isolate native third-party libraries from the
other components of an app.

7.2 Limitations

We found some SPECK rules having a low precision mainly
due to the adoption of a static analysis approach, which
assumes the inspection and evaluation of an app code
without its runtime execution. Thus, SPECK misses code
that is dynamically loaded at runtime by an app and it
cannot access runtime information or data generated dur-
ing the app execution. Consequently, the rules requiring
access to runtime information (e.g., Rule 11 that refers to
non-sensitive app data) have a limited detection precision.
Aware of this limitation, we decided that such rules print a
warning, reminding the user/developer about possible ma-
licious consequences associated to an improper usage of the
specific APIL In particular, the rules having lower precision
are: Rule 1, Rule 3, Rule 17, Rule 18, Rule 22. Rule 1 fails
when an Intent, first defined as implicit, then becomes
explicit (e.g., through the Intent.setComponent () or
when the Intent.createChooser () is called as an ar-
gument of another method). Rule 3 might find some false
positives due to the outdated mappings of the Android API
with the Android permissions [80], [81]. Such libraries cover
up to the Android API level 25, while the latest version
released is the 30*". Rule 17 detects a violation whenever
a query () method is found. However, even if present,
this method might not return any result. Thus, it cannot be
considered as a violation. Similarly to Rule 1, Rule 18 also
fails in case a method makes an explicit Intent implicit.
As in Rule 1 and Rule 18, Rule 22 struggles to detect if a
KeyGenerator variable uses a SecureRandom object after
its declaration.

Finally, FlowDroid has its own limitations: it resolves
reflective calls only if their arguments are string constants; it
is oblivious to native code and to multi-threading; it can not
handle Android lifecycle involving new callbacks methods.

8 CONCLUSION

The Android OS is getting more and more complex, provid-
ing new functionalities in every new release. While Android
developers have to keep up the pace with such evolution,
trying to make their apps attractive for mobile users, they
have also to consider the role of the attackers, that are
willing to exploit the Android apps vulnerabilities. To this
aim, researchers proposed several tools aimed at detecting
vulnerabilities in Android apps, but most of them focus
on a single class of vulnerabilities and none of them on
preventing developers from introducing vulnerabilities in
their own apps. Google provides a set of guidelines con-
cerning security and privacy issues of Android apps, which,
however, require a strong involvement by developers. We
believe there is an urgent need to release automatic tools
that can help developers with preventing the introduction
of software vulnerabilities in their apps. Thus, we first an-
alyze the Google security and privacy guidelines, currently

12

available in a textual format, and we “translate” them into
32 rules. We, then, propose SPECK (Security and Privacy
chECK of Android apps vulnerabilities), a rule-based static
analysis system that automatically finds the violations to our
rules. In particular, for each violated rule, SPECK shows the
developer the specific line of code where the vulnerability
has been detected, thus prompting him to fix the issue.
We manually validated the precision of the 32 rules and,
then, analyzed the Android ecosystem by launching SPECK
against 100 popular apps. We found that each app has at
least one violation to our rules, while more than the 50%
of them violates at least 17 rules. Few rules are violated by
almost all the apps (some of them even multiple times by the
same app). The majority of violations (90.13%) are located in
external libraries. The developers more prone to errors are
X-Flow (developer of Happy Color™), Voodoo (developer
of Fire Balls 3D, Ball Mayhem!, Hole.io, Paper.io 2, Helix
Jump) and Full Fat (developer of Grass cut).

9 ACKNOWLEDGEMENT

We would like to thank Julien Branlant, for his contribution
in the design and development of the 32 rules and of the
SPECK system, as well as Michele Agnello and Alberto
Molon, for their help in improving the experimental eval-
uation of SPECK.

This work was supported by the European Commission
under the Horizon 2020 Programme (H2020), as part of the
LOCARD project (Grant Agreement no. 832735).

REFERENCES

[1] “Mobile Operating System Market Share Worldwide,” 2020, last
access: June 20, 2022. [Online]. Available: https://gs.statcounter.
com/os-market-share/mobile/worldwide

[2] F Fischer, K. Bottinger, H. Xiao, C. Stransky, Y. Acar, M. Backes,
and S. Fahl, “Stack Overflow Considered Harmful? The Impact
of Copy Paste on Android Application Security,” in 2017 IEEE
Symposium on Security and Privacy (SP), 2017, pp. 121-136.

[8] “Google Play Protect,” 2020, last access: June 20, 2022.
[Online]. Available: https://developer.android.com/training/
articles/security-tips

[4] “Improve your code with lint checks,” 2017, last access: June
20, 2022. [Online]. Available: https://developer.android.com/
studio/write/lint

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps,” in Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI "14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 259-269. [Online]. Available:
https:/ /doi.org/10.1145/2594291.2594299

[6] “Droidsafe,” 2016, last access: June 20, 2022. [Online]. Available:
https:/ / github.com/MIT-PAC/droidsafe-src

[71 M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe
Exposure Analysis of Mobile In-App Advertisements,” in
Proceedings of the Fifth ACM Conference on Security and Privacy in
Wireless and Mobile Networks, ser. WISEC ‘12. New York, NY,
USA: Association for Computing Machinery, 2012, p. 101-112.
[Online]. Available: https://doi.org/10.1145/2185448.2185464

[8] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically
vetting android apps for component hijacking vulnerabilities,”
in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ser. CCS "12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 229-240. [Online].
Available: https://doi.org/10.1145/2382196.2382223

[9] “Blueseal,” 2014, last access: June 20, 2022. [Online]. Available:
http:/ /blueseal.cse.buffalo.edu/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android
Taint Flow Analysis for App Sets,” in Proceedings of the 3rd
ACM SIGPLAN International Workshop on the State of the Art in
Java Program Analysis, ser. SOAP ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 1-6. [Online].
Available: https://doi.org/10.1145/2614628.2614633

“Anadroid,” 2021, last access: June 20, 2022. [Online]. Available:
https:/ /github.com/RRua/AnaDroid

L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The Impact of
Vendor Customizations on Android Security,” in Proceedings of
the 2013 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS "13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 623-634. [Online]. Available:
https:/ /doi.org/10.1145/2508859.2516728

K. Lu, Z. Li, V. P. Kemerlis, Z. Wu, L. Lu, C. Zheng, Z. Qian, W. Lee,
and G. Jiang, “Checking more and alerting less: Detecting privacy
leakages via enhanced data-flow analysis and peer voting,” in
22nd Annual Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, February 8-11, 2015. The
Internet Society, 2015.

X. Xiao, N. Tillmann, M. Fahndrich, J. De Halleux, and
M. Moskal, “User-Aware Privacy Control via Extended Static-
Information-Flow Analysis,” in Proceedings of the 27th IEEE/ACM
International ~ Conference on Automated Software Engineering,
ser. ASE 2012. New York, NY, USA: Association for
Computing Machinery, 2012, p. 80-89. [Online]. Available:
https:/ /doi.org/10.1145/2351676.2351689

K. O. Elish, D. Yao, and B. Ryder, “User-Centric Dependence
Analysis For Identifying Malicious Mobile Apps,” in Proceedings of
the Workshop on Mobile Security Technologies 2012 (MoST’12), 2012.

X. Chen and S. Zhu, “DroidJust: Automated Functionality-
Aware Privacy Leakage Analysis for Android Applications,” in
Proceedings of the 8th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, ser. WiSec '15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2766498.2766507

J. Kim, Y. Yoon, and K. Yi, “SCANDAL: Static Analyzer for
Detecting Privacy Leaks in Android Applications,” in Proceedings
of the Workshop on Mobile Security Technologies (MoST’12), 2012.

X. Cui, J. Wang, L. C. K. Hui, Z. Xie, T. Zeng, and S. M.
Yiu, “WeChecker: Efficient and Precise Detection of Privilege
Escalation Vulnerabilities in Android Apps,” in Proceedings
of the 8th ACM Conference on Security & Privacy in Wireless
and Mobile Networks, ser. WiSec '15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2766498.2766509

Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S.
Wang, “Applntent: Analyzing Sensitive Data Transmission in
Android for Privacy Leakage Detection,” in Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications
Security, ser. CCS '13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 1043-1054. [Online]. Available:
https://doi.org/10.1145/2508859.2516676

J. P. Achara, M. Cunche, V. Roca, and A. Francillon, “Short
Paper: WifiLeaks: Underestimated Privacy Implications of
the ACCESS_WIFI_STATE Android Permission,” in 7th ACM
Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec), Oxford, United Kingdom, Jul. 2014. [Online]. Available:
https:/ /hal.inria.fr/hal-00997716

Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
Based Detection of Android Malware through Static Analysis,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2014. New York, NY,
USA: Association for Computing Machinery, 2014, p. 576-587.
[Online]. Available: https://doi.org/10.1145/2635868.2635869

M. A. El-Zawawy, E. Losiouk, and M. Conti, “Do not let
Next-Intent Vulnerability be your next nightmare: type system-
based approach to detect it in Android apps,” International
Journal of Information Security, Mar. 2020. [Online]. Available:
http:/ /link.springer.com/10.1007 /s10207-020-00491-x

——, “Vulnerabilities in android webview objects: Still not
the end!” Computers Security, vol. 109, p. 102395, 2021.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167404821002194

A. Pham, L. Dacosta, E. Losiouk, J. Stephan, K. Huguenin, and
J.-P. Hubaux, “Hidemyapp: Hiding the presence of sensitive
apps on android,” in 28th USENIX Security Symposium (USENIX

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]
[38]

[39]

13

Security 19). Santa Clara, CA: USENIX Association, Aug.
2019, pp. 711-728. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity19/presentation/pham

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,
“Android permissions demystified,” in Proceedings of the 18th
ACM Conference on Computer and Communications Security, ser.
CCS "11. New York, NY, USA: Association for Computing
Machinery, 2011, p. 627-638. [Online]. Available: https://doi.org/
10.1145/2046707.2046779

K. W. Y. Au, Y. E Zhou, Z. Huang, and D. Lie, “Pscout:
analyzing the android permission specification,” in the ACM
Conference on Computer and Communications Security, CCS’12,
Raleigh, NC, USA, October 16-18, 2012, T. Yu, G. Danezis, and
V. D. Gligor, Eds. ACM, 2012, pp. 217-228. [Online]. Available:
https:/ /doi.org/10.1145/2382196.2382222

A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Automatically
Securing Permission-Based Software by Reducing the Attack
Surface: An Application to Android,” in Proceedings of the
27th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2012. New York, NY, USA: Association
for Computing Machinery, 2012, p. 274-277. [Online]. Available:
https://doi.org/10.1145/2351676.2351722

D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,]. Klein,
and Y. L. Traon, “Effective Inter-Component Communication
Mapping in Android: An Essential Step Towards Holistic Security
Analysis,” in 22nd USENIX Security Symposium (USENIX Security
13). Washington, D.C.: USENIX Association, Aug. 2013, pp. 543
558. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/presentation/octeau

D. Gallingani and R. Gjomemo, “Static Detection and Automatic
Exploitation of Intent Message Vulnerabilities in Android Applica-
tions,” in Proceedings of the Workshop on Mobile Security Technologies
(MoST’12), 2012.

E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” ser. MobiSys "11.
New York, NY, USA: Association for Computing Machinery, 2011,
p. 239-252. [Online]. Available: https:/ /doi.org/10.1145/1999995.
2000018

S. Fahl, M. Harbach, T. Muders, L. Baumgértner, B. Freisleben,
and M. Smith, “Why Eve and Mallory Love Android: An
Analysis of Android SSL (in)Security,” in Proceedings of
the 2012 ACM Conference on Computer and Communications
Security, ser. CCS ’"12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 50-61. [Online]. Available:
https://doi.org/10.1145/2382196.2382205

M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An
empirical study of cryptographic misuse in android applications,”
in Proceedings of the 2013 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS '13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 73-84. [Online].
Available: https://doi.org/10.1145/2508859.2516693

J. Chen, C. Wang, Z. Zhao, K. Chen, R. Du, and G.-J. Ahn,
“Uncovering the Face of Android Ransomware: Characterization
and Real-Time Detection,” Trans. Info. For. Sec., vol. 13, no. 5, p.
1286-1300, May 2018.

M. Sun, M. Li, and J. C. S. Lui, “DroidEagle: Seamless
Detection of Visually Similar Android Apps,” in Proceedings
of the 8th ACM Conference on Security & Privacy in Wireless
and Mobile Networks, ser. WiSec '15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2766498.2766508

F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “ViewDroid:
Towards Obfuscation-Resilient Mobile Application Repackaging
Detection,” in Proceedings of the 2014 ACM Conference on Security
and Privacy in Wireless & Mobile Networks, ser. WiSec ‘14. New
York, NY, USA: Association for Computing Machinery, 2014,
p- 25-36. [Online]. Available: https://doi.org/10.1145/2627393.
2627395

“Argus static analysis framework,” 2018, last access: June 20,
2022. [Online]. Available: http:/ /pag.arguslab.org/argus-saf
“Androwarn,” 2019, last access: June 20, 2022. [Online]. Available:
https:/ /github.com/maaaaz/androwarn

“Apkanalyser,” 2013, last access: June 20, 2022. [Online]. Available:
https:/ / github.com/sonyxperiadev/ApkAnalyser
“Apkinspector,” 2013, last access: June 20, 2022. [Online].
Available: https://github.com/honeynet/apkinspector/

[40]

[41]

[42]

[43]
[44]
[45]
[46]
[47]

[48]

[49]

[50]
[51]
[52]

[53]

[54]
[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

“Apkleaks,” 2021, last access: June 20, 2022. [Online]. Available:
https:/ /github.com/dwisiswant0/apkleaks

“apkx - android apk decompilation for the lazy,” 2021, last
access: June 20, 2022. [Online]. Available: https://github.com/
b-mueller /apkx

E. Shen, N. Vishnubhotla, C. Todarka, M. Arora, B. Dhandapani,
E. J. Lehner, S. Y. Ko, and L. Ziarek, “Information Flows as
a Permission Mechanism,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ser. ASE
"14. New York, NY, USA: Association for Computing Machinery,
2014, p. 515-526. [Online]. Available: https://doi.org/10.1145/
2642937.2643018

“Cfgscandroid,” 2015, last access: June 20, 2022. [Online].
Available: https:/ /github.com/TACIXAT /CEGScanDroid
“Classyshark,” 2020, last access: June 20, 2022. [Online]. Available:
https:/ / github.com/google/android-classyshark

“Condroid,” 2016, last access: June 20, 2022. [Online]. Available:
https:/ /github.com/JulianSchuette /ConDroid

“Droidlegacy,” 2016, last access: June 20, 2022. [Online]. Available:
https:/ /bitbucket.org/srl/droidlegacy/src/master/

“Droidra,” 2017, last access: June 20, 2022. [Online]. Available:
https:/ / github.com/serval-snt-uni-lu/DroidRA

M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen,
and M. C. Rinard, “Information Flow Analysis of Android
Applications in DroidSafe,” in 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California,
USA, February 8-11, 2015. The Internet Society, 2015. [On-
line]. Available: https://www.ndss-symposium.org/ndss2015/
information-flow-analysis-android-applications-droidsafe
“Jaadas: Joint advanced application defect assessment for android
application,” 2021, last access: June 20, 2022. [Online]. Available:
https:/ /github.com/flankerhqd /JAADAS

“maldrolyzer,” 2015, last access: June 20, 2022. [Online]. Available:
https:/ / github.com/maldroid /maldrolyzer

“Quark-engine,” 2021, last access: June 20, 2022. [Online].
Available: https:/ /github.com/quark-engine/quark-engine
“Riskindroid,” 2020, last access: June 20, 2022. [Online]. Available:
https:/ / github.com/ClaudiuGeorgiu/RiskInDroid

A. Merlo and G. C. Georgiu, “Riskindroid: Machine learning-
based risk analysis on android,” in ICT Systems Security and Privacy
Protection, S. De Capitani di Vimercati and F. Martinelli, Eds.
Cham: Springer International Publishing, 2017, pp. 538-552.
“Smali-cfgs,” 2014, last access: June 20, 2022. [Online]. Available:
https:/ / github.com/EugenioDelfa/Smali-CFGs

“Smalisca: Static code analysis for smali,” 2017, last access: June 20,
2022. [Online]. Available: https://github.com/dorneanu/smalisca
“Sparta! static program analysis for reliable trusted apps,”
2016, last access: June 20, 2022. [Online]. Available: https:
/ /types.cs.washington.edu/sparta/

“Stacoan,” 2021, last access: June 20, 2022. [Online]. Available:
https:/ / github.com/vincentcox/StaCoAn

“Super android analyzer,” 2018, last access: June 20, 2022. [Online].
Available: https:/ /github.com/SUPERAndroid Analyzer/super
M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel,
“An Empirical Study of Cryptographic Misuse in Android
Applications,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS '13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 73-84.
[Online]. Available: https://doi.org/10.1145/2508859.2516693

J. Tang, J. Li, R. Li, H. Han, X. Gu, Z. Xu, and P. Nicopolitidis,
“Ssldetecter: Detecting ssl security vulnerabilities of android
applications based on a novel automatic traversal method,” Sec.
and Commun. Netw., vol. 2019, jan 2019. [Online]. Available:
https://doi.org/10.1155/2019/7193684

S. Salva and S. Zafimiharisoa, “APSET, an Android aPplication
SEcurity Testing tool for detecting intent-based vulnerabilities,”
International Journal on Software Tools for Technology Transfer, vol. 17,
pp- 201-, 02 2015.

