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1 Introduction

Approximating a function f by linear combinations of translates of a given
single basis function φ is a widely used method. The case where the under-
lying manifold is R

d and the basis function is radial symmetric (radial basis
function) has been studied in great detail during the last decade (see [18]
and references therein). Usually, the setting is as follows. Given a data set
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1 Introduction

X × R = {(x1, f1), . . . , (xn, fn)} ⊂ R
d × R and a basis function φ : R

d → R,
we suppose the fi’s to be point evaluations of an unknown function f . Now
one tries to recover f by a linear combination of translates of a basis function
φ, i.e., we have an ansatz of the following type:

sf (x) =
n∑

k=1

akφ(x − xk), x ∈ R
d.

Assuming that sf interpolates the data, leads to a system of linear equations
for the coefficients ak, i.e

Aφa = f , (1)

where Aφ = (φ(xi − xk))
n
i,k=1,a = (ak)

n
k=1 and f = (fk)

n
k=1. It turned out

that, in this setting, a positive definite function φ is a good choice as a basis
function. A function φ : R

d → R is called positive definite if

n∑

j=1

n∑

k=1

cjck φ(xj − xk) ≥ 0 (2)

for all finite sets of points x1, . . . ,xn ∈ R
d and arbitrary coefficients c1, . . . , cn ∈

C. If the inequality (2) is strict for pairwise distinct xj’s, the function φ is
called a strictly positive definite function.

Applying such methods, several problems arise naturally.

A. Firstly, one has to clarify which functions f can be approximated by this
approach. Every positive definite function φ is related to a reproducing kernel
Hilbert space and this is the space where the approximation takes place. For
this reproducing kernel Hilbert space the name native space was invented by
several authors [14], [18]. The problem is that this space is initially defined as
the closure of all translates of the given function. Obviously, this characteri-
zation of the space is not suitable for approximation purposes. Therefore, one
has to identify the space as a subspace of a well known function space.

B. We have to make sure that the linear system (1) can be solved in a stable
manner. Even when the system (1) is uniquely solvable, the condition num-
ber of the matrix Aψ can be arbitrarily bad. A careful analysis shows how
the condition number of the matrix depends on the one hand on the so-called
separation distance of the points defined by

qX = min
i6=j

|xi − xj|,

and, on the other hand, on the specific properties of the basis function φ. In
many cases a better stability can be obtained by applying a suitable precon-
ditioning technique [3].

C. The third important question is concerned with the approximation error
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|f(x)− sf (x)|, x ∈ R
d. An essential tool for the error analysis is the so-called

power function. This function will provide a first estimate, and a closer inspec-
tion of this function will finally lead to an estimate in terms of the so-called
fill distance

hX = sup
x∈Rd

inf
xj∈X

|x − xj|.

While all these questions are well studied in case where the underlying manifold
is the Euclidean space R

d (or certain subsets of it), the analysis on other
manifolds is by no means as well understood. For a comprehensive treatment
of the R

d-case we refer to [18].

In various applications we are confronted with the situation where the underly-
ing set is a compact or locally compact group G, i.e. the data set X×R is now
a subset of G× R. Problems of such type arise in biochemistry (e.g. protein-
protein-docking, force field calculations of macromolecules) in engineering (e.g.
robotics) or in physics (e.g. crystallography). The monograph [5] provides a
lot more examples. In many situations special matrix groups are involved.
Especially the rotation group SO(3) is one of the most important examples,
see [2], [5].

In the case where a locally compact group different from R
d is involved, a

main problem is to come up with suitable positive definite functions. As long
as the group can be embedded in the Euclidean space R

d, as in the case of
matrix groups, one might try to restrict positive definite functions on R

d to
the manifold defined by the group. Some work in this direction has been
done by J. Levesley, D.L .Ragozin [11] and by F.J. Narcowich [12]. In [4] the
authors studied properties of positive definite functions on the sphere which are
constructed in this way. The drawback of this approach is that it ignores the
underlying algebraic structure completely. Especially the powerful harmonic
analysis on groups can not be used in order to study the above mentioned
problems. Thus, it is more appropriate to work directly on the group. This is
the approach we will follow in this paper. A first attempt of applying tools from
harmonic analysis on noncommutative locally compact groups to interpolation
problems on such structures was made by T. Gutzmer [8]. Recently, a more
detailed analysis of the stability problem was made by D. Schmid and the
second named author in [6]. The interplay between the approximation error
and the stability of the linear system (1) was first observed by R. Schaback
[15] and lately extended to a far more general setting by D. Schmid [16].

