# Automi e Linguaggi Formali

Grammatiche libere da contesto

A.A. 2014-2015 Enrico Mezzetti emezzett@math.unipd.it

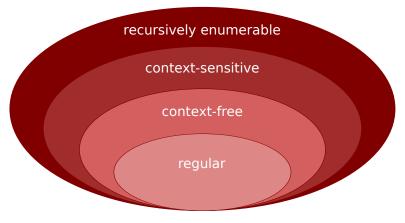


## Grammatiche e linguaggi liberi da contesto

- Consideriamo allora classi piu' espressive di linguaggi.
- Linguaggi Liberi da Contesto (Context-free languages)
  - Studio dei linguaggi naturali 1950→
  - Studio dei compilatori (parser) 1960→
  - In DTD per doc XML
- Grammatiche libere da contesto (Context-free grammars)
  - Base della sintassi BNF (Backus-Naur-Form)
    - ► Regole di derivazione → linguaggi di programmazione
- **■** Focus
  - CFG e linguaggi che esse generano/descrivono
  - Alberi sintattici
  - Automi a pila
  - Proprieta' dei CFL (come per RL)

## Grammatiche e Linguaggi Liberi da Contesto

- Classe RL non comprende molti linguaggi interessanti
  - E.g., ww<sup>R</sup>, palindromi





omi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti 2 of 19

## Esempio informale di CFG

■ Linguaggio dei palindormi

$$L_{pal} = \{ w \in \Sigma^* : w = w^R \}$$

- E.g., otto  $\in L_{pal}$ , radar  $\in L_{pal}$ .
- L<sub>pal</sub> ∉ RL (gia' visto)
  - Sia  $\Sigma = \{0, 1\}$  e supponiamo che  $L_{pal}$  sia regolare
  - Sia n dato dal pumping lemma, alora  $0^n 10^n \in L_{pal}$
  - ► Abbiamo visto per k = 0,  $xy^k z \notin L_{pal}$
- Come decidere se una stringa  $w \in L_{pal}$ ?
  - Definiamo L<sub>pal</sub> induttivamente:

**Base:**  $\epsilon$ , 0, e 1 sono palindromi

**Induzione:** Se w e' una palindrome, anche 0w0 e 1w1 lo sono

- Nessun altra stringa e' palindroma

## Esempio informale di CFG - 2

- CFG sono un modo formale per definire linguaggi come L<sub>pal</sub>
  - Approccio formale generativo
- Produzioni
- 1.  $P \rightarrow \epsilon$
- 2.  $P \rightarrow 0$
- 3.  $P \rightarrow 1$
- 4.  $P \rightarrow 0P0$
- 5.  $P \rightarrow 1P1$
- $\epsilon$ , 0 e 1 sono terminali
- P e' una variabile (o non-terminale, o categoria sintattica)
- P e' in questa gramatica anche il simbolo iniziale.
- 1-5 sono produzioni (o regole)



Automi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti

5 of 19

## Esempio

$$\blacksquare \ L_{pal} = \{w \in \Sigma^* : w = w^R\}$$

$$G_{pal} = (\{P\}, \{0, 1\}, A, P)$$

dove le regole A sono:

$$P \rightarrow \epsilon$$

$$P \rightarrow 0$$

$$P \rightarrow 1$$

$$P \rightarrow 0P0$$

$$P \rightarrow 1P1$$

■ Possiamo "raggruppare" le produzioni con la stessa testa

$$P \rightarrow \epsilon |0|1|0P0|1P1$$

#### Definizione formale di CFG

■ CFG e' definita da una quadrupla

$$CFG G = (V, T, P, S)$$

dove

- V e' un insieme finito di variabili.
- T e' un insieme finito di simboli o terminali.
- P e' un insieme finito di produzioni o regole della forma

$$A \rightarrow \alpha$$
testa  $\uparrow \qquad \uparrow$  corpo

dove

A e' una variabile e 
$$\alpha \in (V \cup T)^*$$

- S e' una variabile distinta che costituisce il simbolo iniziale.