P. Gadient, M. Ghafari, P. Frischknecht, and O. Nierstrasz, “Secu-
rity code smells in android icc,” Empir Software Eng, vol. 24, p.
3046-3076, 2019.

J. Gajrani, M. Tripathi, V. Laxmi, G. Somani, A. Zemmari, and
M. S. Gaur, “Vulvet: Vetting of vulnerabilities in android apps
to thwart exploitation,” Digital Threats, vol. 1, no. 2, may 2020.
[Online]. Available: https://doi.org/10.1145/3376121

H. Shahriar and H. M. Haddad, “Content provider leakage
vulnerability detection in android applications,” in Proceedings

[65]

[66]

[67]
[68]
[69]

[70]

[71]
[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

14

of the 7th International Conference on Security of Information and
Networks, ser. SIN ‘14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 359-366. [Online]. Available:
https://doi.org/10.1145/2659651.2659716

D. Bassolé, Y. Traoré, G. Koala, F. Tchakounté, and O. Sié, “Detec-
tion of vulnerabilities related to permissions requests for android
apps using machine learning techniques,” in SoCPaR, 2020.

B. F. Demissie, M. Ceccato, and L. K. Shar, “Security analysis
of permission re-delegation vulnerabilities in Android apps,”
3 2021. [Online]. Available: https://researchdata.smu.edu.sg/
articles /journal_contribution/Security_analysis_of_permission_
re-delegation_vulnerabilities_in_Android_apps/14236268

D. Wu and R. K. C. Chang, “Analyzing android browser apps for
file: // vulnerabilities,” in ISC, 2014.

“Cert tapioca,” 2021, last access: June 20, 2022. [Online]. Available:
https:/ / github.com/CERTCC/tapioca

“Top 10 Mobile Risks,” 2020, last access: June 20, 2022. [Online].
Available: https:/ /owasp.org/www-project-mobile-top-10/

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps,” SIGPLAN Not.,
vol. 49, no. 6, p. 259-269, Jun. 2014. [Online]. Available:
https://doi.org/10.1145/2666356.2594299

“AppBrain,” 2020, last access: June 20, 2022. [Online]. Available:
https:/ /www.appbrain.com/stats/google-play-rankings
“Android lint checks,” 2021, last access: June 20, 2022. [Online].
Available: http:/ /tools.android.com/tips/lint-checks

C. Zuo, J]. Wu, and S. Guo, “Automatically Detecting SSL
Error-Handling Vulnerabilities in Hybrid Mobile Web Apps,” in
Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, ser. ASIA CCS "15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 591-596.
[Online]. Available: https://doi.org/10.1145/2714576.2714583

X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N.
Peri, “Code Injection Attacks on HTML5-Based Mobile Apps:
Characterization, Detection and Mitigation,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 66-77. [Online]. Available:
https://doi.org/10.1145/2660267.2660275

P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, and G. Vigna, “A
Large-Scale Study of Mobile Web App Security,” in Proceedings of
the Workshop on Mobile Security Technologies (MoST’12), 2015.

1. Muslukhov, Y. Boshmaf, and K. Beznosov, “Source attribution of
cryptographic api misuse in android applications,” in Proceedings
of the 2018 on Asia Conference on Computer and Communications
Security, ser. ASIACCS “18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 133-146. [Online]. Available:
https://doi.org/10.1145/3196494.3196538

M. Backes, S. Bugiel, and E. Derr, “Reliable Third-Party
Library Detection in Android and Its Security Applications,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS "16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 356-367. [Online].
Available: https://doi.org/10.1145/2976749.2978333

J. Seo, D. Kim, D. Cho, I. Shin, and T. Kim, “FLEXDROID:
Enforcing In-App Privilege Separation in Android,” in 23rd
Annual Network and Distributed System Security Symposium,
NDSS 2016, San Diego, California, USA, February 21-24, 2016.
The Internet Society, 2016. [Online]. Available: http://wp.
internetsociety.org/ndss/wp-content/uploads/sites /25/2017 /
09/flexdroid-enforcing-in-app-privilege-separation-android.pdf
M. Sun and G. Tan, “NativeGuard: Protecting Android
Applications from Third-Party Native Libraries,” in Proceedings of
the 2014 ACM Conference on Security and Privacy in Wireless and
Mobile Networks, ser. WiSec '14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 165-176. [Online]. Available:
https://doi.org/10.1145/2627393.2627396

“axplorer,” 2020, last access: June 20, 2022. [Online]. Available:
https:/ / github.com/reddr/axplorer

M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weis-
gerber, “On Demystifying the Android Application Framework:
Re-Visiting Android Permission Specification Analysis,” in Pro-
ceedings of the 25th USENIX Conference on Security Symposium, ser.
SEC’16. USA: USENIX Association, 2016, p. 1101-1118.

Mauro Conti is Full Professor at the University
of Padua, Italy. He is also affiliated with TU
Delft and University of Washington, Seattle. He
obtained his Ph.D. from Sapienza University of
Rome, Italy, in 2009. After his Ph.D., he was a
Post-Doc Researcher at Vrije Universiteit Am-
sterdam, The Netherlands. In 2011 he joined
as Assistant Professor the University of Padua,
where he became Associate Professor in 2015,
and Full Professor in 2018. He has been Visiting
Researcher at GMU, UCLA, UCI, TU Darmstadt,
UF, and FIU. He has been awarded with a Marie Curie Fellowship (2012)
by the European Commission, and with a Fellowship by the German
DAAD (2013). His research is also funded by companies, including
Cisco, Intel, and Huawei. His main research interest is in the area of
Security and Privacy. In this area, he published more than 400 papers
in topmost international peer-reviewed journals and conferences. He is
Area Editor-in-Chief for IEEE Communications Surveys Tutorials, and
has been Associate Editor for several journals, including IEEE Com-
munications Surveys Tutorials, IEEE Transactions on Dependable and
Secure Computing, IEEE Transactions on Information Forensics and
Security, and IEEE Transactions on Network and Service Management.
He was Program Chair for TRUST 2015, ICISS 2016, WiSec 2017,
ACNS 2020, CANS 2021, and General Chair for SecureComm 2012,
SACMAT 2013, NSS 2021 and ACNS 2022. He is Senior Member of
the IEEE and ACM. He is a member of the Blockchain Expert Panel of
the Italian Government. He is Fellow of the Young Academy of Europe.
From 2020, he is Head of Studies of the Master Degree in Cybersecurity
at University of Padua.

Eleonora Losiouk is an Assistant Professor at
the University of Padua (ltaly), working in the
SPRITZ Group led by Prof. Mauro Conti. In
2018, she obtained her Ph.D. in Bioengineering
and Bioinformatics from the University of Pavia
(ltaly). She has been a Visiting Fellow at EPFL
in 2017. In 2020, she received the Seal of Excel-
lence for her Marie Sktodowska-Curie individual
project proposal and was awarded a Fulbright
Fellowship for visiting ICSI, Berkeley (USA). Her
main research interests regard the security and
privacy evaluation of the Android Operating System.

Roberto Rossini is a MSc in Computer Engi-
neering. He studied at the Universita degli Studi
di Padova for both his BSc in Information Engi-
neering and his MSc in Computer Engineering.
He was an exchange student at the National
Chiao Tung University in Hsinchu, Taiwan and at
the Eidgendssische Technische Hochschule in
Zurich, Switzerland. He is passionate in cyber-
security, in particular in the field of mobile and
web applications.

APPENDIX A

RULES

A.1 Rule 2 - Content provider access control
A.1.1 Apply signature-based permissions

Google guideline. When sharing data between two apps that
you control or own, use signature-based permissions. These per-
missions don’t require user confirmation and instead check that
the apps accessing the data are signed using the same signing key.
Therefore, these permissions offer a more streamlined, secure user
experience.

manifest xmlns:android="http://schemas.android.com

/apk/res/android" package="com.example.myapp">
rmi ion

android:name="my_custom_permission_name"
android:protectionLevel="signature"

Listing 1. Apply signature-based permissions

A.1.2 Disallow access to your app’s content providers

Google guideline. Unless you intend to send data from
your app to a different app that you don’t own, you should
explicitly disallow other developers’ apps from accessing the
ContentProvider objects that your app contains. This set-
ting is particularly important if your app can be installed on
devices running Android 4.1.1 (API level 16) or lower, as the
android:exported attribute of the <provider> element is
true by default on those versions of Android.
manifest xmlns:android="http://schemas.android.com
/apk/res/android" package="com.example.myapp"
application ...
<provi i
android:name="android.support.v4.content.
FileProvider"

android:authorities="com.example.myapp.
fileprovider"

android:exported="false"
<!-- Place child elements of <provider> here.

Listing 2. Disallow access to your app’s content providers

Pseudo-code. The rule we formalized in shown in Algo-
rithm 2

Rule 2: Content provider access control

begin
providers < getContentProviderObjs()
apilevel < getMinApiLevel()
foreach provider in providers do
if isExported(provider, apiLevel) then
if not useCustomPermission(provider)

then
Rule 2 is not respected.
end
end
end
end

Attack. If a ContentProvider object is exported and not
permission-protected, any other app on the same device can

1

interact with it, by launching SQL injection attacks, reading
or modifying its data.

A.2 Rule 3 - Provide the right permissions

Google guideline. Your app should request only the minimum
number of permissions necessary to function properly. When
possible, your app should relinquish some of these permissions
when they’re no longer needed.

Pseudo-code. The rule we formalized in shown in Al-
gorithm [3| For the mapping between the Android API
and the Android permissions, we used the online database
(https:/ / github.com /reddr/axplorer).

Rule 3: Provide the right permissions

begin

permissions <— getAllPermissions()

foreach perm in permissions do
sdkFuncs < getSdkFuncs(perm)
uriContProvs < getURIContProvs(perm)
names ¢ sdkFuncs + uriContProvs
if not allinJavaCode(names) then

Rule 3 is not respected.

end

end

end

Attack. To access protected resources on a mobile device,
an app has to declare the associated permissions. Any code
running within the same UID has access to the same set of
protected resources, defined according to the permissions
declared by the app. This can also happen for third-party
libraries, which an app might include to have additional
features. The higher the number of permissions declared by
an app, the higher the risk for the whole mobile device to
get attacked malicious code running within the same UID
of that app.

A.3 Rule 4 - Use intents to defer permissions

Google guideline. Whenever possible, don’t add a permission to
your app to complete an action that could be completed in another
app. Instead, use an intent to defer the request to a different app
that already has the necessary permission.

The following example shows how to use an intent to direct users
to a contacts app instead of requesting the READ_CONTACTS and
WRITE_CONTACTS permissions:

// Delegates the responsibility of creating the

// contact to a contacts app, which has already

// been granted the appropriate WRITE_CONTACTS

// permission.

Intent insertContactIntent = new
ACTION_INSERT) ;

insertContactIntent.setType (ContactsContract.
Contacts.CONTENT_TYPE) ;

Intent (Intent.

// Make sure that the user has a contacts app
// installed on their device.
if (insertContactIntent.resolveActivity (
getPackageManager ()) != null) {
startActivity (insertContactIntent) ;

}
Listing 3. Use intents to defer permissions

In addition, if your app needs to perform file-based 1/O — such
as accessing storage or choosing a file — it doesn’t need special
permissions because the system can complete the operations on
your app’s behalf. Better still, after a user selects content at a
particular URI, the calling app gets granted permission to the
selected resource.

Pseudo-code. The rule we formalized is shown in Algo-
rithm @

Rule 4: Use intents to defer permissions

begin
permissions <— getAllPermissions()
foreach perm in permissions do
if permin blacklist then
Rule 4 is not respected.
end
end
end

Attack. The attack that can exploit the vulnerability
detected by Rule 4 is the same as the one for Rule 3 in
Section[A.2]

A.4 Rule 7 - Use WebView objects carefully

Google guideline. Whenever possible, load only whitelisted
content in WebView objects. In other words, the WebView
objects in your app shouldn’t allow users to navigate to sites that
are outside of your control.

Pseudo-code. The rule we formalized is shown in Algo-
rithm

Rule 7: Use WebView objects carefully

begin
webViews < getAllWebView Vars()
whitelistedViews ¢ getSetWebViewClient()
foreach webView in webViews do
respected « False
foreach view in whitelistedViews do
if webView = view then
respected ¢ True

break
end

end

if not respected then
Rule 7 is not respected.

end

end

foreach view in whitelistedviews do

if not isOverridingUrlLoading(view) then
Rule 7 is not respected.

end

end

end

Attack. WebView objects are responsible for rendering
the web code either belonging to external resources (e.g., a
website) or saved in an app. If a WebView object loads any
website and does not refer to a specific whitelist, an attacker
might make the WebView object load a malicious website,
which has JavaScript code running on the client side and
able to steal sensitive information (e.g., cookies).

A5 Rule 8 - Store private data within internal storage

Google guideline. Store all private user data within the device’s
internal storage, which is sandboxed per app. Your app doesn’t
need to request permission to view these files, and other apps
cannot access the files. As an added security measure, when the
user uninstalls an app, the device deletes all files that the app
saved within internal storage.
The following code snippet demonstrates one way to write data to
storage:
// Creates a file with this name, or replaces an
// existing file that has the same name. Note that
// the file name cannot contain path separators.
final String FILE_NAME = "sensistive_info.txt";

String fileContents = "This is some top-secret
information!";

FileOutputStream fos = openFileOutput (FILE_NAME,
Context .MODE_PRIVATE) ;

fos.write (fileContents.getBytes());

fos.close();

Listing 4. Write data to the internal storage

The following code snippet shows the inverse operation, read-
ing data from storage:

// The file name cannot contain path separators.
final String FILE_NAME = "sensitive_info.txt";
FileInputStream fis = openFileInput (FILE_NAME) ;

// available () determines the approximate number of

// bytes that can be read without blocking.

int bytesAvailable = fis.available();

StringBuilder topSecretFileContents
StringBuilder (bytesAvailable) ;

’
= new

// Make sure that read() returns a number of bytes

// that is equal to the file’s size.

byte[] fileBuffer = new byte[bytesAvailable];

while (fis.read(fileBuffer) != -1) {
topSecretFileContents.append (fileBuffer);

}

Listing 5. Read data from the internal storage

Pseudo-code. The rule we formalized is shown in Algo-
rithm

Rule 8: Store private data within internal storage

begin
sl < “openFileOutput”
s2 < "MODE_PRIVATE”
methods < getAllCalledMethods()
foreach method in methods do
if method = s1 then
mode < getModeArg(method)
if not mode = s2 then
Rule 8 is not respected.
end
end
end
end

Attack. An attacker can read and pollute data since they
are not stored in the app private internal storage. Moreover,
through a a Man-in-the-Disk attack, an attacker can intercept
and potentially alter data while they are extracted by an app
from the external storage.