The paper is organized as follows. After collecting the basics on positive defi-
nite functions in the next section, we provide a characterization of the native
space in section 3. Section 4 is devoted to the application of the results from
section 3 to the rotation group. In section 5 we discuss the stability problem
and the error analysis for the approximation problem on SO(3).
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2 Positive definite functions on compact groups

In this section we collect the fundamentals on harmonic analysis and positive
definite functions on compact groups as far as they are necessary to understand
the remaining part of the paper. We start with the definition of positive definite
functions on a general topological group G.

Definition 2.1

A complex valued function φ on a topological group G is called positive definite
if

n∑

i=1

n∑

j=1

cicj φ(x−1
i xj) ≥ 0 (3)

for all c1, . . . , cn ∈ C, x1, . . . , xn ∈ G and n ∈ N. The function φ is called
strictly positive definite if the inequality (3) is strict for all possible choices of
c1, . . . , cn ∈ C, x1, . . . , xn ∈ G and n ∈ N.

Note that for the definition of positive definiteness of a function on G it is
not necessary to assume that G bears a topology. Since in this paper we are
dealing with topological groups exclusively, we included this assumption in the
definition above.

We denote by P (G), CP (G) the set of positive definite and continuous positive
definite functions respectively. It is easy to see that if φ, ψ ∈ P (G) so are
φ + ψ, cφ, φ · ψ for c ≥ 0. Every positive definite function is hermitean,
i.e. φ = φ̃, where φ̃(x) = φ(x−1)), and, moreover, we have φ(e) ≥ 0 and
|φ(x)| ≤ φ(e) for all x ∈ G. For a short proof of these facts see [13].

Let (π,Hπ) be a unitary representation of G, i.e., π is a homomorphism from G
into the group of unitary operators on the Hilbert space Hπ which is continuous
with respect to the strong operator topology. It is very easy to see that for
every v ∈ Hπ the function

φ : G→ C, φ(x) = 〈v, π(x)v〉, (4)

is continuous and positive definite on G. Conversely, starting with a continuous
positive definite function φ : G → C, there is always a unitary representation
(π,Hπ) such that (4) holds. We now describe briefly this construction. Let
Lx denote the left translation operator defined by Lxf(y) = f(x−1y). For
φ ∈ CP (G), we define the linear vector space

I(φ) = span
{ n∑

i=1

aiLxi
φ; a1, . . . , an ∈ C, xi ∈ G

}
.

For f =
∑n

i=1 aiLxi
φ and g =

∑m
j=1 biLyj

φ, we define the sesquilinear form

〈f, g〉φ =
n∑

i=1

m∑

j=1

aib̄jLxi
φ(yj)
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2 Positive definite functions on compact groups

on I(φ). It is easy to see that 〈·, ·〉φ is independent of the representation of
the elements f and g and therefore well defined. It can be readily seen that
(I(φ)), 〈·, ·〉φ) is an inner product space with property

〈g, Lxφ〉φ = g(x)

for x ∈ G and g ∈ I(φ). If we take the completion of I(φ) with respect to the
norm ‖ · ‖φ =

√
〈·, ·〉φ, we get a Hilbert space

H(φ) := cl‖·‖φ
I(φ).

This space has the following properties.

Lemma 2.2

(i) The translation operator Lx can be extended to H(φ). Moreover, H(φ)
is translation invariant.

(ii) 〈f, Lxφ〉φ = f(x), x ∈ G, f ∈ H(φ).

(iii) Functions in H(φ) are bounded,

(iv) For fn ∈ I(φ) for all n ∈ N and ‖fn−f‖φ → 0 for n→ ∞, then fn → f
uniformly on G.

(v) If 〈fn − f, g〉φ → 0 for n→ ∞ for all g ∈ H(φ), then fn → f pointwise.

For a proof of this lemma see [13]. The vector space H(φ) is thus a reproducing
kernel Hilbert space with kernel K(x, y) = Lxφ(y). This space is called the
native space of the positive definite function φ by some authors.

