Automi e Linguaggi Formali

Proprieta' dei linguaggi regolari
– Il Pumping lemma –

A.A. 2014-2015 Enrico Mezzetti emezzett@math.unipd.it

Pumping lemma - Informale

- Supponiamo che $L_{01} = \{0^n 1^n : n \ge 1\}$ sia **regolare** 01, 0011, 000111, . . .
- Se L_{01} e' regolare \Rightarrow deve essere accettato da un DFA \mathcal{A} Q_A e' un insieme *finito* di stati k
- Supponiamo che A legga 0^k attraverso le traniszioni

$$p_0 \xrightarrow{0} p_1 \xrightarrow{0} p_2 \cdots \xrightarrow{0} p_k$$

$$\epsilon \qquad 0 \qquad 00 \qquad 0^k$$

- Utilizzando k+1 stati
- Pigeonhole principle $\Rightarrow \exists i < j : p_i = p_i$
- Quindi $\exists q$ che accomoda due sottosequenze $0^i \neq 0^j$ per i < j

Proprieta' dei linguaggi regolari

■ Pumping Lemma

- Ogni linguaggio regolare soddisfa il pumping lemma
- Se L non e' regolare il pumping lemma mostrera' una contraddizione

■ Proprieta' di chiusura

- Costruire automi da componenti usando delle operazioni algebriche sui linguaggi
- E.g., dati L e M possiamo costruire un automa per $L\cap M$

■ Proprieta' di decisione

- Analisi computazionale degli automi
- Quanto costa controllare proprieta sugli automi

■ Tecniche di minimizzazione

- Risparmiare costruendo automi piu piccoli
- Processo di semplificazione

Automi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti

2 of 10

Pumping lemma - Informale - 2

- Quindi $\exists q$ che accomoda due sottosequenze $0^i \neq 0^j$ per i < i
- Supponiamo di essere in *q*
 - Abbiamo letto i o j occorrenze di 0

$$p_0 \xrightarrow{0} p_1 \xrightarrow{0} p_2 \cdots \xrightarrow{0} p_i$$

$$\epsilon \qquad 0 \qquad 00 \qquad 0^i \vee 0^j$$

- \blacksquare ${\cal A}$ puo' essere idnotto a pr
ndere una decisione errata:
 - Se $\hat{\delta}(q, 1^i) \in F$ l'automa accetta $0^j 1^i \to \text{Errore!}$
 - Se $\hat{\delta}(q, 1^i) \notin F$ l'automa non accetta $0^i 1^i \to \text{Errore!}$
- lacksquare L_{01} non puo' essere rappresnetato da un DFA ${\cal A}$
 - \Rightarrow L_{01} non e' regolare

3 of 10

Pumping lemma per LR

Th. 4.1 Pumping lemma

Sia L un linguaggio regolare allora \exists n constante (per L) tale che $\forall w \in L$ per cui $|w| \ge n$ possiamo scomporre in tre sotto-stringhe w = xyz tale che:

- 1 $y \neq \epsilon$
- $|xy| \leq n$
- $\forall k \geq 0, xy^k z \in L$
- Possiamo trovare una sotto-stringa non vuota (non troppo lontano dall'inizio) che puo' essere replicata un numero indeifnito di volte senza uscire da L

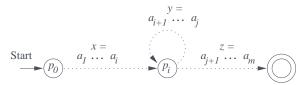
Automi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti

5 of 10

7 of 10

Pumping lemma per LR (Prova) - 2

- Scomponiamo w = xyz come
 - $1 x = a_1 a_2 \cdots a_i$
 - $y = a_{i+1}a_{i+2}\cdots a_i$
 - $z = a_{i+1}a_{i+2}\cdots a_m$



- \mathcal{A} riceve in input xy^kz per $k \ge 0$
 - K=0 $ightarrow \mathcal{A}$ accetta xz poiche' $p_i=p_j$
 - K>0 \rightarrow A accetta xz poiche' cicla su p_i k volte
- Quindi anche $xy^kz \in L$, per ogni $k \ge 0$

s x,y potenzialmente ε per i=0 e j=n=m rispettivamente

University bocal State

- Supponiamo che *L* sia regolare
 - L = L(A): L e' riconosciuto da un DFA A
 - A ha un numero finito di n stati

■ Sia
$$w = a_1 a_2 \dots a_m \in L$$

$$m \geq n$$
 e $a_i \in \Sigma_A$

- \blacksquare Sia $p_i = \hat{\delta}(q_0, a_1 a_2 \dots a_i)$
 - p_i per $i \in \{0,1,\ldots,n\}$ non possono essere distiniti
 - Pigeonhole principle $\Rightarrow \exists i < j : p_i = p_i$

Automi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti

6 of 10

Pumping lemma per LR - Esempio

- Sia L_{eq} il linguaggio delle stringhe con ugual numero di 0 e 1
 - Nessun vincolo su ordine
- Supponiamo che L_{eq} sia regolare
 - Scegliamo $w = 0^n 1^n \in L_{eq} (|w| \ge n)$
- Per il pumping lemma w = xyz e:
 - $-|xy| \leq n$
 - $y \neq \epsilon$
 - $xy^kz \in L_{eq}$
- Quindi xy e' composta di soli 0

$$w = \underbrace{000\cdots\underbrace{\cdots0}_{y}}_{\underline{y}}\underbrace{0111\cdots11}_{\underline{z}}$$

- Scegliamo k = 0
- lacktriangle Per PL: se L_{eq} regolare allora anche $xz \in L_{eq}$
 - xz contiene almeno uno 0 in meno del dovuto!
 (mancano quelli di y)
 - $\Rightarrow L_{eq}$ non e' regolare

Pumping lemma per LR - Esempio 2

- Sia L_{pr} il linguaggio delle stringhe composte da un numero p di 1, dove p e' primo
 - $L_{pr} = \{1^p : p \text{ e' primo}\}$
- Supponiamo sia regolare:
 - Esiste *n* che soddisfa le condizioni del PL
 - Scegliamo $w = 1^p$ dove $p \ge n + 2$

$$w = \underbrace{111\cdots \cdots 1}_{x} \underbrace{1111\cdots 11}_{y=m}$$

- Supponiamo $|y| = m \neq \epsilon \rightarrow |xz| = p m$
- Ora scegliamo k = p m
- Se L_{pr} e' regolare allora anche $xy^{p-m}z \in L_{pr}$

Automi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti

9 of 10

Pumping lemma per LR - Esempio 2

■ Sia L_{pr} il linguaggio delle stringhe composte da un numero p di 1, dove p e' primo

$$w = \underbrace{111\cdots \underbrace{\cdots 1}_{x} \underbrace{1111\cdots 11}_{|y|=m}}^{p}$$

- Abbiamo scelto k = p m
 - $xy^{p-m}z \in L_{pr}$?

$$-|xy^{p-m}z| = |xz| + (p-m)|y|$$

= p - m + (p - m)m
= (1 + m)(p - m)

(che non e' primo a meno che uno dei due fattori non sia 1)

- a) $y \neq \epsilon \Rightarrow 1 + m > 1$
- b) $m = |y| \le |xy| \le n, p \ge n + 2 \Rightarrow p m \ge n + 2 n = 2$
- $\Rightarrow L_{pr}$ non e' regolare

Automi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti

10 of 10