A.6 Rule 9 - Share data securely across apps

Google guideline. Follow these best practices in order to share
your app’s content with other apps in a more secure manner:

o Enforce read-only or write-only permissions as needed.

e Provide clients one-time access to data by using the
FLAG_GRANT_READ_URI_PERMISSION and
FLAG_GRANT_WRITE_URI_PERMISSIONfMg&

o When sharing data, use ”content://” URIs, not "file://” URIs.
Instances of FileProvider do this for you.

The following code snippet shows how to use URI permission
grant flags and content provider permissions to display an app’s
PDF file in a separate PDF Viewer app:
// Create an Intent to launch a PDF viewer for a
// file owned by this app.
Intent viewPdfIntent = new Intent (Intent.
ACTION_VIEW) ;

viewPdfIntent.setData (Uri.parse ("content://com.
example/personal-info.pdf"));

// This flag gives the started app read access to

// the file.

viewPdfIntent.addFlags (Intent.
FLAG_GRANT_READ_URI_PERMISSION) ;

// Make sure that the user has a PDF viewer app
// installed on their device.
if (viewPdfIntent.resolveActivity (
getPackageManager ()) != null) {
startActivity (viewPdfIntent);
}

Listing 6. Share data securely across apps

Pseudo-code. The rule we formalized is shown in Algo-
rithm 0]

Rule 9: Share data securely across apps

begin
str « “file:/”
arr < [“FLAG_GRANT_READ_URI_PERMIS-
SION”, “FLAG_GRANT_WRITE_URI_PERMIS-
SION”]
setDataIntents < getSetDatalntents()
foreach intent in setDataIntents do
uriScheme <— getURIScheme(intent)
if uriScheme = str then
Rule 9 is not respected.
end
flagArg < getAddFlagsArg(intent)
if not flagArgin arr then
Rule 9 is not respected.
end
end
end

Attack. URI permissions can be used to grant other apps
access to specific URIs. These permissions are temporary
and expire automatically when the receiving app’s task
stack is finished. However, if the URI to access a file is
declared as ”"file://”, the file system permissions are
changed and they allow anyone to access the file.

A.7 Rule 10 - Use scoped directory access

Google guideline. If your app needs to access only a specific
directory within the device’s external storage, you can use scoped

3

directory access to limit your app’s access to a device’s external
storage accordingly. As a convenience to users, your app should
save the directory access URI so that users don’t need to approve
access to the directory every time your app attempts to access it.
Note: if you use scoped directory access with a particular
directory in external storage, know that the user might eject
the media containing this storage while your app is running.
You should include logic to gracefully handle the change to
the Environment .getExternalStorageState () return
value that this user behaviour causes.

The following code snippet uses scoped directory access with the
pictures directory within a device’s primary shared storage:

private static final int
PICTURES_DIR_ACCESS_REQUEST_CODE = 42;

private void accessExternalPicturesDirectory () {
StorageManger sm = (StorageManager)
getSystemService (Context .STORAGE_SERVICE) ;
StorageVolume = sm.getPrimaryStorageVolume () ;
Intent intent = volume.createAccessIntent (
Environment .DIRECTORY_PICTURES) ;
startActivityForResult (intent,
PICTURES_DIR_ACCESS_REQUEST_CODE) ;

@Override
public void onActivityResult (int requestCode,
resultCode, Intent resultData) {
if (requestCode==PICTURES_DIR_ACCESS_REQUEST_CODE
&& resultCode == Activity.RESULT_OK) {

int

// User approved access to scoped directory in
// your app
if (resultData != null) {

Uri picturesDirUri = resultData.getData();

// Save user’s approval for accessing this

// directory in your app

ContentResolver myContentResolver =
getContentResolver () ;

myContentResolver.
takePersistableUriPermission (picturesDirUri,
Intent .FLAG_GRANT_READ_URI_PERMISSION) ;

}

}

Listing 7. Use scoped directory access

Warning: don’t pass null into createAccessIntent ()
unnecessarily because this grants your app access to the entire
volume that StorageManager finds for your app.

Pseudo-code. The rule we formalized is shown in Algo-
rithm [I0

Rule 10: Use scoped directory access

begin
arr < [“READ_EXTERNAL_STORAGE”,
“WRITE_EXTERNAL_STORAGE”"]

permissions < getAllPermissions()
foreach perm in permissions do

if permin arr then

Rule 10 is not respected.

end
end
end

Attack. As for Rule 3 in Section according to which
an app should declare the minimum number of permissions,
Rule 10 aims to prevent any malicious code running within
the same UID of the app from having access to the whole
external storage. Thus, if Rule 10 is not respected and the
app has access to the external storage, any malicious code
running inside it can not only compromise the app files, but
also the ones belonging to other apps.

A.8 Rule 12 - Use SharedPreferences in private mode

Google guideline. When using getSharedPreferences
to create or access your app’s SharedPreferences objects,
use MODE_PRIVATE. That way, only your app can access the
information within the shared preferences file.
If you want to share data across apps, don’t use Shared-
Preferences objects. Instead, you should follow the necessary
steps to share data securely across apps.

Pseudo-code. The Rule 12 pseudo-code is shown in

Algorithm

Rule 12: Use SharedPreferences in private mode

begin
s1 < “getSharedPreferences”
s2 < "MODE_PRIVATE”
methods < getAllCalledMethods()
foreach method in methods do
if method = s1 then
mode < getModeArg(method)
if not mode = s2 then
Rule 12 is not respected.
end
end
end
end

Attack. If an app accesses to its SharedPreferences
without the MODE_PRIVATE, a malicious app on the same
device can access the same and read/modify the stored
information.

A.9 Rule 13 - Keep services and dependencies up-to-
date

Google guideline. Most apps use external libraries and device
system information to complete specialized tasks. By keeping
your app’s dependencies up to date, you make these points of
communication more secure.

A.9.1 Check the Google Play services security provider

Note: this section applies only to apps targeting devices that have
Google Play services installed.

If your app uses Google Play services, make sure that it's updated
on the device where your app is installed. This check should be
done asynchronously, off of the Ul thread. If the device isn’t up-
to-date, your app should trigger an authorization error.

To determine whether Google Play services is up to date on the
device where your app is installed, follow the steps in the guide
for "Updating Your Security Provider to Protect Against SSL
Exploits’

1. https:/ / developer.android.com/training /articles /security-gms-
provider

4

Pseudo-code. The rule we formalized is shown in Algo-

rithm

Rule 13: Keep services and dependencies up-to-
date
begin

s1 < “ProviderInstaller.installlfNeeded”
s2 + “Providerlnstaller.installlfNeeded Async”
if playServicesDirExists() then
respected « False
javaCode < getAllJavaCode()
foreach word in javaCode do

if word in [s1, s2] then

| respected ¢ True

end
end
if not respected then

Rule 13 is not respected.
end
end
end

Attack. Not keeping Google Play services or third-party
libraries up-to-date would let an Android application vul-
nerable to some known vulnerabilities. An attacker might
exploit these vulnerabilities, which have been already iden-
tified and published.

A.10 Rule 14 - Check validity of data

Google guideline. If your app uses data from external storage,
make sure that the contents of the data haven’t been corrupted or
modified. Your app should also include logic to handle files that
are no longer in a stable format.

An example of a hash verifier appears in the following code
snippet:

Executor threadPoolExecutor = Executors.
newFixedThreadPool (4) ;
HashCallback {

onHashCalculated (@Nullable String hash);

hashRunning = calculateHash (inputStream,
threadPoolExecutor, hash -> {
(Objects.equals (hash, expectedHash)) {
// Work with the content.
}
1)

('hashRunning) {
// There was an error setting up the hash
// function.

calculateHash (@NonNull InputStream
stream, @NonNull Executor executor, @NonNull
HashCallback hashCallback) {
MessageDigest digest;
{
digest = MessageDigest.getInstance ("SHA-512");
} (NoSuchAlgorithmException nsa) {
4

}

// Calculating the hash code can take quite a bit
// of time, so it shouldn’t be done on the main
// thread.

executor.execute (() —> {
String hash;
(DigestInputStream digestStream =
DigestInputStream(stream, digest)) {
(digestStream.read() != -1) {
// The DigestInputStream does the work;
// nothing for us to do.
}
StringBuilder builder= StringBuilder () ;
(aByte : digest.digest()) {
builder.append (String.format ("$02x",
aByte)) .append (' :");
}
hash = builder.substring (0,
builder.length() - 1);
} (IOException e) {
hash = B
}

String calculatedHash = hash;
runOnUiThread (() —-> hashCallback.
onHashCalculated(calculatedHash));
1)

}
Listing 8. Check validity of data

Pseudo-code. The rule we formalized is shown in Algo-

rithm

Rule 14: Check validity of data
begin
str < “READ_EXTERNAL_STORAGE”
permissions ¢ getAllPermissions()
foreach perm in permissions do
if perm = str then
vars < getAllFileInputVars()
foreach var in vars do
if not checkValidity(var) then
Rule 14 is not respected.
end
end
end
end
end

Attack. If an app does not check the validity of the data
stored on the external storage, it might not rely that some
data could have been tampered with by a malicious app on
the same device.

A.11 Rule 15 - Create permissions

Google guideline. Generally, you should strive to define as few
permissions as possible while satisfying your security require-
ments. Creating a new permission is relatively uncommon for
most applications, because the system-defined permissions cover
many situations. Where appropriate, perform access checks using
existing permissions.

If you must create a new permission, consider whether you can
accomplish your task with a signature protection level. Signature
permissions are transparent to the user and allow access only
by applications signed by the same developer as the applica-
tion performing the permission check. If the new permission
is still required, it’s declared in the app manifest using the
<permission> element. Apps that wish to use the new permis-
sion can reference it by each adding a <uses-permission>

5

element in their respective manifest files. You can also add permis-
sions dynamically by using the addPermission () method.

If you create a permission with the dangerous protection level,
there are a number of complexities that you need to consider:

o The permission must have a string that concisely expresses
to a user the security decision they are required to make.

o The permission string must be localized to many different
languages.

e Users may choose not to install an application because a
permission is confusing or perceived as risky.

o Applications may request the permission when the creator of
the permission has not been installed.

Each of these poses a significant nontechnical challenge for you
as the developer while also confusing your users, which is why we
discourages the use of the dangerous permission level.

Pseudo-code. The rule we formalized is shown in Algo-

rithm

Rule 15: Create permissions

begin
str ¢ “dangerous”
permissions < getCustomPermissions()
foreach perm in permissions do
if getPermProtectLevel(perm) = str then
Rule 15 is not respected.
end
end
end

Attack. Defining new permissions without the signature
protection level might lead to a lack of access control to
protected resources. Any malicious app can declare the new
permission and exploit it, since no control over the signature
will be applied.

A.12 Rule 16 - Erase data in WebView cache

Google Guideline. If your application accesses sensitive data
with a WebView, you may want to use the clearCache ()
method to delete any files stored locally. You can also use server-
side headers such as no-cache to indicate that an application
should not cache particular content.

Pseudo-code. The Rule 16 pseudo-code is shown in

Algorithm

Rule 16: Erase data in webview cache
begin
webViews < getAllWebView Vars()
foreach webView in webViews do
if not usesClearCache(webView) then
Rule 16 is not respected.
end
end
end

Attack. If an app using a WebView object does not
clear its cache through the clearCache () method, any
malicious code running within the app UID (e.g., third-party
libraries) can access to the data saved in the cache.

A.13 Rule 17 - Avoid SQL injections

Google Guideline. When accessing a content provider, use
parameterized query methods such as query (), update (),
and delete () to avoid potential SQL injection from untrusted
sources. Note that using parameterized methods is not sufficient
if the selection argument is built by concatenating user data
prior to submitting it to the method.
Don't have a false sense of security about the write permission.
The write permission allows SQL statements that make it possible
for some data to be confirmed using creative WHERE clauses and
parsing the results. For example, an attacker might probe for the
presence of a specific phone number in a call log by modifying
a row only if that phone number already exists. If the content
provider data has predictable structure, the write permission may
be equivalent to providing both reading and writing.
Pseudo-code. The Rule 17 pseudo-code is shown in

Algorithm

Rule 17: Avoid SQL injections: use content
providers

begin
str < “query”
extendCP < getClassesExtendCP()
foreach obj in extendCP do
methods < getObjMethods(ob j)
foreach method in methods do
if method = str then
Rule 17 is not respected.
end
end
end
end

Attack. If an app uses parameterized query methods
to access one of its content providers, but the selection
argument is built by concatenating user data, an attacker
can launch SQL injection attacks.

A.14 Rule 18 - Prefer explicit intents

Google Guideline. For activities and broadcast receivers, in-
tents are the preferred mechanism for asynchronous IPC in An-
droid. Depending on your application requirements, you might
use sendBroadcast (), sendOrderedBroadcast (), or
an explicit intent to a specific application component. For security
purposes, explicit intents are preferred.

Caution: if you use an intent to bind to a Service, ensure that
your app is secure by using an explicit intent. Using an implicit
intent to start a service is a security hazard because you can’t be
certain what service will respond to the intent, and the user can’t
see which service starts. Beginning with Android 5.0 (API level
21), the system throws an exception if you call bindService ()
with an implicit intent.

Note that ordered broadcasts can be consumed by a recipient, so
they may not be delivered to all applications. If you are sending an
intent that must be delivered to a specific receiver, you must use
an explicit intent that declares the receiver by name.

Senders of an intent can verify that the recipient has permission
by specifying a non-null permission with the method call. Only
applications with that permission receive the intent. If data within

6

a broadcast intent may be sensitive, you should consider applying
a permission to make sure that malicious applications can’t regis-
ter to receive those messages without appropriate permissions. In
those circumstances, you may also consider invoking the receiver
directly, rather than raising a broadcast.

Pseudo-code. The Rule 18 pseudo-code is shown in

Algorithm

Rule 18: Prefer explicit intents

begin
bindNames < getBindNamesIntents()
startService < getStartServicelntents()
sendOrdBcast < getSendOrdBcastIntents()
startActivity < getStartActivitylntents()
intents < bindNames + startService +
sendOrdBcast + startActivity

foreach intent in intents do

if not isExplicit(intent) then

Rule 18 is not respected.

end
end
end

Attack. The attack is the same as for Rule 1.

A.15 Rule 19 - Use IP networking

Google guideline. Some applications use localhost network
ports for handling sensitive IPC. You should not use this ap-
proach because these interfaces are accessible by other applications
on the device. Instead, use an Android IPC mechanism where
authentication is possible, such as with a Service. Binding to
INADDR_ANY is worse than using loopback because then your
application may receive requests from anywhere.

Pseudo-code. The rule we formalized is shown in Algo-

rithm [19

Rule 19: Use IP networking

begin
arr < [“INADDR_ANY”, “localhost”,
“127.0.0.1”]

javaCode < getAllJavaCode()
foreach word in javaCode do

if word in arr then

Rule 19 is not respected.

end
end
end

Attack. A malicious app can connect to the same lo-
calhost network ports as legitimate apps and intercept the
messages they exchange.