Positive definite functions on a commutative locally compact group G can
be characterized in terms of the inverse Fourier-Stieltjes transforms of certain
measures on the dual of G. This fundamental result is known as Bochner’s
Theorem. A result of this type is also available for noncommutative, compact
groups. We now state the Bochner Theorem for compact groups. In order
to do so, we need to summarize some basic facts from harmonic analysis on
compact groups. A standard reference for all this material including Bochner’s
Theorem is [9].

Let G be a compact group with normalized left Haar measure µ. By Ĝ we
denote the dual object of G, i.e. the set of equivalence classes of irreducible
unitary representations of G. For every equivalence class σ ∈ Ĝ let (πσ,Hσ)
be a representative with dimHσ = dσ. The Fourier transform of a function
f ∈ L1(G) at a point σ ∈ Ĝ is an operator on Hσ defined by

f̂σ =

∫

G

f(x)π∗
σ(x)dµ(x).

The set (f̂σ)σ∈Ĝ constitutes an operator-valued sequence with index set Ĝ.
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2 Positive definite functions on compact groups

Due to the Peter-Weyl Theorem, we have

f =
∑

σ∈Ĝ

dσtr(f̂σπσ)

for f ∈ L2(G), where the sum converges in the topology of L2(G). Further-
more, the Parseval equality

‖f‖2
2 =

∑

σ∈Ĝ

dσtr
(
f̂ ∗
σ f̂σ

)

holds.

Following [9], we define for operators Aσ ∈ B(Hσ) the expression

‖Aσ‖ϕp
:=





( dσ∑

i=1

λpi

) 1
p

, 1 ≤ p <∞,

max
{
λ1, λ2, . . . , λdσ

}
, p = ∞,

where λ1, λ2, . . . , λdσ
are the eigenvalues of |Aσ| =

√
A∗
σAσ. We now define

the space of operator-valued sequences on the dual object by

c(Ĝ) :=
∏

σ∈Ĝ

B(Hσ).

Obviously, c(Ĝ) is a ∗-algebra with pointwise defined addition, scalar multi-
plication, multiplication and the adjoint of operators as involution.

The spaces

lp(Ĝ) :=
{
A ∈ c(Ĝ) :

∑

σ∈Ĝ

dσ‖Aσ‖
p
ϕp
<∞

}
, 1 ≤ p ≤ ∞, (5)

are Banach spaces with respect to the norm

‖A‖p :=





(∑

σ∈Ĝ

dσ‖Aσ‖
p
ϕp

) 1
p

, 1 ≤ p <∞,

sup
∥∥Aσ‖σ, p = ∞.

Moreover, the space l2(Ĝ) is a Hilbert space with respect to

〈A,B〉 =
∑

σ∈Ĝ

dσtr
(
AσB

∗
σ

)
.

We are now able to state the Theorem of Bochner which provides a character-
ization of positive definite functions on a compact group. For the proof of this
theorem we refer to [9, p.334].
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Theorem 2.3

A function φ on the compact group G is continuous and positive definite if

and only if there is a unique sequence (Aσ)σ∈Ĝ ∈ l1(Ĝ) of hermitian positive
semidefinite operators Aσ ∈ B(Hσ) such that

φ(x) =
∑

σ∈Ĝ

dσtr
(
Aσπσ(x)

)
.

Note that an operator Aσ ∈ B(Hσ) is called positive semidefinite or positive
definite if, accordingly, 〈Aσv, v〉Hσ

≥ 0 or 〈Aσv, v〉Hσ
> 0 for all v ∈ Hσ \ {0}.

Since we always assume the positive definite function φ to be continuous, the
Peter-Weyl Theorem implies Aσ = φ̂σ.

Sometimes it is necessary to work with strictly positive definite functions. The
characterization of those functions is a very difficult problem. We refer to [1]
for a sufficient condition.

3 Characterization of the native space

Let G be a compact group and let X = {x1, . . . , xn} be a set of distinct
points on G. In this section we are going to apply Bochner’s Theorem in order
to obtain a characterization of the native space H(φ) for a given function
φ ∈ CP (G). The following proposition shows that the native space H(φ) is
uniquely defined.

Proposition 3.1

Let φ ∈ CP (G) and H be a Hilbert space of functions f : G → C with repro-
ducing kernel K(x, y) = Lxφ(y). Then H coincides with H(φ) and the inner
products are the same.

