
A Rapid Cache-aware
Procedure Positioning Optimization
to Favor Incremental Development

Enrico Mezzetti, Tullio Vardanega
RTAS 2013
19th IEEE Real-Time and Embedded Technology
and Applications Symposium
Philadelphia, USA
April 9 - 11, 2013

Outline

1 The case for incremental development

2 Incremental procedure positioning

3 Evaluation

4 Conclusion

2 of 15

Caches and incremental development

Holy grail of verification-intensive software industry
Natural incarnation of the divide-et-impera approach into
hardware and software development
To better master complexity and costs of industrial process

Is incremental WCET analysis even feasible?
Relies on composability and early availability of timing bounds

- The later those are determined the worse!

Hindered by context-dependent hardware resources

Caches inherently wreck incrementality
Intra-task timing behaviour determined by memory layout
Not robust to software increments

- Relatively small changes may cause significant jitter

Only available on the final executable

- Too late to afford costly feedback cycles!

3 of 15

Focusing on instruction cache

Cache-aware procedure positioning
Improves both performance and predictability

- Conflict misses avoidance or reduction

Granularity of procedures is industrially appealing

- Methods on basic blocks too fine-grained and
require specialized tool support

Reduces the potential jitter by pinpointing a memory layout

Graph-based program representation
Weighted Call Graph (WCGP) for a program P

is a (undirected) weighted graph with
V= {p | p is a procedure in P}
E ∈ V × V={(p, p′) | p calls p′ ∨ p′ calls p}
Wp,p′ → call frequency between p and p′ in P.

Placement heuristic
Nodes pairwise merged according to maxWpi ,pj

Induced procedure ordering � actual memory layout

4 of 15

Limitations and drawbacks

Weaknesses of current approaches
7 Historically focused on average-case optimization

- Build on execution traces rather than program structure
- WCET-oriented approaches only recently proposed

7 Poorly scalable to large-scale industrial systems

- Especially WCET-oriented methods as they rely on several
iterations of static WCET analysis

7 Only applicable at the tail end of development

- Thus failing to account for incremental nature of development

What we propose
3 An alternative program representation, other than WCG

- Improving on accuracy and scalability

3 An optimization method based on program structure

- Holistically addressing both WCET and AVG performance
- Incrementally applicable on subsequent software releases

5 of 15

Need for an alternative representation

Pitfall of WCG
WCG representation may be ambiguous

With negative consequences on the computed layout

- The sources of conflict misses are not necessarily the same
- May lead to bad node merging (and layout)

Fails to account for the importance of loop nests

- Call frequencies alone are not sufficient to catch all the
structural information

6 of 15

The Loop-Call Tree structure

Basic intuition
Procedure involved in the same loop are the most critical
source of cache conflicts
Need to explicitly consider loop nests

Loop-Call Tree
LCTP for a program P is an ordered directed tree with
V = {p | p ∈ Proc(P)} ∪ { lpi | l

p
i is the i th loop in p}

E ∈ V × V = {(p, p′)| p → p′} ∪ {(p, lpi)} ∪ {(lpi , p
′)| lpi → p′} ∪

{(lpi , l
p
j)| loop lpj is nested inside lpi }

Bl
p
i
→ statically computed loop bound

7 of 15

Computing an optimal layout

LCT structural properties
Naturally exhibits loop-induced relation between procedures
Subtrees can be ordered wrt depth and execution frequency

- Several heuristics can be defined

Post-order depth-first traversal

- Privileges nodes belonging to the same loop nest

Procedure selection
Procedures on the same subtree � independent pools
Incrementally merged together
Pool independency broken by procedures appearing in different
subtrees

- Memory displacements introduced in the merging step
- Fragmentation cured with relatively independent procedures

8 of 15

Example

placeholder

9 of 15

Example

Select first nodes

9 of 15

Example

Merge P and Q

9 of 15

Example

Keep on merging

9 of 15

Example

Q already in the pool...

9 of 15

Example

...just remind it

9 of 15

Example

[Merge S and T]

9 of 15

Example

[Merge optionally with displacement]

9 of 15

Example

[U does not fit in the gap]

9 of 15

Example

[U fits in the gap]

9 of 15

Fitting all into incremental development

Development as a sequence of incremental steps
Qualification status should be incrementally preserved

- For either additive or corrective increments
- No regression outside of the modules intentionally affected

When it comes to caches

- Memory layout of pre-existent modules must be preserved

Incremental optimization
LCT intrinsically fit to incremental addition

- No assumptions on the pre-existing pools in the merging step
- Keep global ordering up to the increment as set of constraints
- Exploit them as an initial pre-existing subtree

Naturally absorbs changes that are local to a module

- Changes within a subtree do not affect ordering of others

Problems arise with shared procedures

- Introduce dependences (i.e., diplacements) within subtrees
- Layout preservation may require high fragmentation

10 of 15

Evaluation

On AVG/WCET I-cache behaviour and WCET variation
Targeting the LEON2 (SPARC V8) processor
Focusing on reference and domain-specific benchmarks

- Mälardalen, Mediabench, MiBench, AOCS software

Prototype tool

11 of 15

Average and worst-case performance

[Average-case hit ratio]

[Worst-case hit ratio]

12 of 15

Corresponding global WCET performance

Assessing the overall WCET improvement
Fairly proportional due to the relatively simple HW platform
and setting (e.g., D-cache disabled)

[Global WCET reduction]

13 of 15

Robustness to incremental release

Simulated incremental steps
Modules from the AOCS benchmark (GNC, PRO, TMTC)
Confirms constant WCET behavior for GNC

- Against an up to +26% potential variation if no
countermeasure is taken

- Low fragmentation: less than 2% increase in executable size

[WCET variation across releases]

14 of 15

Conclusion

Novel procedure positioning approach
More accurate program representation
Improves both avg and wc performance
Robust against incremental development

Limitations
Still need a better solution to handle regression in the presence
of shared procedures
Iterative (but costly) WCET-oriented approaches may provide
better WCET performance

Future work
Implement our approach as a plugin to standard GCC compiler
Undergo an extensive evaluation of different ordering heuristics

15 of 15

	The case for incremental development
	Incremental procedure positioning
	Evaluation
	Conclusion