A.16 Rule 20 - Use services

Google guideline. A Service is often used to supply function-
ality for other applications to use. Each service class must have a
corresponding <service> declaration in its manifest file.

By default, services are not exported and cannot be invoked by
any other application. However, if you add any intent filters to

the service declaration, it is exported by default. It's best if you
explicitly declare the android:exported attribute to be sure
it behaves as you’d like. Services can also be protected using the
android:permission attribute. By doing so, other applica-
tions need to declare a corresponding <uses-permission>
element in their own manifest to be able to start, stop, or bind to
the service.
A service can protect individual IPC calls into it with permissions,
by calling checkCallingPermission () before executing
the implementation of that call. You should use the declarative
permissions in the manifest, since those are less prone to oversight.
Caution: don’t confuse client and server permissions; ensure that
the called app has appropriate permissions and verify that you
grant the same permissions to the calling app.

Pseudo-code. The rule we formalized is shown in Algo-
rithm 201

Rule 20: Use services
begin
services < getAllServices()
foreach service in services do
if hasIntentFilter(service)
or isExported(service) then
if hasPermission(service) then
if not checksCallingPerm(service)

then
Rule 20 is not respected.
end
end
end
end

end

Attack. If a Service is exported, a malicious app can
interact with it by sending malicious Intent messages, that
compromise the Service runtime execution.

A.17 Rule 21 - Use telephony networking

Google guideline. The SMS protocol was primarily designed
for user-to-user communication and is not well-suited for apps
that want to transfer data. Due to the limitations of SMS, you
should use Google Cloud Messaging (GCM) and IP networking
for sending data messages from a web server to your app on a user
device.
Beware that SMS is neither encrypted nor strongly authenticated
on either the network or the device. In particular, any SMS
receiver should expect that a malicious user may have sent the
SMS to your application. Don't rely on unauthenticated SMS
data to perform sensitive commands. Also, you should be aware
that SMS may be subject to spoofing and/or interception on the
network. On the Android-powered device itself, SMS messages are
transmitted as broadcast intents, so they may be read or captured
by other applications that have the READ_SMS permission.

Pseudo-code. The rule we formalized is shown in Algo-
rithm 21

Attack. A malicious app declaring the SMS related per-
missions can intercept and modify messages targeting a
legitimate app or it can even send a malicious SMS to the
SMS Receiver of a legitimate app.

Rule 21: Use telephony networking

begin
arr + [“SEND_SMS”, “READ_SMS”,
“RECEIVE_SMS”]
permissions <— getAllPermissions()
foreach perm in permissions do
if permin arr then
Rule 21 is not respected.

end
end

A.18 Rule 22 - Use cryptography

Google guideline.

Use a secure random number generator, SecureRandom, to
initialize any cryptographic keys generated by KeyGenerator.
Use of a key that is not generated with a secure random number
generator significantly weakens the strength of the algorithm and
may allow offline attacks.

If you need to store a key for repeated use, use a mechanism, such
as KeyStore, that provides a mechanism for long term storage
and retrieval of cryptographic keys.

Pseudo-code. The rule we formalized is shown in Algo-
rithm 22

Rule 22: Use cryptography

begin
keyGens ¢ getAllKeyGenVars()
secRands ¢« getAllSecRandVars()
foreach keyGen in keyGens do

if not initsWithAny(keyGen, secRands)

then
Rule 22 is not respected.

end
end
end

Attack. When keys are not generated through secure
random number generators, a malicious app can infer the
value of such keys and decrypt any sensitive data previ-
ously encrypted by the legitimate app.

A.19 Rule 23 - Use broadcast receivers

Google Guideline. A BroadcastReceiver handles asyn-
chronous requests initiated by an Intent.
By default, receivers are exported and can be invoked by any other
application. If your BroadcastReceiver is intended for use
by other applications, you may want to apply security permissions
to receivers using the <receiver> element within the applica-
tion manifest. This prevents applications without appropriate per-
missions from sending an intent to the BroadcastReceiver.

Pseudo-code. The Rule 23 pseudo-code is shown in
Algorithm

Attack. Any malicious app can create an intent which
can trigger an exported receiver not protected by a permis-
sion.

For instance, let’s consider an exported and not protected
receiver which sends an SMS to a phone number received
as an extra parameter of the triggering intent. A malicious

Rule 23: Use broadcast receivers
begin
receivers ¢ getAllBcastReceivers()
foreach receiver in receivers do
if isExported(receiver) then
if not hasPermission(receiver) then
Rule 23 is not respected.
end
end
end
end

application could trigger the receiver by sending intents
with a premium rate SMS number. Thus, it would force
users to send messages without their consent, stealing them
money.

A.20 Rule 24 - Dynamically load code

Google guideline. We strongly discourage loading code from
outside of your application APK. Doing so significantly increases
the likelihood of application compromise due to code injection or
code tampering. It also adds complexity around version manage-
ment and application testing. It can also make it impossible to
verify the behavior of an application, so it may be prohibited in
some environments.
If your application does dynamically load code, the most important
thing to keep in mind about dynamically-loaded code is that it
runs with the same security permissions as the application APK.
The user makes a decision to install your application based on
your identity, and the user expects that you provide any code run
within the application, including code that is dynamically loaded.
The major security risk associated with dynamically loading code
is that the code needs to come from a verifiable source. If the
modules are included directly within your APK, they cannot be
modified by other applications. This is true whether the code is a
native library or a class being loaded using DexClassLoader.
Many applications attempt to load code from insecure locations,
such as downloaded from the network over unencrypted protocols
or from world-writable locations such as external storage. These
locations could allow someone on the network to modify the
content in transit or another application on a user’s device to
modify the content on the device.

Pseudo-code. The rule we formalized is shown in Algo-

rithm

Rule 24: Dynamically load code

begin
str « “DexClassLoader”
javaCode < getAllJavaCode()
foreach word in javaCode do
if word = str then
Rule 24 is not respected.
end
end
end

Attack. A malicious app can launch a code injection
attack through which it modifies the code that a legitimate

8

app will dynamically load. This aim can be achieved if the
code is saved in the external storage, is downloaded from a
remote location (and, thus, intercepted and modified).

A.21 Rule 25 - Common problems with hostname veri-
fication

Google guideline. Caution: Replacing HostnameVerifier
can be very dangerous if the other virtual host is not under your
control, because a man-in-the-middle attack could direct traffic to
another server without your knowledge.
If you are still sure you want to override hostname verifica-
tion, here is an example that replaces the verifier for a single
URLConnection with one that still verifies that the hostname
is at least on expected by the app:

// Create an HostnameVerifier that hardwires the

// expected hostname. Note that is different than

// the URL’s hostname: example.com versus

// example.org

HostnameVerifier verifier =
@Override

HostnameVerifier () {
verify (String hostname, SSLSession
session) {
HostnameVerifier hv=HttpsURLConnection.
getDefaultHostnameVerifier () ;
hv.verify ("example.com", session);

}
Vi

// Tell the URLConnection to use our

// HostnameVerifier

URL url = URL ("https://example.org/") ;

HttpsURLConnection urlConnection =
(HttpsURLConnection)url.openConnection () ;

urlConnection.setHostnameVerifier (verifier);

InputStream in = urlConnection.getInputStream() ;

copyInputStreamToOutputStream(in, System.out);

Listing 9. problems with hostname verification

Pseudo-code. The rule we formalized is shown in Algo-
rithm 23]

Rule 25: Common problems with hostname verifi-
cation
begin

connections < getAllHttpsUrlConnections()
foreach connection in connections do

if hasSetHostnameVerifier(connection)

then
Rule 25 is not respected.

end
end
end

Attack. A malicious app can perform a man-in-the-
middle attack by redirecting the traffic, originally sent to
a legitimate server, towards another malicious one.

A.22 Rule 26 - Warnings about using SSLSocket di-
rectly

Google guideline. Caution: SSLSocket does not per-
form hostname wverification. It is up to your app to
do its own hostname verification, preferably by calling
getDefaultHostnameVerifier () with the expected host-
name. Further beware that HostnameVerifier.verify()

doesn’t throw an exception on error but instead returns a boolean
result that you must explicitly check.

Here is an example showing how you can do this. It shows that
when connecting to gmail.com port 443 without SNI support,
you'll receive a certificate for mail.google.com. This is expected in
this case, so check to make sure that the certificate is indeed for
mail.google.com:

// Open SSLSocket directly to gmail.com

SocketFactory sf = SSLSocketFactory.getDefault ();

SSLSocket socket = (SSLSocket) sf.createSocket ("
gmail.com", 443);

HostnameVerifier hv = HttpsURLConnection.
getDefaultHostnameVerifier () ;

SSLSession s = socket.getSession();

// Verify that the certicate hostname is for
// mail.google.com. This is due to lack of SNI
// support in the current SSLSocket.
if ('hv.verify("mail.google.com", s)) {
throw new SSLHandshakeException ("Expected mail.
google.com, found " + s.getPeerPrincipal());

}
// At this point SSLSocket performed certificate
// verification and we have performed hostname

// verification, so it is safe to proceed.

// ... use socket
socket.close () ;

Listing 10. Warnings about using SSLSocket directly

Pseudo-code. The rule we formalized is shown in Algo-
rithm 26

Rule 26: Warnings about using SSLSocket directly

begin
sslSessions < getAllSslSessions()
verifiers ¢ getAllHostnameVerifiers()
foreach ver in verifiers do

if not verifiesWithAny(ver, ss1Sessions)

then
Rule 26 is not respected.
end
end
end

Attack. A malicious app can launch a man-in-the-middle
attack against an app that does not use HTTPS or SSL at all.
Moreover, if the victim app does not verify the certificate
sent by a server, the attacker can even pretend to the remote
server and establish a communication with the victim app.

A.23 Rule 27 - Configure CAs for debugging

Google guideline. When debugging an app that connects over
HTTPS, you may want to connect to a local development server,
which does not have the SSL certificate for your production
server. In order to support this without any modification to
your app’s code, you can specify debug-only CAs, which are
trusted only when android:debuggable is true, by using
debug-overrides. Normally, IDEs and build tools set this
flag automatically for non-release builds.

This is safer than the usual conditional code because, as a security
precaution, app stores do not accept apps which are marked

debuggable.

res/xml/network_security_config.xml:

<?xml version="1.0" encoding="utf-8"7?>
letwork-security-config
cbug-overrides
trust—-anchor
certificate
trust—anchor
oug-overrides
letwork—-security-config

s src="@raw/debug_cas"

Listing 11. Configure CAs for debugging

Pseudo-code. The rule we formalized is shown in Algo-
rithm 27

Rule 27: Configure CAs for debugging

begin
str < “networkSecurityConfig”
elementl ¢ “<network-security-config>"
element2 ¢ “<debug-overrides>"
app < getManifestApplicationElement()
appAttrs ¢ getAttrs(app);
respected < False
foreach attr in appAttrs do
if attr = str then
confElements ¢ getNetSecElements()
if elementl in confElements then
if element?2 in confElements then
respected < True

break
end

end

end

end

if not respected then
Rule 27 is not respected.

end

end

Attack. Using conditional code to handle connection to a
local development server could lead to mistakes in produc-
tion builds. If developers forget this conditional code, or this
conditional code is not well managed, then an attacker could
exploit these mistakes and perform a man-in-the-middle
attack.

A.24 Rule 28 - Opt out of cleartext traffic

Google guideline. Note: the guidance in this section applies
only to apps that target Android 8.1 (API level 27) or lower.
Starting with Android 9 (API level 28), cleartext support is
disabled by default.

Applications intending to connect to destinations using only
secure connections can opt-out of supporting cleartext (using
the unencrypted HTTP protocol instead of HTTPS) to those
destinations. This option helps prevent accidental regressions in
apps due to changes in URLs provided by external sources such
as backend servers. See NetworkSecurityPolicy.isC-
leartextTrafficPermitted /() for more details.

For example, an app may want to ensure that all connections
to secure.example.com are always done over HTTPS to
protect sensitive traffic from hostile networks.
res/xml/network_security config.xml:

<?xml version="1.0" encoding="utf-8"?>
cleartextTrafficPermitted="false"

includeSubdomains="true"
secure.example.com

Listing 12. Opt out of cleartext traffic

Pseudo-code. The rule we formalized is shown in Algo-
rithm 28]

Rule 28: Opt out of cleartext traffic

begin

sl < “networkSecurityConfig”

s2 < “cleartextTrafficPermitted”

element ¢ “<domain-config>"

app < getManifestApplicationElement()

appAttrs ¢ getAttrs(app);

foreach attr in appAttrs do

if attr = s1 then

confElements <« getNetSecElements()

if element in confElements then

dcAttrs ¢ getAttrs(element)

foreach dcAttr in dcAttrs do

if dcAttr.name = s2 then
if dcAttr.value then
Rule 28 is not respected.
end
end

end

end

end

end

end

Attack. With the cleartextTrafficPermitted flag
set to true, any connection using HTTP is allowed. Thus,
an attacker can eavesdrop the cleartext content of any com-
munication established by the victim app.

A.25 Rule 30 - Deprecated cryptographic functionality

Google guideline. The following subsections describe depre-
cated functionality that you should no longer use in your app.

A.25.1 Bouncy Castle algorithms

A number of algorithms from the "Bouncy Castle provider’ﬂ
that are also provided by another provider have been depracated
in Android P. This only affects cases where the implementation
from the Bouncy Castle provider is explicitly requested, such
as Cipher.getInstance ("AES/CBC/PKCS7PADDING",
"BC" or Cipher.getInstance ("AES/CBC/PKCS7PADD—
ING", Security.getProvider ("BC")). Requesting a spe-
cific provider is discouraged, so if you follow that guideline this
deprecation should not affect you.

2. https:/ /www.bouncycastle.org/

10

A.25.2 Password-based encryption ciphers without an IV

Password-based encryption (PBE) ciphers that require an initial-
ization vector (IV) can obtain it from the key, if it’s suitably
constructed, or from an explicitly-passed IV. When passing a PBE
key that doesn’t contain an 1V and no explicit 1V, the PBE ciphers
on Android currently assume an IV of zero.

When using PBE ciphers, always pass an explicit 1V, as shown in
the following code snippet:

SecretKey key = ...;
Cipher cipher = Cipher.getInstance (
"PBEWITHSHA256AND256BITAES-CBC-BC") ;
[1 iv = [16];
SecureRandom () .nextBytes (iv) ;
cipher.init (Cipher.ENCRYPT_MODE,
IvParameterSpec (iv));

Listing 13. Password-based encryption ciphers without an IV

key,

Pseudo-code. The rule we formalized is shown in Algo-
rithm B0l

Rule 30: Deprecated cryptographic functionality

begin
ciphers < getAllCipherGetInstance()
foreach cipher in ciphers do
if hasSecond Argument(cipher) then
Rule 30 is not respected.
end
if hasPBE(cipher) then
if not hasInit(cipher) then
Rule 30 is not respected.
end
end
end
end

Attack. When deprecated and insecure crytographic al-
gorithms are used, a malicious app can decrypt any sensi-
tive data previously encrypted by the legitimate app.

A.26 Rule 31 - Migrate existing data

Google guideline. If a user updates their device to
use Direct Boot mode, you might have existing data
that needs to get migrated to device encrypted stor-

age. Use Context .moveSharedPreferencesFrom () and
Context.moveDatabaseFrom/() to migrate preference and
database data between credential encrypted storage and device
encrypted storage.
Use your best judgment when deciding what data to migrate
from credential encrypted storage to device encrypted storage. You
should not migrate private user information, such as passwords
or authorization tokens, to device encrypted storage. In some
scenarios, you might need to manage separate sets of data in the
two encrypted stores.