Automi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti

6 of 19

## Esempio - 2

■ Espressioni regolari su  $\Sigma^{\{0,1\}}$ 

$$L_{regexp} = \{w : w = \{0, 1\}^*\}$$

$$G_{regexp} = (\{E\}, \{0, 1\}, A, E)$$

dove le regole A sono:

$$E \to \epsilon$$

$$E \rightarrow 0$$

$$E \rightarrow 1$$

$$E \rightarrow E.E$$

$$E \rightarrow E + E$$

$$E \to E^*$$

$$E \rightarrow (E)$$

## Esempio - 3

- Espressioni sempificate di un ling. di programmazione PL
  - Ammettiamo solo 2 operatori: + e ×
  - Identificatori composti da lettere (a o b) o cifre (0 o 1)
    - ▶ Inizia con a o b e continua con una stringa in  $\{a, b, 0, 1\}^*$

$$G_{PL} = (\{E, I\}, T, P, E)$$

- Variabili
  - E per le espressioni in PL che vogliamo definire
  - I per gli identificatori, e' un linguaggio regolare

$$L(I) = L((a+b)(a+b+0+1)^*)$$

- Terminali  $T = \{+, \times, (,), a, b, 0, 1\}$
- Produzioni P

1 
$$E \rightarrow I$$
 5  $I \rightarrow a$   
2  $E \rightarrow E + E$  6  $I \rightarrow b$   
3  $E \rightarrow E \times E$  7  $I \rightarrow Ia$   
4  $E \rightarrow (E)$  9  $I \rightarrow Ib$   
9  $I \rightarrow I0$   
10  $I \rightarrow I1$ 



Automi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti 9 of 19

#### Derivazioni

- Consideriamo CFG G = (V, T, P, S)
  - Siano  $A \in V$
  - $\{\alpha, \beta\} \subset (V \cup T)^*$  (stringhe in  $(V \cup T)^*$ )
  - $A \rightarrow \gamma \in P$
- Allora denotiamo una derivazione come

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

o se non e' ambiguo

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

- Diciamo che da  $\alpha A\beta$  si deriva  $\alpha \gamma \beta$
- Definiamo \* la chiusura riflessiva e transitiva di ⇒
  - Base: Sia  $\alpha \in (V \cup T)^*$ . Allora  $\alpha \stackrel{*}{\Rightarrow} \alpha$ .
  - Induzione: Se  $\alpha \stackrel{*}{\Rightarrow} \beta$ , e  $\beta \Rightarrow \gamma$ , allora  $\alpha \stackrel{*}{\Rightarrow} \gamma$ .

#### UNIVERSITÀ DECLI STUDI DI PADOVA

- Inferenza ricorsiva
  - Usando le produzioni dal corpo alla testa
  - Es:  $a0101 + b01abb \rightarrow I + I \rightarrow E + E \rightarrow E \in L(PL)$
- Derivazione
  - Usando le produzioni dalla testa al corpo
  - Es:

$$E \rightarrow E + E \rightarrow I + I \rightarrow aI + bI \rightarrow \cdots \rightarrow a0101 + b01abb \in L(PL)$$

■ Esempio di inferenza ricorsiva:

|        | Stringa   | Ling. | Prod. | Stringhe usate |
|--------|-----------|-------|-------|----------------|
| (i)    | а         | 1     | 5     | -              |
| (ii)   | b         | 1     | 6     | -              |
| (iii)  | b0        | 1     | 9     | (ii)           |
| (iv)   | b00       | 1     | 9     | (iii)          |
| (v)    | а         | E     | 1     | (i)            |
| (vi)   | b00       | E     | 1     | (iv)           |
| (vii)  | a + b00   | E     | 2     | (v), (vi)      |
| (viii) | (a + b00) | E     | 4     | (vii)          |
| (ix)   | a*(a+b00) | E     | 3     | (v), (viii)    |



omi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti

10 of 19

## Esempio

■ Derivazione di  $a \times (a + b00)$  da E in  $G_{PL}$ 

$$E \Rightarrow E * E \Rightarrow I \times E \Rightarrow a \times E \Rightarrow a \times (E) \Rightarrow$$
$$a \times (E + E) \Rightarrow a \times (I + E) \Rightarrow a \times (a + E) \Rightarrow a \times$$

