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3 Motivation of our work

O Brief recall of Reduction to Uniprocessor and Quasi
Partitioning Scheduling

d Implementation and evaluation
O Conclusions and future work
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Introduction

RUN QPS

Reduction to UNiprocessor  Quasi-Partitioning Scheduling

(RTSS-11) — (ECRTS-14)

optimal
relax the notion of proportionate-fairness
few preemptions and migrations

periodic tasks sporadic tasks
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The big question

RUN QPS

implemented’

on top of LITMUSART ?

modest run-time overhead

comparable to that found in partitioned
EDF

1Compagnin, D.; Mezzetti, E.; Vardanega, T., "Putting RUN into Practice: Implementation and Evaluation,” (ECRTS-14)

PROXIMA |



Recall of the algorithms

RUN QPS

off-line phase

multiprocessor uniprocessor
scheduling decomposition scheduling
problem problems

on-line phase

the schedule computed at the uniprocessor level is
arranged to build a schedule for the original problem
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Recall of the algorithms

RUN QPS

off-line phase

x+y=<1

quasi-partition

packing
excess
X+y=<2
x{Dj} y{Dd |
P Tj J Tk ‘
——

the unitary processor capacity can

dual be exceeded
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Recall of the algorithms

RUN QPS

off-line phase
reduction tree processor hierarchy

Ps

‘52'2 Sg.z Tg.4 Tg.z’
. =2
P, 2Py —
T({.s Tczl.e [ Tg.s T3.6 |
04\ 04 _[f04 \_ 04 1 o4 packing
CICIRCIIRCYRNC Y
o _.___'__.____.__ 06 T‘.‘s"' ei2FE)
external servers reserve capacity
~ 106 1o 66 L 06" Zoa N 02" for exceeding parts on a different
processor
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Recall of the algorithms

QPS

on-line phase

P EDF
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parallel :
execution :
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Implementation

RUN QPS

noteworthy differences

global scheduling mostly local scheduling

 virtual SChedullng e P-EDF + processor

e compact tree representation synchronization

* node selection is performed  uniform task and server

« cpus are assigned to level-0 representation
servers * budgets consistently updated

« timers trigger budget « timer triggers budget
consumption events consumption events

* release queue and lock  per-hierarchy release queue and

) lock
local scheduling

 tasks are selected by EDF
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Implementation

RUN QPS

noteworthy differences

global scheduling processors synchronization

« virtual scheduling

- compact tree representation 1P1 s rocesor e (s timer
* node selection is performed b
* cpus are assigned to level-0 T8
servers P3 =
« timers trigger budget ‘
consumption events :"P' ';-.""P'
* release queue and lock P1 . n Y
local scheduling 0 > 10
. tasks are selected by EDF P, notifies P, of the S,’s execution
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Evaluation

O empirical evaluation instead of simulation-based

d focus on scheduling interference
» costof scheduling primitives

> Incurred preemptions and migrations

O sporadic tasks were left out
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Experimental setup

a LITMUS”ART on a 16-cores AMD Opteron 6370P

d collected measurements for the two algorithms
» thousand of automatically generated task sets
» harmonic and non-harmonic, with global utilization in 50%-100%
» stressing the off-line and the on-line phases

d two-step process
» preliminary empirical determination of overheads

collect determine perform
measurements per-job actual
S ENEERERS  upper bound evaluation
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Primitive overheads and empirical bound

maximum observed overheads
100 T T T T T

I
QPS IIEm
80 RUN s |

60 -

Time (us)

40 + 4

20 -

\ i

REL SCHED CSW CLK LAT TUP
O expectation confirmed

> QPS needs lighter-weight scheduling primitives
d QPS gets rid of Tree update operations (TUP)

O empirical upper bound on the scheduling overhead
maz(OHzi/y, OHyps)
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Kernel Interference
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Avg preemptions-per-job

11
Utilization cap

12 13 14 15

 observing preemptions and
migrations at increasing the
reduction-tree/processor
hierarchy depth
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Avg migrations-per-job
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Scheduling cost

d maximum cost of core scheduling primitives

max release max schedule
100 I 1 1 I I ] I 100 I 1 1 I ] I I
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Per-job scheduling overhead

16

heavy tasks (utilization [0.5,;0.9])

medium tasks (utilization [0.1;0.5])
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d QPS is more susceptible to
1.5 .
g packing than RUN
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N partitioning
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Conclusions and future work

d QPS naturally embraces a partitioned design
> overall improvement on the scheduling primitives
» RUN needs a global scheduling coordination

d ... but is more affected by the off-line phase
> the processor hierarchy depth increases at full utilization
» itincurs the additional overhead of processor synchronization
» QPS works poorly at full-utilization

 global scheduling makes RUN less susceptible to the
packing effect

O updating the reduction tree is almost a constant time activity

A further work
O toward many-cores: mixing RUN with message passing
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Primitive overheads and empirical bound

maximum observed overheads
100 T T T T T

QPS —
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REL SCHED CSW CLK LAT TUP

d empirical upper bound on the scheduling overhead

>

>

>

OHJ% = REL + SCHED + CLK +k x (UPT + SCHED + max(PRE, MIG))
where k=[(3p+1)/2]

OH}%s = REL+ SCHED + CLK + k x (SCHED + max(PRE, MIG))
where k= [m/2]

SCHED = SCHED + CSW + LAT
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