Pseudo-code. The rule we formalized is shown in Algo-
rithm

Attack. A malicious app, that has access to the device
encrypted storage, could scan the device encrypted storage
searching for private information, such as passwords or
authorization tokens.

Rule 31: Migrate existing data

begin
arr < [“moveSharedPreferencesFrom”,
“moveDatabaseFrom”]

methods < getAllCalledMethods()
foreach method in methods do

if method in arr then

Rule 31 is not respected.

end
end
end

A.27 Rule 32 - Access device encrypted storage

Google guideline. Use device encrypted storage only for infor-
mation that must be accessible during Direct Boot mode. Do not
use device encrypted storage as a general-purpose encrypted store.

Pseudo-code. The rule we formalized is shown in Algo-
rithm B2

Rule 32: Access device encrypted storage

begin
methods < getAllCalledMethods()
str ¢ “createDeviceProtectedStorageContext”
foreach method in methods do

if method = str then

Rule 32 is not respected.

end
end
end

Attack. A malicious app, that has access to the device
encrypted storage, could scan the device encrypted storage
searching for private information, such as passwords or
authorization tokens.

11

APPENDIX B
RULES VIOLATIONS EXAMPLES FROM REAL-
WORLD APP

B.1 Rule 1 - Show an app chooser

public boolean onOptionsItemSelected(Menultem
menultem) {

} else {
com.hinkhoj.dictionary.b.a.a(getActivity (),
Share", "Scrabble Game", "");

Intent intent = new Intent();
intent.setAction ("android.intent.action.SEND") ;
intent.putExtra ("android.intent.extra.SUBJECT",
"Hinkhoj’s Scrabble Game");

intent.putExtra ("android.intent.extra.TEXT",
Hey I love to play the Scrabble Game of Hinkhoj\
nPlease download the app from here: http://dict.
hinkhoj.com/install-app.php\n\n");
intent.setType ("text/plain");

startActivity (intent);

return true;

}

B.2 Rule 2 - Content provider access control

<provider android:name="com.hinkhoj.dictionary.
WordSearch.wordsearch.view.
WordDictionaryProvider" android:authorities="com
.hinkhoj.dictionary.wordsearch.provider.words"/>

B.3 Rule 3 - Provide the right permissions

<manifest xmlns:android="http://schemas.android.com/
apk/res/android" android:versionCode="93"
android:versionName="8.3.3.7" android:
installLocation="auto" package="HinKhoj.
Dictionary">
<uses-sdk android:minSdkVersion="16"
targetSdkVersion="26"/>
<uses-permission android:name="android.
permission.ACCESS_COARSE_LOCATION"/>
<uses-permission android:name="android.
permission.CAMERA" />
<uses-permission android:name="android.
permission.SYSTEM _ALERT_WINDOW"/>
<uses-permission android:name="android.
permission.RECEIVE_BOOT_COMPLETED"/>
<uses-permission android:name="android.
permission.GET_ACCOUNTS"/>
<uses-permission android:name="android.
permission.USE_CREDENTIALS"/>
<uses-permission android:name="android.
permission.INTERNET" />
<uses-permission android:name="android.
permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="com.android.
vending.BILLING" />
<uses-permission android:name="android.
permission.AUTHENTICATE_ACCOUNTS"/>
<uses-permission android:name="com.google.
android.c2dm.permission.RECEIVE" />
<uses-permission android:name="android.
permission.WAKE_LOCK"/>
<uses-permission android:name="android.
permission.VIBRATE" />
<uses-permission android:name="android.
permission.GET_TASKS"/>

android:

<uses-permission android:name="android.
permission.READ_CONTACTS"/>

<uses-permission android:name="android.
permission.TYPE_APPLICATION_OVERLAY"/>
<uses-permission android:name="android.
permission.READ_PHONE_STATE"/>
<uses-permission android:name="android.
permission.READ_EXTERNAL_STORAGE" />
<uses-permission android:name="android.
permission.WRITE_EXTERNAL_STORAGE"/>
<uses—feature android:name="android.hardware.
touchscreen" android:required="false"/>
<uses—feature android:name="android.hardware.
portrait" android:required="false"/>
<uses—feature android:name="android.hardware.
camera" android:required="false"/>
<uses-permission android:name="android.
permission.RECEIVE_SMS" android:protectionlLevel=
"signature"/>

B.4 Rule 4 - Use intents to defer permissions

<manifest xmlns:android="http://schemas.android.com/
apk/res/android" android:versionCode="93"
android:versionName="8.3.3.7" android:
installLocation="auto" package="HinKhoj.
Dictionary">

<uses—-sdk android:minSdkVersion="16" android:
targetSdkVersion="26"/>

<uses-permission android:name="android.permission.
ACCESS_COARSE_LOCATION"

<uses-permission android:name="android.permission.
CAMERA"

<uses-permission android:name="android.permission.
GET_ACCOUNTS"

<uses-permission android:name="android.permission.
READ_CONTACTS"

<uses-permission android:name="android.permission.
READ_EXTERNAL_STORAGE"

<uses-permission android:name="android.permission.
RECEIVE_SMS" android:protectionLevel="signature"

B.5 Rule 5 - Use SSL traffic
public static String a(String str) throws
IOException {

InputStream inputStream;

HttpURLConnection httpURLConnection = (
HttpURLConnection) new URL(str) .openConnection ()
4

httpURLConnection.setRequestProperty ("Accept
-Encoding", "gzip, deflate");

httpURLConnection.setConnectTimeout (
CBConstant .HTTP_TIMEOUT) ;

httpURLConnection.setReadTimeout (CBConstant.
HTTP_TIMEOUT) ;
httpURLConnection.connect () ;

B.6 Rule 6 - Use HTML message channels

private void n () {
this.s.getSettings () .setJavaScriptEnabled(
true);
this.s.addJavascriptInterface (this,
this.s.getSettings () .
setSupportMultipleWindows (true);

"PayU") ;

12

B.7 Rule 7 - Use WebView objects carefully

private static String c(Context context, boolean z)
{
synchronized (d.class) {
if (f1618a != null) {
return f£1618a;
}
try {
try {
fl1618a = a(context, "android.
webkit.WebSettings", "android.webkit.WebView") ;
} catch (Exception unused?2) ({
f1618a = a(context, "android.
webkit.WebSettingsClassic", "android.webkit.
WebViewClassic");
}
} catch (Exception unused3) {
WebView webView = new WebView (
context.getApplicationContext ());
fl1618a = webView.getSettings() .
getUserAgentString();
webView.destroy () ;
}

return f1618a;

B.8 Rule 8 - Store private data within internal storage

public String readFilelInputStream(Context context,
String str, int i) {
String str2 = "";

try
if (!new File (context.getFilesDir (), str
) .exists ()) {
context.openFileOutput (str, 1i);
}
FileInputStream openFileInput = context.
openFileInput (str);
while (true) {
int read = openFilelInput.read();
if (read == -1) {
break;
}
str2 = str2 + Character.toString((
char) read);

}
openFilelInput.close();

B.9 Rule 9 - Share data securely across apps

public void onClick (View view) {
Intent intent = new Intent ("org.
openintents.action.PICK_FILE") ;
intent.setData (Uri.parse ("file://" + ((
WordListActivity.this.b.getText ())));
intent.putExtra("org.openintents.extra.
BUTTON_TEXT", WordListActivity.this.getString(R.
string.EXPORT)) ;
if (WordListActivity.this.b()) {
WordListActivity.this.
startActivityForResult (intent, 2);
} else {
WordListActivity.this.a();

Object)

B.10 Rule 10 - Use scoped directory access

<manifest xmlns:android="http://schemas.android.com/
apk/res/android" android:versionCode="93"
android:versionName="8.3.3.7" android:
installlLocation="auto" package="HinKhoj.
Dictionary">
<uses-sdk android:minSdkVersion="16"
targetSdkVersion="26"/>

android:

<uses-permission android:name="android.
permission.READ_EXTERNAL_STORAGE"
<uses-permission android:name="android.
permission.WRITE_EXTERNAL_STORAGE"

B.11
files

Rule 11 - Store only non-sensitive data in cache

private static a b (Context context, String str)
throws IOException, XmlPullParserException ({

b bVar = new b (str);

XmlResourceParser loadXmlMetaData = context.
getPackageManager () .resolveContentProvider (str,
128) .loadXmlMetaData (context .getPackageManager ()
, "android.support.FILE_PROVIDER_PATHS") ;

if (loadXmlMetaData == null) {

throw new IllegalArgumentException ("
Missing android.support.FILE_PROVIDER_PATHS meta

—-data");
}
while (true) {
int next = loadXmlMetaData.next ();
if (next == 1) {
return bVar;
}
if (next == 2) {
String name = loadXmlMetaData.
getName () ;

File file = null;
String attributeValue =

loadXmlMetaData.getAttributeValue (null, "name");
String attributeValue2 =
loadXmlMetaData.getAttributeValue (null, "path");

if ("root-path".equals (name)) {

file = b;
} else if ("files-path".equals (name)
) A
file = context.getFilesDir();
} else if ("cache-path".equals (name)
) A
file = context.getCacheDir();
} else if ("external-path".equals(
name)) {
file = Environment.

getExternalStorageDirectory();
}

B.12 Rule 12 - Use SharedPreferences in private mode

private static SharedPreferences a(Context context)
{
return context.getSharedPreferences ("
multidex.version", Build.VERSION.SDK_INT < 11 ?
0 : 4);
}

B.13 Rule 14 - Check validity of data

13

private static a b (Context context, String str)
throws IOException, XmlPullParserException {

b bVar = new b (str);

XmlResourceParser loadXmlMetaData = context.
getPackageManager () .resolveContentProvider (str,
128) .loadXmlMetaData (context.getPackageManager ()
, "android.support.FILE_PROVIDER_PATHS");

if (loadXmlMetaData == null) {

throw new IllegalArgumentException ("
Missing android.support.FILE_PROVIDER _PATHS meta

—data");
}
while (true) {
int next = loadXmlMetaData.next ();
if (next == 1) {
return bVar;
}
if (next == 2) {
String name = loadXmlMetaData.
getName () ;

File file = null;
String attributeValue =

loadXmlMetaData.getAttributeValue (null, "name");
String attributeValue2 =
loadXmlMetaData.getAttributeValue (null, "path");

if ("root-path".equals (name)) {

file = b;
} else if ("files-path".equals (name)
) A
file = context.getFilesDir();
} else if ("cache-path".equals (name)
) A
file = context.getCacheDir();
} else if ("external-path".equals(
name)) {
file = Environment.
getExternalStorageDirectory () ;
} else if ("external-files-path".
equals (name)) {
File[] a2 = b.a(context, (String

) null);
if (a2.length > 0) {
file = a2[0];

B.14 Rule 16 - Erase data in WebView cache

public void fillOTPOnBankPage () {
try {
if (this.i != null && !TextUtils.isEmpty
(this.ah) && this.i.has(getString(d.g.
cb_fill_otp))) {
WebView webView = this.s;
webView.loadUrl ("javascript:" + this
.1.getString(getString(d.g.cb_fill _otp)) + " (\""
+ this.ah + "\",\"url\")");
this.ah = null;
}
} catch (JSONException e) {
com.google.a.a.a.a.a.a.af(e);

}

B.15 Rule 17 - Avoid SQL injections

String[] strArr, String

String str2) {...}

public Cursor query (Uri uri,
str, String[] strArr2,

B.16 Rule 18 - Prefer explicit intents

public static boolean a(Context context,
d dvar) {
Intent intent = new Intent ("android.support.
customtabs.action.CustomTabsService");
if (!TextUtils.isEmpty (str)) {
intent.setPackage (str);

String str,

}

return context.bindService (intent, dVar, 33)

B.17 Rule 19 - Use IP networking

private f (c cVar) ({
this.f1570a = new Object ();
this.b = Executors.newFixedThreadPool (8);
this.c = new ConcurrentHashMap () ;
this.g = (c) j.a(cVar);
try {
this.d = new ServerSocket (0, 8,
InetAddress.getByName ("127.0.0.1"));
this.e = this.d.getLocalPort ();

B.18 Rule 20 - Use services

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/
apk/res/android" android:versionCode="93"
android:versionName="8.3.3.7" android:
installLocation="auto" package="HinKhoj.
Dictionary">

<uses-sdk android:minSdkVersion="16" android:
targetSdkVersion="26"/>

<service android:name="com.firebase.jobdispatcher.
GooglePlayReceiver" android:permission="com.
google.android.gms.permission.
BIND_NETWORK_TASK_SERVICE" android:exported="
true"

B.19 Rule 21 - Use telephony networking

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/
apk/res/android" android:versionCode="93"
android:versionName="8.3.3.7" android:
installLocation="auto" package="HinKhoj.
Dictionary">

<uses—-sdk android:minSdkVersion="16" android:
targetSdkVersion="26"/>

<uses-permission android:name="android.permission.
RECEIVE_SMS" android:protectionlLevel="signature"

B.20 Rule 22 - Use cryptography

private static void generateKey (KeyGenParameterSpec
keyGenParameterSpec) throws
GeneralSecurityException {
try {
KeyGenerator instance = KeyGenerator.
getInstance ("AES", ANDROID_KEYSTORE) ;
instance.init (keyGenParameterSpec);
instance.generateKey () ;
} catch (ProviderException e) {
throw new GeneralSecurityException (e.
getMessage (), e);
}
}

14

B.21 Rule 23 - Use broadcast receivers

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/
apk/res/android" android:versionCode="93"
android:versionName="8.3.3.7" android:
installLocation="auto" package="HinKhoj.
Dictionary">

<uses-sdk android:minSdkVersion="16" android:
targetSdkVersion="26"/>

<receiver android:name="com.hinkhoj.dictionary.
receiver.OfflineAnalyticsReceiver" android:
enabled="true" android:exported="true"

B.22 Rule 24 - Dynamically load code

public static ahi a(Context context,
String str2, boolean z) ({

String str,

ahi.d = new DexClassLoader (file.getAbsolutePath(),

cacheDir.getAbsolutePath (), null, ahi.f2925a.
getClassLoader());

a(file);

ahi.a(cachebDir, "1505450608132");

a(String.format ("%$s/%s.dex", cacheDir, "
1505450608132")) ;

if (((Boolean) bnr.f().a(bgz.br)) .booleanvValue () &&

lahi.s) {

IntentFilter intentFilter = new IntentFilter();
intentFilter.addAction ("android.intent.action.
USER_PRESENT") ;

intentFilter.addAction ("android.intent.action.
SCREEN_OFF") ;

ahi.f2925a.registerReceiver (new a(ahi, null),
intentFilter);

ahi.s = true;

B.23 Rule 25 - Common problems with hostname veri-
fication

public final class zzd extends HttpsURLConnection {
private final zze zzhf;
private final HttpsURLConnection zzhg;

/* access modifiers changed from: package-
private */
public zzd (HttpsURLConnection httpsURLConnection
, zzbg zzbg, zzat zzat) {
super (httpsURLConnection.getURL ()) ;
this.zzhg = httpsURLConnection;
this.zzhf = new zze (httpsURLConnection,
, zzat);

}

zzbg

B.24 Rule 26 - Warnings about using SSLSocket di-
rectly

private final Socket 1i() {
try {

SSLSocket sSLSocket = (SSLSocket)
SSLCertificateSocketFactory.getDefault (60000,
sSLSessionCache) .createSocket (host, port);

if (HttpsURLConnection.
getDefaultHostnameVerifier () .verify (host,
sSLSocket.getSession())) {

return sSLSocket;

}

String valueOf4 = String.valueOf (this.f);