■ Diverse produzioni sono applicabili ad ogni passo

$$1 \times E \Rightarrow a \times E \Rightarrow a \times (E)$$
, ma anche  $1 \times E \Rightarrow 1 \times (E) \Rightarrow a \times (E)$ 

■ Non tutte le scelte sono funzionali a derivazioni

$$E \Rightarrow E + E$$
 non ci fa derivare  $a \times (a + b00)$ .

■ Inferenza e derivazione sono equivalenti

#### Derivazioni a sinistra e a destra

- Ridurre lo spazio delle derivazioni possibili
  - Imposizione di un ordine
- lacktriangle Derivazione a sinistra (leftmost)  $\underset{lm}{\Rightarrow}$ 
  - Rimpiazza sempre la variabile piu' a sinistra con il corpo di una delle sue regole
- **Derivazione a destra** (rightmost)  $\Rightarrow_{rm}$ 
  - Rimpiazza sempre la variabile piu' a destra con il corpo di una delle sue regole.



Automi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti

13 of 19

15 of 19

## Il linguaggio di una grammatica

 $\blacksquare$  Se G(V, T, P, S) e' una CFG, allora il **linguaggio di** G e'

$$L(G) = \{w \in T^* : S \underset{G}{\overset{*}{\Rightarrow}} w\}$$

l'insieme delle stringhe su  $T^*$  derivabili a partire da S

- Se L e' linguaggio di una CGF allora L e' un linguaggio libero da contesto (CFL)
- **E**sempio:  $L(G_{pal})$  e' un linguaggio libero da contesto

#### Derivazioni a sinistra e a destra - 2

- Es. derivazione di  $a \times (a + b00)$  da E in  $G_{PL}$
- Der. a sinistra (appena vista)

$$E \Rightarrow E * E \Rightarrow I \times E \Rightarrow a \times E \Rightarrow a \times (E) \Rightarrow$$

$$a \times (E + E) \Rightarrow a \times (I + E) \Rightarrow a \times (a + E) \Rightarrow a \times (a + I) \Rightarrow$$

$$a \times (a + I0) \Rightarrow a \times (a + I00) \Rightarrow a \times (a + b00)$$

A destra:

$$E \underset{rm}{\Rightarrow} E \times E \underset{rm}{\Rightarrow} E \times (E) \underset{rm}{\Rightarrow} E \times (E+E) \underset{rm}{\Rightarrow}$$

$$E \times (E+I) \underset{rm}{\Rightarrow} E \times (E+I0) \underset{rm}{\Rightarrow} E \times (E+I00) \underset{rm}{\Rightarrow}$$

$$E \times (E+b00) \underset{rm}{\Rightarrow} E \times (I+b00) \underset{rm}{\Rightarrow} E \times (a+b00) \underset{rm}{\Rightarrow}$$

$$I \times (a+b00) \underset{rm}{\Rightarrow} a \times (a+b00)$$

■ Possiamo concludere che  $E \stackrel{*}{\underset{rm}{\Rightarrow}} a \times (a + b00)$ 



