A Rapid Cache-aware
Procedure Positioning Optimization
to Favor Incremental Development

Enrico Mezzetti, Tullio Vardanega

RTAS 2013

19th IEEE Real-Time and Embedded Technology
and Applications Symposium
Philadelphia, USA

April 9 - 11, 2013

UNIVERSITA
DEGLI STUDI

DI PADOVA

UNIVERSITA

Outline

DI PADOVA

The case for incremental development
Incremental procedure positioning
Evaluation

Conclusion

I

UNIVERSITA

Caches and incremental development B

m Holy grail of verification-intensive software industry

m Natural incarnation of the divide-et-impera approach into
hardware and software development
m To better master complexity and costs of industrial process

m Is incremental WCET analysis even feasible?
m Relies on composability and early availability of timing bounds
- The later those are determined the worse!
m Hindered by context-dependent hardware resources

m Caches inherently wreck incrementality
m Intra-task timing behaviour determined by memory layout
m Not robust to software increments
- Relatively small changes may cause significant jitter
m Only available on the final executable
- Too late to afford costly feedback cycles!

UNIVERSITA

DI PADOVA

Focusing on instruction cache) i

m Cache-aware procedure positioning
m Improves both performance and predictability
- Conflict misses avoidance or reduction
m Granularity of procedures is industrially appealing

- Methods on basic blocks too fine-grained and
require specialized tool support

m Reduces the potential jitter by pinpointing a memory layout

m Graph-based program representation

B Weighted Call Graph (WCGp) for a program P 2 {
is a (undirected) weighted graph with
V= {p | pis a procedure in P} @ @
EecVxV={(p,p’) | pcalls p’vpcalls p} e %
W, pr — call frequency between p and p’in P.

m Placement heuristic

m Nodes pairwise merged according to maxW,, ,.
m Induced procedure ordering » actual memory layout

UNIVERSITA

Limitations and drawbacks [

m Weaknesses of current approaches
X Historically focused on average-case optimization

- Build on execution traces rather than program structure
- WCET-oriented approaches only recently proposed

X Poorly scalable to large-scale industrial systems

- Especially WCET-oriented methods as they rely on several
iterations of static WCET analysis

X Only applicable at the tail end of development

- Thus failing to account for incremental nature of development

m What we propose
v/ An alternative program representation, other than WCG
- Improving on accuracy and scalability
v/ An optimization method based on program structure

- Holistically addressing both WCET and AVG performance
- Incrementally applicable on subsequent software releases

s s

UNIVERSITA

Need for an alternative representation I

m Pitfall of WCG

m WCG representation may be ambiguous

for I in 1..20 loop for I in 1..40 loop
call z; call X;
m for J in 1..2 loop call Y;
40, 20 call X; end loop;
40! end loop; for J in 1..20 loop
end loop; call z;
° ° e for K in 1..40 loop end loop;
call Y;
end loop;

m With negative consequences on the computed layout

- The sources of conflict misses are not necessarily the same
- May lead to bad node merging (and layout)

m Fails to account for the importance of loop nests

- Call frequencies alone are not sufficient to catch all the
structural information

I

UNIVERSITA

The Loop-Call Tree structure Ay s

DI PADOVA

m Basic intuition

m Procedure involved in the same loop are the most critical
source of cache conflicts
m Need to explicitly consider loop nests

m Loop-Call Tree

B LCTp for a program P is an ordered directed tree with
V ={p|p€ Proc(P)} U{ I’]|IFis the i loop in p}
EcVxV="_(p p) p—p}U{lp,)} U{(IP,p")] P = p'} U
{02, IJF)\ loop IJ.p is nested inside /”}
B,/p — statically computed loop bound

(W)
(W)
Gh @

4020
® O @ @9
o ® O @

UNIVERSITA

Computing an optimal layout e

m LCT structural properties

m Naturally exhibits loop-induced relation between procedures
m Subtrees can be ordered wrt depth and execution frequency

- Several heuristics can be defined
m Post-order depth-first traversal
- Privileges nodes belonging to the same loop nest

m Procedure selection

m Procedures on the same subtree » independent pools
m Incrementally merged together
m Pool independency broken by procedures appearing in different
subtrees
- Memory displacements introduced in the merging step
- Fragmentation cured with relatively independent procedures

I s

Example

UNIVERSITA

Example R

&

Select first nodes

Example

Merge P and Q

B s

\ UNIVERSITA

Example R

Keep on merging

B s

\ UNIVERSITA

Example R

Q already in the pool...