StringBuilder sb2 = new StringBuilder (39 +
String.valueOf (valueOf4) .length());

sb2.append ("Error while verifying secure
socket to ");

sb2.append (valueOf4) ;

throw new bbl (sb2.toString());
} catch (UnknownHostException e4) {

String valueOf5 = String.valueOf (host);

throw new bbl (valueOf5.length() != 0 2 "
unknown host: ".concat (valueOf5) : new String("
unknown host: "), e4);

B.25 Rule 28 - Opt out of cleartext traffic

<?xml version="1.0" encoding="utf-8"7?>
<network-security-config>

<domain-config cleartextTrafficPermitted="true">
<domain includeSubdomains="true">localhost
</domain>
</domain-config>
</network-security-config>

B.26 Rule 29 - Choose a recommended algorithm

public final class amy implements amx<Cipher> {
/* Return type fixed from ’java.lang.Object’ to
match base method =/
@Override // com.google.android.gms.internal.amx
public final /% synthetic %/ Cipher a(String str
, Provider provider) throws
GeneralSecurityException {

return provider == null ? Cipher.getInstance

(str) : Cipher.getInstance(str, provider);

}

B.27 Rule 30 - Deprecated cryptographic functionality

private static Cipher getCipher () throws
NoSuchPaddingException, NoSuchAlgorithmException
{
if (Util.SDK_INT == 18) {
try {
return Cipher.getInstance ("AES/CBC/
PKCS5PADDING", "BC");
} catch (Throwable unused) {
}
}
return Cipher.getInstance ("AES/CBC/
PKCS5PADDING") ;
}

B.28 Rule 32 - Access device encrypted storage

public static Context
createDeviceProtectedStorageContext (@NonNull
Context context) {
if (Build.VERSION.SDK_INT >= 24) {
return context.
createDeviceProtectedStorageContext () ;
}

return null;

APPENDIX C
THE 100 APKS ANALYZED IN THE EXPERIMENTS

| ID [Name | Package Name Size | Downloads |
1 8 Ball Pool com.miniclip.eightballpool 13.6 MB 500,000,000+
2 Abs Workout A6W fitness.flatstomach.homeworkout.absworkout 4.98 MB 10,000,000+
3 Amazon Kindle com.amazon.kindle 33.54 MB 100,000,000+
4 Amazon Prime Video com.amazon.avod.thirdpartyclient 28.99 MB 100,000,000+
5 Amazon Shopping com.amazon.mShop.android.shopping 48.93 MB 100,000,000+
6 Android Accessibility Suite com.google.android.marvin.talkback 3.96 MB | 5,000,000,000+
7 AppLock com.domobile.applock 7.53 MB 50,000,000+
8 Ball Mayhem! com.clement.ballmayhem 23.11 MB 10,000,000+
9 BitLife com.candywriter.bitlife 14.37 MB 10,000,000+
10 | Bitmoji com.bitstrips.imoji 17.05 MB 100,000,000+
11 BookMyShow com.bt.bms 22.52 MB 50,000,000+
12 | Candy Crush Friends Saga com.king.candycrush4 7.19 MB 10,000,000+
13 | Candy Crush Saga com.king.candycrushsaga 7.35 MB 500,000,000+
14 | Cloud Print com.google.android.apps.cloudprint 3.12 MB | 1,000,000,000+
15 Coin Master com.moonactive.coinmaster 10.59 MB 50,000,000+
16 | Color Bump 3D com.colorup.game 22.43 MB 100,000,000+
17 DH Texas Poker com.droidhen.game.poker 7.44 MB 10,000,000+
18 Discord com.discord 13.54 MB 100,000,000+
19 | Doodle Toy!™ com.doodletoy 1.83 MB 10,000,000+
20 DoorDash com.dd.doordash 15.07 MB 10,000,000+
21 | Dream League Soccer com.firsttouchgames.dlsa 7.61 MB 10,000,000+
22 Drive and Park com.parking.game 12.91 MB 50,000,000+
23 Drum Pad Machine com.agminstruments.drumpadmachine 20.07 MB 50,000,000+
24 Endomondo com.endomondo.android 13.03 MB 10,000,000+
25 | English Hindi Dictionary HinKhoj.Dictionary 13.86 MB 10,000,000+
26 FindNow com.ratelekom.findnow 27.27 MB 10,000,000+
27 Fire Balls 3D com.NikSanTech.FireDots3D 23.1 MB 50,000,000+
28 Flick Shoot net.mobilecraft.football 4.62 MB 10,000,000+
29 | GO Weather com.gau.go.launcherex.gowidget.weatherwidget 13.79 MB 50,000,000+
30 | Google Play Games com.google.android.play.games 7.87 MB | 1,000,000,000+
31 | Google Sheets com.google.android.apps.docs.editors.sheets 21.1 MB 500,000,000+
32 | GooglePlayServices for AR com.google.ar.core 5.29 MB 100,000,000+
33 | Granny com.dvloper.granny 6.88 MB 100,000,000+
34 | Grass Cut com.fullfat.bw 31.73 MB 10,000,000+
35 Grubhub com.grubhub.android 20.15 MB 10,000,000+
36 HOOKED tv.telepathic.hooked 19.14 MB 10,000,000+
37 | Happy Color™ com.pixel.art.coloring.colornumber 2591 MB 50,000,000+
38 | Happy Glass com.gamebmobile.lineandwater 21.73 MB 100,000,000+
39 | Helix Jump com.h8games.helixjump 30.08 MB 100,000,000+
40 Hole.io io.voodoo.holeio 22.3 MB 50,000,000+
41 | Homescapes com.playrix.homescapes 9.81 MB 100,000,000+
42 | Hotspot Shield Free hotspotshield.android.vpn 17.7 MB 100,000,000+
43 | Hulu com.hulu.plus 14.24 MB 50,000,000+
44 Ice Age Village com.gameloft.android. ANMP.GloftIAHM 6.31 MB 50,000,000+
45 | Idle Supermarket Tycoon com.codigames.market.idle.tycoon 15.3 MB 10,000,000+
46 Instagram com.instagram.android 26.24 MB | 1,000,000,000+
47 Life360 com.life360.android.safetymapd 22.25 MB 50,000,000+
48 | Light-It Up com.crazylabs.light.it.up 21.76 MB 10,000,000+
49 | Logo Quiz logos.quiz.companies.game 13.79 MB 50,000,000+
50 | Lucky Day com.luckyday.app 35.4 MB 10,000,000+
51 | Lyft me.lyft.android 66.48 MB 10,000,000+
52 | Magic Tiles 3 com.youmusic.magictiles 13.08 MB 100,000,000+
53 Microsoft Outlook com.microsoft.office.outlook 42.89 MB 100,000,000+
54 Netflix com.netflix.mediaclient 14.3 MB 500,000,000+
55 News Break com.particlenews.newsbreak 12.56 MB 10,000,000+
56 | OfferUp com.offerup 28.49 MB 10,000,000+

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

Oppa doll
Paint Pop 3D
Paper.io 2
PayPal
Pinterest

Pluto TV
Polysphere
Postmates
Roblox
Samsung Notes
Sea Battle
Skater Boy

Sky Map

Skype

Smart Lock
Snowball.io
Solitaire
SoundCloud
Spotify
Stadium Horn
Stickman Hook
Subway Surfers
Tank Stars
TextNow

The Weather Channel
Tiles Hop

Tubi

Twitter

Uber

Video Collage Maker
Waze

Weeder Match
Wisepilot

Wish

Word Cookies!®
Word Swipe
Words Story
Wordscapes

YP

YouTube Kids
YouTube Music
ZArchiver
ZEDGE™
Zombie Evil

com.percent.mybest
com.magjg.roundhit

io.voodoo.paper2
com.paypal.android.p2pmobile
com.pinterest

tv.pluto.android
com.playgendary.polyspherecoolgame
com.postmates.android
com.roblox.client
com.samsung.android.app.notes
com.byril.seabattle
com.game.SkaterBoy
com.google.android.stardroid
com.skype.android.access
ukzzang.android.app.protectorlite
com.geishatokyo.snowballio
com.brainium.solitairefree
com.soundcloud.android
com.spotify.music
com.progimax.airhorn.free
com.mindy.grap1
com.kiloo.subwaysurf
com.playgendary.tanks
com.enflick.android.TextNow
com.weather.Weather
com.amanotes.beathopper

com.tubitv

com.twitter.android

com.ubercab
com.scoompa.collagemaker.video
com.waze
idle.weedermatch.casualgame
org.microemu.android.se.appello.lp.Lightpilot
com.contextlogic.wish
com.bitmango.go.wordcookies
com.wordgame.puzzle block.crush
com.word.game.fun.puzzle.prison.escape.captain
com.peoplefun.wordcross
com.yellowpages.android.ypmobile
com.google.android.apps.youtube.kids
com.google.android.apps.youtube.music
ru.zdevs.zarchiver

net.zedge.android
com.feelingtouch.gnz

19.71 MB
23.15 MB
28.04 MB
34.0 MB
297 MB
15.29 MB
16.09 MB
7.38 MB
4.84 MB
18.77 MB
10.99 MB
10.07 MB
459.99 KB
846.58 KB
7.19 MB
10.3 MB
13.26 MB
22.02 MB
27.5 MB
3.55 MB
11.38 MB
12.0 MB
14.17 MB
43.72 MB
24.09 MB
15.47 MB
16.64 MB
1.85 MB
6.43 MB
10.91 MB
17.74 MB
16.35 MB
6.1 MB
23.2 MB
14.95 MB
13.29 MB
8.41 MB
25.8 MB
10.18 MB
11.56 MB
15.95 MB
501.69 KB
39.13 MB
5.98 MB

10,000,000+
50,000,000+
100,000,000+
100,000,000+
100,000,000+
10,000,000+
50,000,000+
5,000,000+
100,000,000+
500,000,000+
10,000,000+
100,000,000+
50,000,000+
1,000,000,000+
5,000,000+
10,000,000+
10,000,000+
100,000,000+
500,000,000+
10,000,000+
50,000,000+
1,000,000,000+
100,000,000+
50,000,000+
100,000,000+
100,000,000+
50,000,000+
500,000,000+
500,000,000+
10,000,000+
100,000,000+
1,000,000+
5,000,000+
100,000,000+
10,000,000+
10,000,000+
50,000,000+
10,000,000+
50,000,000+
100,000,000+
100,000,000+
50,000,000+
100,000,000+
10,000,000+

APPENDIX D
EVALUATION DATA

TABLE 2
Raw data of Fig. 4 together with average times (in seconds) for each rule.

Rule | Apps | Violations | Avg. Time
1 87.0 477.0 407.200
2 21.0 30.0 0.061
3 3.0 36.0 3.058
4 72.0 225.0 0.059
5 96.0 1946.0 2.165
6 94.0 2390.0 2.261
7 84.0 2146.0 419.263
8 50.0 140.0 11.222
9 3.0 7.0 400.487
10 77.0 120.0 0.178
11 95.0 1818.0 10.766
12 74.0 160.0 9.805
13 43.0 43.0 19.909
14 32.0 108.0 7.241
15 0.0 0.0 0.075
16 91.0 2459.0 330.776
17 89.0 392.0 29.707
18 87.0 907.0 364.488
19 34.0 51.0 0.677

20 59.0 380.0 38.930
21 3.0 5.0 0.072
22 22.0 42.0 253.346
23 88.0 426.0 2.767
24 52.0 87.0 0.522
25 37.0 52.0 278.396
26 80.0 472.0 236.193
27 0.0 0.0 0.085
28 0.0 0.0 0.082
29 96.0 2821.0 2.413
30 35.0 70.0 280.774
31 0.0 0.0 9.236
32 64.0 146.0 9.200

TABLE 3

Raw data for Fig. 5 (Rules 1-16).