Proof. The line of argumentation is the same as in the proof of Theorem 10.11
in [18]. For f =

∑n
i=1 aiLxi

φ ∈ I(φ), we have

‖f‖2
H =

n∑

i,j=1

aiāj〈Lxi
φ, Lxj

φ〉 =
n∑

i,j=1

aiājLxi
φ(xj) = ‖f‖2

φ. (6)

This shows I(φ) ⊂ H. Now let (fn)n∈N be a sequence in I(φ) converging to
f ∈ H(φ). By Lemma 2.2 (iv) (fn)n∈N converges pointwise, too. Due to (6), the

sequence (fn)n∈N converges to an element f̃ ∈ H in norm as well as pointwise.

This gives us f = f̃ and, consequently, H(φ) ⊆ H. Assume now that H
does not coincide with H(φ). Then we can find a nonzero element g ∈ H
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orthogonal to the closed subspace H(φ). But this implies g(x) = 〈g, Lxφ〉 = 0
for all x ∈ G, which is a contradiction. The equality of the inner products
follows easily from the polarization identity.

For φ ∈ CP (G), let φ̂ = (φ̂σ)σ∈Ĝ ∈ l1(Ĝ) be the sequence of Fourier coefficients.

By Theorem 2.3, all operators φ̂σ are positive definite and hermitian. This

means that the square root φ̂
1
2
σ is well defined. By φ̂†

σ we denote the Moore-
Penrose pseudo inverse of φ̂σ. Since this operator is hermitian and positive
definite as well, φ̂† 1

2 is also well defined. Moreover, we have

Ker(φ̂
† 1
2
σ ) = Ker(φ̂σ), φ̂σ φ̂

†
σ φ̂σ = φ̂σ, φ̂†

σ φ̂σ φ̂
†
σ = φ̂†

σ.

Now we introduce the function space

H(φ) =
{
f ∈ C(G) : Im(f̂σ) ⊆ Im(φ̂σ),

(
φ̂
† 1
2
σ f̂σ

)
σ∈Ĝ

∈ l2(Ĝ)
}
,

where Im denotes the image of the operator. As we will prove now, H(φ)
characterizes the native space H(φ).

Theorem 3.2

The function space H(φ) equipped with the bilinear form

〈f, g〉H =
∑

σ∈Ĝ

dσtr
(
φ̂†
σ f̂σ ĝ

∗
σ

)
(7)

is a reproducing kernel Hilbert space with reproducing kernel K(x, y) = Lxφ(y).
Moreover, H(φ) = H(φ), and both inner products coincide.

Proof. The bilinear form (7) is obviously linear with respect to the first argu-
ment. Moreover, the properties of the trace operator and the fact that φ†

σ is
hermitian gives us 〈f, g〉H = 〈g, f〉H . The positive definiteness of 〈·, ·〉H follows

from the fact that Im(f̂σ) ⊆ Im(φ̂σ) = Ker(φ̂σ)
⊥ and Ker(φ̂σ) = Ker(φ̂

† 1
2
σ ) for all

σ ∈ Ĝ.

Now, let (gn)n∈N be a Cauchy sequence in H(φ). By definition of 〈·, ·〉H , this

means that (φ̂† 1
2 ĝn)n∈N is a Cauchy sequence in the space l2(Ĝ). Consequently,

it converges to a sequence A ∈ l2(Ĝ). Moreover, the sequence φ̂
1
2A lies in l1(Ĝ)

because

∑

σ∈Ĝ

dσtr
(
|φ̂

1
2
σAσ|

)
≤
(∑

σ∈Ĝ

dσtr(φ̂σ)
) 1

2
(∑

σ∈Ĝ

dσtr(AσA
∗
σ)
) 1

2
= ‖φ̂

1
2‖2

2‖A‖
2
2 <∞

by the Hölder’s inequality for lp(Ĝ) (see [9]). Hence, the function

g(x) :=
∑

σ∈Ĝ

dσtr
(
φ̂

1
2
σAσπσ(x)

)
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4 Application to the rotation group

is well defined, continuous and we have ĝσ = φ̂
1
2
σ Aσ, σ ∈ Ĝ. Furthermore, we

have Im(Aσ) ⊆ Im(φ̂σ) for all σ ∈ Ĝ. Consequently, φ̂
† 1
2
σ ĝσ v = φ̂

† 1
2
σ φ̂

1
2
σ Aσ v =

Aσ v for all v ∈ Hσ, σ ∈ Ĝ. Thus, we obtain φ̂† 1
2 ĝ = A. