Automi e Linguaggi Formali Homework 1

Argomenti: [DFA, NFA, ϵ -NFA]

- 1. Sia $\mathcal L$ il linguaggio che comprende tutte le stringhe sull'alfabeto $\Sigma=0,1,2$ che non hanno simboli consecutivi identici. In altre parole, le stringhe in $\mathcal L$ sono tutte le stringhe in Σ^* che non includono le sottostringhe "00", "11" e "22".
 - Disegnare il DFA per $\mathcal L$ (diagramma e tabella delle transizioni δ)
 - Per ogni stato in δ fornire una breve descrizione del tipo di stringhe che permettono di arrivare a tale stato.
- 2. Consideriamo l'automa \mathcal{A} descritto dalla seguente tabella delle transizioni:

$$\begin{array}{c|cccc} & \parallel 0 & 1 \\ \hline \rightarrow A & \parallel B & B \\ \star B & A & A \end{array}$$

- Quale linguaggio \mathcal{L}_A e' accettato da \mathcal{A} ?
- riangle Provare formalmente (per induzione) che $\mathcal A$ accetta $\mathcal L_A$.
- 3. Consideriamo l'automa a stati finiti non-deterministico con ϵ -transizioni descritto dalla seguente tabella:

	а	b	ϵ
$\rightarrow A$	{A,C}	Ø	{B}
*B	{D}	{B}	Ø
С	Ø	Ø	{D}
D	{B}	{C,D}	Ø

Ottenere un automa a stati finiti deterministico equivalente