AppID R1 R2 R3 R4 R5 Ré6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16
1 13.499 0.017 0.019 0.016 0.270 0.210 11.614 1.864 13.772 0.019 1914 1.855 5.285 7.755 0.017 11.809
2 386.269 0.074 0.088 0.068 1.765 5.663 590.866 22222 374.935 0.233 22959 22119 2.296 0.502 0.096 580.138
3 456.160 0.077 0.084 0.328 1.538 2.209 701.892 13.349 458.985 0.086 12.025 11.690 17.213 13.730 0.085 678.697
4 812.221 0.381 0.276 0.052 5.753 10.052 596.821 48.741 440.674 0.130 9.378 9.134 10.989 13.637 0.059 345.384
5 991.242 0.139 0.148 0.111 2.061 0.956 1001.714 9.493 968.438 0.128 8912 8.258 29.333 0.584 0.144 1001.077
6 280.801 0.089 0.071 0.049 0.930 0.362 287.250 5.099 296.378 0.147 5.150 4.925 0.074 0.000 0.063 77.082
7 868.317 0.199 0.192 0.171 2431 1.756 650.757 11.763 702.769 0.230 12.639 12.082 24.532 16.207 0.193 629.568
8 143.798 0.050 0.088 0.042 1.430 1.384 321.765 6.975 101.380 0.047 6.280 6.063 17.209 0.440 0.045 337.622
9 129.707 0.055 0.065 0.057 0.761 0.492 402.942 5.335 135.196 0.059 4.825 4.676 1.629 8.793 0.065 418.858
10 52.605 0.026 0.022 0.020 0.409 0.416 37.263 2.459 118.692 0.065 3122 2.758 4.603 15.603 0.022 105.512
11 242.039 0.022 0.024 0.026 0.424 0.249 240.969 3.011 243.136 0.025 3.129 2.966 7.023 11.507 0.024 39.941
12 28.865 0.013 0.013 0.011 0.101 0.089 100.730 1.058 104.691 0.046 1.672 0.808 6.025 0.414 0.013 43.580
13 62.372 0.040 0.039 0.036 1.144 0.973 315.698 5.570 144.068 0.154 5.766 5.486 5.130 0.421 0.047 78.338
14 428.836 0.068 0.073 0.064 1.811 5.400 543.648 19.939 513.811 0.160 20.448 19.754 29.454 0.718 0.082 516.787
15 328.724 0.057 4.740 0.062 1.250 1.909 325.779 8.364 328.869 0.062 8.831 8.475 12.473 0.461 0.059 326.284
16 559.938 0.070 0.090 0.065 1.881 4.739 521.670 18.028 516.029 0.172 18.623 18.017 26.195 0.461 0.081 512.803
17 92.847 0.100 0.065 0.103 0.840 0.605 91.075 6.331 92.159 0.066 6.435 6.292 10.669 5.358 0.065 92.148
18 369.880 0.055 0.067 0.054 1.373 2.829 326.708 10.249 364.045 0.155 12.199 11.654 15.755 21.080 0.059 372.628
19 438.522 0.090 0.093 0.117 0.996 0.626 441.985 7.047 445.287 0.095 7.257 7.079 25.780 5.042 0.093 239.298
20 188.602 0.068 0.086 0.070 0.664 0.468 168.859 7.388 336.397 0.181 8.683 8.453 22.781 5.852 0.083 188.382
21 266.774 0.022 0.055 0.020 0.194 0.158 56.957 1.714 249.136 0.027 1.581 1.442 4.690 0.391 0.017 59.183
22 15.533 0.009 0.010 0.013 0.095 0.100 50.523 1.065 57.915 0.019 1.072 0.942 3.267 0.382 0.009 58.235
23 87.170 0.027 0.028 0.025 0.808 0.538 287.438 2982 87.999 0.030 3.191 2984 5.237 0.441 0.028 87.484
24 45.718 0.026 0.059 0.024 0.543 1.151 67.835 4.491 68.364 0.106 5.149 4.200 3.695 0.381 0.025 23.217
25 435.885 0.047 0.315 0.038 3.351 1.459 424.720 18.872 438.389 0.085 4.733 4.592 9.635 0.461 0.050 73.460
26 283.371 0.098 0.105 0.108 2429 3.209 257.791 20.700 270.126 0.110 21.263 20.649 34.407 20.029 0.107 260.107
27 229.400 0.018 0.028 0.017 0.523 0.390 248.193 1.646 283.277 0.021 1.720 1.593 5.844 0.457 0.019 82.566
28 57.245 0.018 0.031 0.022 0.481 0.609 335.107 3.120 124473 0.072 3.239 3.050 8.758 25393 0.019 272.186
29 410.349 0.076 0.086 0.071 2176 5.770 599.448 19.807 413.295 0.234 23.549 22515 2.231 0.531 0.102 603.568
30 1086.222 0.007 0.007 0.006 0.209 0.230 890.145 0.718 1104.692 0.008 0.744 0.712 0.008 12.500 0.007 889.082
31 343.184 0.061 0.060 0.053 1.503 2.232 343.371 9.393 345.171 0.061 9.631 9.355 14.186 0.672 0.059 339.374
32 274.670 0.027 0.028 0.030 0.911 1.075 239.482 3.154 259.306 0.089 3.499 3.265 5.638 11.800 0.040 70.399
33 264.621 0.044 0.039 0.038 0.346 0.346 265.571 5.897 284.231 0.093 6.037 5.878 13.029 8.269 0.038 67.228
34 271.265 0.048 0.044 0.045 1.023 0.968 269.717 4.970 270.388 0.046 5.107 4.937 14.937 0.442 0.044 68.526
35 20.772 0.016 0.024 0.018 0.092 0.064 19.573 1.107 20.153 0.021 1.119 1.055 2.723 1.050 0.015 21.011
36 159.944 0.094 0.098 0.079 0.773 0.845 152.219 4.375 171.266 0.302 5.250 4.986 32.362 0.624 0.104 140315
37 67.967 0.060 0.062 0.063 0.818 0.810 64.228 6.488 68.469 0.064 6.707 6.543 26.997 0.702 0.062 64.828
38 64.054 0.089 0.093 0.087 1.140 0.991 62.638 7.228 63.301 0.095 7.486 7.263 34.449 105.377 0.094 61.830
39 15.883 0.016 0.019 0.010 0.067 0.085 15.240 0.550 14.510 0.029 0.556 0.572 0.948 0.428 0.015 3.808
40 139.545 0.063 0.087 0.062 0.904 0.720 118.381 6.891 112.477 0.067 6.177 5.963 20.935 0.431 0.065 50.879
41 28.441 0.010 0.037 0.008 0.130 0.175 29.385 0.448 34.044 0.041 0.401 0.164 0.016 0.403 0.016 31.207
42 7.161 0.022 0.544 0.025 0.388 0.161 6.749 1.873 7.068 0.023 1913 1.845 10.504 0.580 0.024 6.592
43 569.478 0.091 0.104 0.092 1.670 0.915 567.311 7.927 570.807 0.105 8.071 7.909 17.215 8.248 0.103 366.391
44 394.415 0.080 0.085 0.069 1.784 5.792 571.373 22931 391.106 0.200 23.781 23.074 2.378 0.455 0.101 575.440
45 309.806 0.052 0.055 0.051 1.016 0.822 247.830 8.944 263.247 0.142 8.761 8.521 28.134 0.430 0.062 183.506
46 216.784 0.152 0.151 0.147 1.663 1.663 204.199 16.975 205.028 0.149 17.476 16.957 56.537 3.506 0.147 203.098
47 997.697 0.042 0.566 0.042 11.989 32.514 983.153 63.118 963.961 0.347 109.787 111.612 32.468 0.652 0.087 701.590
48 308.950 0.053 0.104 0.065 0.546 0.702 368.547 31.404 423.567 0.578 33.893 33.317 5.507 0.690 0.059 427.921
49 242.396 0.071 0.072 0.069 0.468 0.597 239.740 5.966 241.775 0.073 6.081 5.938 4.540 0.892 0.070 239.432
50 781.344 0.088 0.118 0.090 1.581 0.996 725.389 13.387 728.182 0.277 13.654 13.163 21.986 8.395 0.099 502.626
51 747.754 0.088 0.101 0.088 2.065 3.313 753.364 17.442 733.482 0.206 18.819 17.578 28.280 16.256 0.100 743.667
52 1885.873 0.059 0.622 0.055 16.802 31.923 1819.659 73.327 1750.750 0.671 54.385 49.497 174.701 0.491 0.910 1812.757
53 805.923 0.117 0.154 0.117 2.007 2.271 631.578 18.173 818.462 0.316 18.629 18.096 51.148 9.905 0.139 591.393
54 114.859 0.072 0.053 0.047 1.084 1317 392.094 7.381 135.518 0.050 6.706 6.395 7.203 0.448 0.048 381.535
55 109.742 0.051 0.056 0.048 1.004 2.097 109.978 8.994 111.806 0.057 9.308 8.958 12.729 0.456 0.055 107.139
56 87.893 0.041 0.036 0.035 0.845 1.012 46.698 4.369 127.319 0.117 5.184 4.960 13.307 3.728 0.036 82.328
57 349.557 0.054 0.058 0.053 0.697 0.529 339.846 8.060 350.433 0.060 8.226 8.041 24.527 0.523 0.058 186.977
58 1131.209 0.105 0.138 0.114 1.836 1.814 1076.332 13.037 1115.358 0.328 14.302 13.728 34.667 7.901 0.123 879.092
59 89.470 0.042 0.044 0.043 1.187 1.304 285.367 6.914 88.472 0.048 7.222 6.917 7.036 7.332 0.046 283.814
60 318.725 0.046 0.057 0.046 1.142 1.335 314.998 7.134 339.753 0.126 8.468 8.121 25.196 24.800 0.057 411.012
61 3294.419 0.094 1.245 0.093 72.810 11.373 3510.744 116.046 3591.011 5.694 73.104 25.993 237.564 10.483 0.220 3390.502
62 353.146 0.067 0.073 0.065 1.860 3.259 528916 12.670 353.599 0.073 12.274 13.216 25.694 0.493 0.085 301.801
63 330.582 0.051 0.058 0.046 1.010 1318 366.896 6.661 252.323 0.126 6.891 6.528 7.204 8.281 0.057 317.566
64 845.586 0.093 0.108 0.093 0.835 0.782 845.520 12.280 850.864 0.256 12.493 12.139 33.988 0.480 0.124 653.862
65 356.494 0.065 0.064 0.057 1.245 4.071 363.368 12.715 361.222 0.066 13.086 12.666 18.424 0.462 0.064 357.821
66 369.300 0.054 0.069 0.055 1.774 2.041 450.926 8.445 366.559 0.064 7.675 7.337 10.381 14.683 0.062 411.230
67 302.860 0.045 0.056 0.040 1.460 1.437 298.862 7.123 297.169 0.107 7.436 7.106 9.174 0.446 0.056 279.208
68 468.569 0.064 0.158 0.073 2.226 5.325 356.499 19.505 344.769 0.073 8.778 8.425 22.366 7.259 0.170 416.350
69 361.751 0.056 0.064 0.054 0.788 0.585 359.973 6.140 360.831 0.064 6.320 6.146 10.675 0.409 0.063 359.721
70 7.278 0.009 0.010 0.014 0.083 0.145 7.240 0.599 7.296 0.011 0.618 0.601 2128 0.407 0.009 7.139
71 562.793 0.076 0.088 0.079 1.532 2.255 589.064 11.041 580.023 0.207 12.025 11.064 21.007 10.925 0.087 351.857
72 235.042 0.042 0.045 0.043 0.443 0.390 33.892 4.690 235.205 0.045 4.810 4.662 12.285 0.417 0.044 33.768
73 289.618 0.061 290.827 0.062 0.900 0.449 385.205 13.569 307.237 0.071 14.163 13.508 18.447 4.865 0.070 193.807
74 123.117 0.022 0.054 0.027 0.346 0.296 281.620 2.601 90.771 0.026 2.248 2.154 6.840 9.482 0.025 244109
75 27.004 0.006 0.022 0.009 0.034 0.045 27.046 1.043 27.704 0.020 0.460 0.389 0.005 0.379 0.006 29.045
76 441.621 0.072 0.084 0.072 1.302 1.165 472.319 7.163 470.029 0.192 8.502 8.169 43.623 30.840 0.091 191.612
77 2908.375 0.134 0.136 0.125 1.535 1.734 2498.390 13.015 2202974 0.123 11.645 11.360 42.263 83.185 0.123 0.000
78 611.094 0.080 0.106 0.078 1475 1.101 632.239 9.278 659.801 0.235 10.885 10.558 27.773 10.172 0.093 430.950
79 9.380 0.015 0.012 0.015 0.164 0.078 226.381 1.232 34425 0.026 1.218 1.147 3.979 1.872 0.012 32417
80 709.857 0.071 0.088 0.072 0.946 0.890 677.662 4.728 701.649 0.202 5.659 5.426 37.274 39.828 0.088 464.068
81 448916 0.056 0.129 0.061 0.515 1137 236.480 7.773 450.601 0.118 8.562 7.803 19.669 4.134 0.060 241.889
82 738.194 0.097 0.125 0.094 2.159 1.484 508.957 11.709 722,577 0.255 13.864 13.404 44.669 0.501 0.124 531.904
83 301.004 0.036 0.080 0.031 0.685 0.431 298.546 5.186 295.786 0.142 5.421 5.135 4134 0.487 0.038 284.695
84 78.703 0.050 0.054 0.050 1.042 0.829 276.485 6.196 78.701 0.056 6.451 6.224 6.605 7.495 0.054 74.866
85 234.139 0.016 0.016 0.022 0.220 0.110 257.420 1.846 285.953 0.046 1.960 1.762 4.253 12.634 0.024 84.545
86 204.800 0.055 0.063 0.048 1.281 1.884 139.333 7.714 278.285 0.125 9.166 8.796 11.276 0.631 0.063 197.496
87 2.706 0.013 0.014 0.018 0.012 0.012 2.723 0.063 2.727 0.015 0.064 0.063 0.012 0.458 0.013 2.691
88 109.066 0.062 0.071 0.055 1.039 0.695 176.341 6.630 90.734 0.064 7.669 7.526 10.303 7.208 0.079 163.336
89 815.502 0.060 0.430 0.049 10.038 10.127 843.106 48.023 864.522 0.586 50.403 33.428 15.120 0.486 0.132 860.237
90 521.450 0.067 0.083 0.069 2.013 5.868 516.482 19.382 505.525 0.225 19.910 19.260 28.955 0.491 0.081 502.191
91 553.818 0.079 0.091 0.073 1773 5.406 566.057 20.779 566.265 0.082 19.672 20.660 32242 0.506 0.088 534.920
92 214.936 0.027 0.027 0.025 0.587 0.693 334.068 3.133 133.776 0.067 3.723 3.547 10.607 0.450 0.027 376.738
93 1374.110 0.187 0.216 0.199 1.791 1.736 1483.836 7.102 1484.659 0.215 7.326 7.119 72174 20.804 0.214 1264.427
94 13.764 0.015 0.016 0.018 0.169 0.161 12.754 2232 38.965 0.059 2.754 2.090 3.056 0.391 0.016 38.425
95 32204 0.028 0.031 0.030 0.275 0.201 29.021 3.710 32.328 0.032 3.788 3.711 10.361 2.101 0.031 29.239
96 372,929 0.032 0.048 0.030 0.480 0.293 319.589 2.329 303.434 0.040 2.399 2.223 8.016 0.453 0.043 83.541
97 26.814 0.012 0.012 0.015 0.023 0.023 5.146 0.780 7.172 0.013 0.801 0.782 0.009 0.556 0.011 5.158
98 425.733 0.063 0.077 0.062 1.610 0.975 397.575 8.545 348.686 0.069 7.713 7.520 25.457 0.443 0.071 401.655
99 450.578 0.058 0.072 0.061 1.677 0.643 384.194 8.765 366.513 0.065 8.999 8.709 14.496 5.457 0.073 238.249
100 280.478 0.021 0.022 0.026 0.260 0.218 63.285 2.502 289.278 0.072 2.525 2.332 1.926 7.667 0.029 83.810

TABLE 4

Raw data for Fig. 5 (Rules 17-32).

AppID R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32
1 2.180 12.984 0.090 1.757 0.018 11.774 0.344 0.096 11.808 11.805 0.014 0.018 0.348 11.652 1.902 1.890
2 34911 388.714 1.141 30.381 0.087 369.608 7.406 0.747 356.335 365.088 0.073 0.088 3.143 382.089 19.994 19.747
3 2.021 448.184 0.776 3.150 0.083 470.984 9.252 0.701 440.923 478.935 0.324 0.092 3.206 432.705 12.153 13.449
4 101.860 238.742 0.683 0.811 0.058 130.551 5.954 0.398 127.415 161.065 0.202 0.050 1.803 104.979 9.840 9.320
5 1.146 976.121 0.802 6.572 0.127 967.458 13.044 0.786 1013.646 1005.447 0.142 0.127 2.941 927.554 8.543 8.453
6 0.952 379.776 0.277 0.860 0.058 135.538 4.167 0.235 504.107 106.201 0.269 0.050 0.988 311.284 5.184 5.031
7 1.825 683.491 1.438 11.569 0.220 655.040 3.406 1.124 634.241 630.841 0.377 0.192 4.850 652.591 12.508 12.355
8 0.727 160.683 0.417 1.015 0.046 71.706 3.959 0.340 131.297 121.579 0.224 0.046 1.630 82.458 7.269 6.994
9 0.587 129.518 0.400 2277 0.056 209.320 0.987 0.328 116.498 416.014 0.169 0.065 1.635 139.311 4.765 4.724
10 15.407 36.579 0.166 0.022 0.023 51.515 0.295 0.439 104.405 99.771 0.061 0.023 0.663 238.897 3.069 2.781
11 13.416 242.239 0.119 0.027 0.023 39.838 0.289 0.118 40.171 39.720 0.052 0.023 0.516 40.021 3.059 3.014
12 7.555 25.363 0.084 0.013 0.013 74.543 0.212 0.263 102.936 79.698 0.040 0.013 0.294 25.936 0.722 0.716
13 120.174 108.703 0.602 0.661 0.048 128.428 2.575 0.328 61.262 111.036 0.089 0.061 1.757 126.865 4922 4.860
14 1.381 334.419 1.101 25.071 0.096 314.417 5.171 0.542 316.195 321.893 0.159 0.072 2.860 332.947 17.976 17.804
15 55.970 130.146 0.605 28.539 0.059 124.930 6.400 0.499 125.379 123.427 0.136 0.060 2.168 126.956 8.601 8.519
16 63.151 517.134 0.999 28711 0.080 338.456 8.181 0.697 307.434 309.245 0.160 0.082 3.261 312916 18.746 18.478
17 143.102 93.644 0.517 30.752 0.064 92.637 1.098 0.368 89.814 90.262 0.185 0.064 1.651 90.423 6.418 6.374
18 130.634 326.178 0.604 0.045 0.056 178.343 7.262 1.437 158.248 190.686 0.161 0.074 2491 141.596 10.527 11.159
19 19.818 443.747 0.660 8.739 0.092 235.561 2.531 0.530 239.333 239.115 0.145 0.092 2.165 238.767 7.267 7.188