Automi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti

14 of 19

## Il linguaggio di una grammatica - 2

- **Th. 5.7**  $L(G_{pal})$  dove  $G_{pal} = (\{P\}, \{0, 1\}, P \rightarrow \epsilon |0|1|0P0|1P1, P)$  e' l'insieme delle aplindrome in  $\{0, 1\}$
- **Prova:** Dimostriamo che  $w \in \{0, 1\}^* \in L(G_{pal}) \iff w = w^R$ 
  - Se Supponiamo  $w = w^R$ Dimostriamo per induzione su |w| che  $w \in L(G_{pal})$ .
    - **Base:** |w|=0 o  $|w|=1\Rightarrow w$  e'  $\epsilon$ , 0, o 1 Dato che  $P\rightarrow \epsilon$ ,  $P\rightarrow 0$ , and  $P\rightarrow 1$  sono produzioni, concludiamo che  $P\stackrel{*}{\Rightarrow} w$  in tutti i casi base.
  - Induzione:  $|w| \ge 2$ . Dato che  $w = w^R \to w = 0x0$ , o w = 1x1, e  $x = x^R$ . Se w = 0x0 sappiamo che per l'ipotesi induttiva  $P \stackrel{*}{\Rightarrow} x$ . Allora  $P \Rightarrow 0P0 \stackrel{*}{\Rightarrow} 0x0 = w \in L(G_{pal})$ . Il caso di w = 1x1 e' simile.

Solo se Supponiamo che  $w \in L(G_{pal})$ 

Dobbiamo mostrare che  $w = w^R$ .

Dato che  $w \in L(G_{pal})$ , abbiamo  $P \stackrel{*}{\Rightarrow} w$ .

Faremo un'induzione sulla lunghezza di  $\stackrel{*}{\Rightarrow}$ .

- **Base:**(1 passo) La derivazione  $P \stackrel{*}{\Rightarrow} w$  ha 1 passo  $\Rightarrow w = \epsilon, 0, o$  1 che sono tutte palindrome
- Induzione:(n+1 passi) Per ipotesi induttiva l'enunciato e' vero per derivazioni di n passi.

Una drivazione di n+1 passi sara' nella forma

$$w = 0x0 \stackrel{*}{\Leftarrow} 0P0 \Leftarrow P$$

0  $w = 1x1 \stackrel{*}{\Leftarrow} 1P1 \Leftarrow P$ 

La seconda derivazione ha *n* passi

 $\Rightarrow$  per ipotesi induttiva x e' una palindrome

Poiche' anche 0x0 e 1x1 lo sono  $\Rightarrow$  w e' un palindromo



Automi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti 17 of 19

### Esempio

■ Prendiamo la G delle espressioni. Allora  $E \times (I + E)$  e' una forma sentenziale perche'

$$E \Rightarrow E \times E \Rightarrow E \times (E) \Rightarrow E \times (E + E) \Rightarrow E \times (I + E)$$

Questa derivazione non e' ne' a sinistra ne' a destra

 $\blacksquare$  a  $\times$  E e' una forma sentenziale sinistra, perche'

$$E \underset{lm}{\Rightarrow} E \times E \underset{lm}{\Rightarrow} I \times E \underset{lm}{\Rightarrow} a \times E$$

 $\blacksquare$   $E \times (E + E)$  e' una forma sentenziale destra, perche'

$$E \underset{rm}{\Rightarrow} E \times E \underset{rm}{\Rightarrow} E \times (E) \underset{rm}{\Rightarrow} E \times (E+E)$$



utomi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti

19 of 19

#### Forme sentenziali

- Sia G = (V, T, P, S) una CFG, e  $\alpha \in (V \cup T)^*$ .
  - Se  $S \stackrel{*}{\Rightarrow} \alpha$  diciamo che  $\alpha$  e' una **forma sentenziale**.
  - Se  $S\Rightarrow \alpha$  diciamo che  $\alpha$  e' una forma sentenziale sinistra, lm
  - Se  $S \overset{\iota m}{\Rightarrow} \alpha$  diciamo che  $\alpha$  e' una **forma sentenziale destra**
- Quindi L(G) contiene le forme sentenziali che sono in  $T^*$ 
  - Cio che consistono unicamente di terminali



Automi e Linguaggi Formali – A.A 2014-2015 Docente: Enrico Mezzetti

18 of 19