B s

Example

...just remind it

B s

UNIVERSITA

Example R

[Merge S and T]

B s

UNIVERSITA

Example I

[Merge optionally with displacement]

B s

UNIVERSITA

Example ML e

[U does not fit in the gap]

B s

UNIVERSITA

Example ML e

[U fits in the gap]

B s

UNIVERSITA

Fitting all into incremental development @

m Development as a sequence of incremental steps
m Qualification status should be incrementally preserved

- For either additive or corrective increments
- No regression outside of the modules intentionally affected

m When it comes to caches
- Memory layout of pre-existent modules must be preserved
m Incremental optimization
m LCT intrinsically fit to incremental addition

- No assumptions on the pre-existing pools in the merging step
- Keep global ordering up to the increment as set of constraints
- Exploit them as an initial pre-existing subtree

m Naturally absorbs changes that are local to a module
- Changes within a subtree do not affect ordering of others
m Problems arise with shared procedures

- Introduce dependences (i.e., diplacements) within subtrees
- Layout preservation may require high fragmentation

s s

UNIVERSITA

Evaluation I

m On AVG/WCET I-cache behaviour and WCET variation

m Targeting the LEON2 (SPARC V8) processor
m Focusing on reference and domain-specific benchmarks

- Malardalen, Mediabench, MiBench, AOCS software
m Prototype tool

Sw |
Loop I-Cache .
Module | Constraints
Structure Bounds Spec | oo,
<xml>
|_ _________________ - =1
I Constraints
Dominator Procedure |
I'| Analysis Positioning <xml>
| Algorithm | =
GNU Linker
| 4) Script
|
I Loop-Call Memory <=
| Tree Layout I
| GCC-based
| | Compiler

UNIVERSITA

rage and worst-case performance o

100%
90%
80% m Default
LCT
70%
< u WG

é\(‘o ®b°L° e() é\bo & b‘é\& ve;z/(p
Q&/ QQ(‘ ’\’1"\'/ Vel o,} o,}
© © v %
® ¥ AN
[Average-case hit ratio]
100%
90%] — R
80% m Default
I Lcr
70% -
& 0“‘? ® & ® 062 & = WG
S (\bo & & & ©
< ¥ & hb
Q& é'i» (90 IS Y
Q Vv Vv
¥ [

[Worst-case hit ratio]

UNIVERSITA

Corresponding global WCET performance e

m Assessing the overall WCET improvement

m Fairly proportional due to the relatively simple HW platform
and setting (e.g., D-cache disabled)

100%
90% m Default
80% LCT
= WGG

[Global WCET reduction]

s s

UNIVERSITA

Robustness to incremental release (g5

m Simulated incremental steps

m Modules from the AOCS benchmark (GNC, PRO, TMTC)
m Confirms constant WCET behavior for GNC

- Against an up to +26% potential variation if no
countermeasure is taken
- Low fragmentation: less than 2% increase in executable size

m GNC Optimized GNC not optimized 1
2

600000 - gp@AS0 ——n168 60

500000
400000
300000
200000

100000

WCET variation across releases]

UNIVERSITA

ConCIUSion n[l"\p:;\\

m Novel procedure positioning approach
m More accurate program representation
m Improves both avg and wc performance
m Robust against incremental development
m Limitations
m Still need a better solution to handle regression in the presence
of shared procedures
m lterative (but costly) WCET-oriented approaches may provide
better WCET performance
m Future work

m Implement our approach as a plugin to standard GCC compiler
m Undergo an extensive evaluation of different ordering heuristics

s s

	The case for incremental development
	Incremental procedure positioning
	Evaluation
	Conclusion