20 25.874 225.737 0.508 7.330 0.076 152.763 0977 0.529 199.059 191.491 0.083 0.090 1.805 143.364 8.053 8.540
21 15.369 232.517 0.116 0.023 0.017 60.741 0.695 0.173 34.579 15.460 0.061 0.018 0.436 217.875 1.540 1.439
22 11.557 57.894 0.049 0.015 0.009 13.725 0.288 0.056 14.001 14.040 0.068 0.009 0.193 15.727 0.889 0.850
23 35.132 88.587 0.243 0.032 0.029 84.779 0.280 0.176 288.393 87.517 0.058 0.029 0.895 286.062 3.047 3.006
24 25.550 22.528 0.183 0.024 0.026 35.380 0.319 0.740 63.314 67.566 0.096 0.083 1.151 60.440 4.012 3.994
25 4.152 315.393 0.269 0.046 0.046 165.923 0.376 0.222 98.955 68.992 0.057 0.088 0.988 160.152 4.801 4.659
26 37.334 255.338 1.148 36.742 0.111 253.096 1.630 0.848 279.282 276.403 0.137 0.115 4.583 274311 24.226 22.641
27 9.832 25.655 0.158 0.016 0.019 23.881 0.264 0.115 251.777 24.774 0.060 0.019 0.562 24.347 1.420 1.399
28 8.202 76.870 0.143 0.025 0.018 43.307 0.662 0.128 364.194 116.557 0.161 0.039 0912 73.238 2.766 2.738
29 95.861 408.463 1.110 27.122 0.086 386.868 4.785 0.828 396.950 398.976 0.128 0.087 3.440 397.566 23.318 22.958
30 13.321 897.522 0.053 0.017 0.007 894.651 0.117 0.054 906.752 874.848 0.039 0.007 0.332 1084.470 0.734 0.729
31 110.682 340.511 0.535 0.049 0.060 137.458 9.776 0.443 137.489 136.117 0.097 0.060 1.875 138.829 9.598 9.495
32 17.886 238.158 0.311 0.038 0.028 55.794 0.844 0.197 243.879 56.404 0.077 0.028 1.011 35.634 2.854 2.825
33 7.904 353.228 0.242 3.992 0.046 155.504 4.121 0.326 74.599 92.573 0.080 0.038 1.104 155.756 5.214 5.146
34 82.929 272.524 0.395 24.017 0.044 67.144 2.659 0.340 68.283 68.442 0.071 0.044 1.562 68.595 5.066 5.036
35 1.897 20.202 0.106 0.069 0.041 19.830 0.928 0.056 14.766 4218 0.045 0.016 0.149 4.256 0.944 0.933
36 81.296 184.756 0.672 0.073 0.089 143.571 1.031 0.833 164.654 154.870 0.101 0.105 2.701 148.280 4.529 4.476
37 395.461 66.775 0.689 138.230 0.062 63.965 0.418 0.694 64.935 62.777 0.077 0.061 2.708 64.969 6.700 6.608
38 459.056 63.149 1.034 229.421 0.094 62211 1.155 0.999 62.114 61.933 0.130 0.093 4.079 62.244 7.475 7.350
39 0.257 3.205 0.022 0.241 0.011 3.069 0.181 0.022 3.027 3.041 0.030 0.013 0.103 3.011 0.490 0.482
40 116.068 131.204 0.810 117.452 0.074 72.993 0.529 0.607 52478 105.918 0.115 0.129 2.835 117.466 6.144 6.042
41 0.228 29.004 0.057 0.004 0.017 23.107 0.109 0.011 5.254 5.049 0.057 0.011 0.078 4.959 0.062 0.060
42 24.890 6.919 0.196 23.558 0.022 6.606 0.564 0.177 6.972 12.779 0.076 0.055 0.782 22261 2.260 2133
43 12.219 568.957 0.849 16.302 0.104 362.766 1.531 0.747 366.716 369.340 0.119 0.103 3.140 370.929 8.020 7.957
44 28.008 385.919 1.149 28.974 0.083 373.135 10.624 0.760 355.239 368.570 0.120 0.093 3.737 364.100 20.653 20.400
45 15.374 238.499 0.664 18.585 0.062 229.930 3.689 0.504 246.971 391.033 0.058 0.079 2283 459.800 8.795 8.522
46 201.016 205.623 1.444 277.141 0.149 200.961 1.570 1.365 205.341 208.271 0.173 0.148 5.353 202.676 17.411 17.152
47 23.392 400.157 2.947 19.855 0.205 489.141 5.370 2.642 363.558 347.283 0.062 0.455 10.608 453.058 63.743 13.560
48 14.592 215.409 2.085 10.856 0.367 172.674 0.504 0.289 245.856 106.290 0.066 0.275 6.116 227.184 6.776 7.036
49 12.669 241.775 0.318 14.732 0.072 39.338 0.950 0.302 39.257 38.755 0.101 0.073 1.221 39.208 6.083 6.028
50 17.624 746.767 0.920 30.663 0.116 512.226 1.187 0.697 535.229 510.943 0.118 0.253 3.604 707.153 13.575 11.723
51 27.247 541.929 1.346 23.122 0.101 548.057 6.276 0.929 741.279 530.530 0.121 0.100 3.807 594.311 14.620 14.446
52 28.052 1779.568 3.517 26.992 0.126 1535.115 2272 1.208 1570.636 1594.791 0.069 0.690 26.989 1569.826 28.621 87.213
53 32.872 806.241 1271 31.958 0.163 613.104 14.738 0.836 598.273 805.643 0.122 0.155 4179 849.101 18.810 18.320
54 20.062 152.496 0.445 13.382 0.048 144.556 5.799 0.490 152.209 128.623 0.046 0.056 2142 162.771 6.578 6.455
55 28917 110.893 0.594 0.054 0.056 105.229 2932 0.490 106.613 103.223 0.054 0.055 2.007 104.946 9.126 9.004
56 8.036 48.223 0.357 0.035 0.036 111.400 0.472 0.410 113.635 44.604 0.041 0.036 1.098 89.731 5.527 5.080
57 38.012 359.094 0.439 37.863 0.058 186.449 5.496 0.442 179.222 187.315 0.054 0.059 1.888 179.187 8.251 8.149
58 12.273 1048.325 1.170 27.500 0.138 907.864 5.851 1.067 896.248 922.830 0.105 0.139 4.125 1121.230 14.205 13.872
59 12.779 87.988 0.379 15.230 0.045 80.883 0.337 0.369 83.061 80.887 0.042 0.044 1.784 82.546 7.041 6.996
60 43.892 0.000 0.000 45.019 0.000 0.000 0.502 0.000 0.000 0.000 0.046 0.000 0.000 0.000 0.000 0.000
61 4.404 2336.564 1.437 22.454 0.113 434.026 1.878 0.628 420.880 626.138 0.094 0.125 3.086 445.890 11.297 10.985
62 1.828 334.801 1.108 36.462 0.080 324.811 5.616 0.706 507.400 300.489 0.060 0.088 3.571 469.740 14.008 13.704
63 16.292 102.135 0.579 18.519 0.050 120.388 5.004 0.503 137.631 82.823 0.044 0.061 2.208 161.035 6.823 6.616
64 1.027 838.216 0.716 11.510 0.109 661.336 4.291 0.615 645.776 663.349 0.087 0.175 2777 698.156 12.312 10.796
65 27.733 358.204 0.861 28.224 0.063 154.510 2.779 0.513 153.617 155.682 0.062 0.064 2.407 153.736 13.064 12.992
66 0.793 172.906 0.679 29.482 0.061 216.997 5.288 0.684 150.468 215.062 0.057 0.061 2.385 204.001 8.721 8.472
67 0.626 78.551 0.476 16.266 0.048 126.995 5713 0.481 112.524 78.349 0.048 0.056 2207 155.239 7.404 7.224
68 0.640 340.043 0.677 14.721 0.071 265.954 4.835 0.411 302.990 320.639 0.062 0.073 1.881 379.530 48.506 49.776
69 0.835 362.011 0.692 15.025 0.064 158.875 0.625 0.463 160.729 158.573 0.055 0.063 2.083 160.270 6.289 6.238
70 0.444 22483 0.169 0.087 0.026 33.204 0.153 0.150 30.541 30.427 0.008 0.039 0.459 34.186 0.885 0.688
71 1.313 551.629 1.018 27.371 0.096 351.853 5.744 0.998 358.332 364.481 0.073 0.088 3.274 373.374 11.250 11.149
72 0.359 235.879 0.280 11.806 0.044 33.762 0.601 0.264 33.675 34.025 0.048 0.045 0.971 33.674 4.793 4.761
73 0.647 594.114 0.400 6.795 0.060 160.196 0.886 0.791 206.119 227.803 0.058 0.069 1.818 172914 13.973 13.640
74 3214 50.408 0.159 0.188 0.024 45.529 0.340 0.530 119.806 106.631 0.019 0.024 0.681 41.192 2.194 2159
75 0.170 209.727 0.059 0.069 0.010 26.969 0.138 0.055 27.088 26.467 0.005 0.027 0.107 211.563 0.374 0.432
76 1.303 413.070 0.966 72.375 0.092 263.097 0.786 0.724 217.240 207.190 0.065 0.091 3.579 209.679 7.397 7.295
77 2.082 3706.256 1.376 336.460 0.139 2343.648 1.736 1.062 2931.539 0.000 0.117 0.137 4917 2295.661 11.739 13.157
78 1172 635.939 0.935 103.919 0.102 426.606 1.359 0.795 426.282 414.435 0.071 0.196 3.296 426.264 9.520 9.438
79 3.552 18.375 0.172 10.060 0.012 7.289 0.298 0.061 7.335 7.360 0.010 0.012 0.347 7.266 1.031 1.023
80 1121 707.881 0.983 264.504 0.087 460.104 1.180 0.734 474.562 463.779 0.074 0.079 2.792 465.762 5.783 5.496
81 0.431 534.348 0.608 14.255 0.100 244.390 0.568 0.314 246.757 247.309 0.050 0.115 2220 248.926 8.542 7.643
82 1.190 710.845 1.037 125.550 0.141 520.835 2275 0.814 513.451 519.179 0.102 0.106 3.173 535.825 11.950 11.785
83 0.378 281.962 0.420 47.660 0.046 89.160 3.698 0.264 44.182 93.792 0.030 0.084 1.303 117.004 5.492 5.195
84 0.653 79.416 0.541 62.119 0.054 74.952 4.080 0.380 75.930 74.481 0.050 0.053 1.901 74.750 6.384 6.315
85 1.213 31.744 0.066 4.324 0.016 49.398 1.523 0.102 306.636 98.399 0.013 0.037 0.330 305.675 1.895 1.778
86 0.694 151.802 0.695 128.815 0.072 167.415 2.697 0.430 163.814 144.360 0.047 0.055 1.892 182.287 9.120 8.898
87 0.012 2.753 0.013 3.277 0.013 2.701 0.730 0.012 2.717 2.710 0.011 0.013 0.029 2.712 0.065 0.063
88 0.743 95.673 0.811 52.766 0.083 167.884 1172 0.451 88.410 158.663 0.054 0.069 2192 109.549 6.862 6.784
89 1.157 840.143 2.560 85.135 0.289 626.580 4174 0.677 616.003 621.050 0.052 0.087 5.145 679.123 51.264 50.667
90 0.955 335.688 1.246 106.864 0.081 301.895 3.964 0.628 290.505 297.510 0.063 0.081 3.442 309.399 20.029 19.635
91 1.456 347.131 1.201 248.162 0.090 336.737 4.944 0.733 332.097 326.624 0.068 0.090 3.547 340.962 18.720 18.488
92 5.798 144.687 0.225 2175 0.027 192.014 0.475 0.242 124.882 200.903 0.021 0.026 0.812 160.391 3.752 3.570
93 2.557 1464.997 1.805 297.738 0.219 1273.933 6.956 1.591 1265.955 1303.709 0.173 0.214 6.046 1301.402 7.289 7.213
94 2141 45.370 0.243 2.749 0.045 40.513 0.498 0.360 39.613 22.802 0.015 0.016 0.480 12.352 1.874 1.853
95 0.373 33.349 0.208 37.430 0.030 29.505 1.037 0.203 29913 29.768 0.023 0.031 0.909 29.494 3.796 3.764
96 2.888 255.628 0.206 4212 0.036 49.357 0.739 0.151 280.305 53.724 0.020 0.027 0.770 147.795 2.393 2.255
97 0.160 8.343 0.024 0.822 0.011 5.179 0.138 0.023 5.274 5173 0.009 0.011 0.082 5.254 0.793 0.781
98 0.750 366.397 0.693 99.348 0.077 150.168 0.692 0.639 219.976 185.898 0.058 0.091 2372 155.417 7.650 7.837
99 0.779 435.182 0.675 111.852 0.080 176.735 0.788 0.453 243.895 185.753 0.055 0.095 2.552 171.618 8.442 8.787
100 2.229 283.736 0.275 3.701 0.023 79.288 0.914 0.427 48.213 22271 0.019 0.021 0.549 226.768 2.456 2.352

TABLE 5
Raw data for the manual precision validation. For each app, we show the number of violations detected and the corresponding true positives for

each rule.
Instagram Spotify Wish Idle Supermarket Tycoon TextNow Grass Cut Samsung Notes Twitter Skype Amazon Shopping
Rules Vio. TPs Vio. TPs Vio. TPs Vio. TPs Vio. TPs Vio. TPs Vio. TPs Vio. TPs Vio. TPs Vio. TPs
R1 5 5 6 6 8 3 5 4 4 4 6 6 21 12 - - 3 3 15 14
R2 - - 3 3 - - - = - - - - - = - - - - - -
R3 - - - - - - 6 1 - - - - 27 19 - - - - - -
R4 6 6 5 5 5 5 - = 15 15 - - 6 6 1 1 1 1 7 7
R5 18 13 17 15 32 20 36 36 16 16 10 10 24 22 2 1 - - 73 64
R6 19 16 17 17 25 25 46 44 53 53 99 98 5 5 4 4 1 1 24 24
R7 22 20 41 38 57 56 36 36 71 71 94 94 13 13 3 3 2 2 22 22
R8 - - - - - - 2 1 7 7 9 9 - = - - - - - -
R9 - - - - - - - = - - - - 4 4 - - - - -
R10 1 1 2 2 2 2 - = 2 2 - - 2 2 2 2 2
R11 60 60 12 12 14 14 31 31 27 27 55 55 30 30 - - - - 48 48
R12 5 5 1 1 1 1 1 1 2 2 1 1 9 9 - - - - 1 1
R13 1 1 1 1 - - - = - - - - - = 1 - - - -
R14 - - 1 0 - - - = 2 2 - - 17 13 - - - - 7 2
R15 - - - - - - = - - - - - = - - - - - -
R16 22 22 44 44 59 58 40 40 77 77 101 101 44 44 3 3 2 2 28 28
R17 12 10 10 2 3 0 5 5 8 8 4 4 8 6 2 0 - - 9 5
R18 3 3 8 4 14 1 8 6 - - - - 24 8 - - - - 13 13
R19 1 1 - - - - 1 1 1 1 2 2 1 1 - - - - - -
R20 8 8 2 2 - - - = 5 4 - - 1 1 2 - - - -
R21 - - - - - - - = 3 3 - - - = - - - - - -
R22 1 1 1 1 2 1 1 0 3 2 1 0 2 2 - - - - 5 1
R23 34 34 10 10 2 2 3 3 12 12 6 6 9 9 0 0 1 1 10 10
R24 - - - - 2 2 - = - - 1 1 - = - - - - 3 3
R25 2 2 - - 3 2 1 1 1 1 1 1 1 1 - - - - 4 3
R26 2 2 2 7 4 4 0 7 5 14 13 8 8 4 4 - - 12 12
RrR27 - - - - - - - = - - - - - = - - - - - -
R28 1 1 - - - - - = 1 1 - - - - - 1 1 - -
R29 36 35 22 22 109 108 43 42 63 61 71 69 30 28 4 4 2 2 83 75
R30 - - 1 1 8 8 1 1 11 11 1 1 - = - - - - 11 11
R31 - - - - - - - = - - - - - = - - - -
R32 - - 3 3 5 5 2 2 3 3 2 2 4 4 1 1 - - - -

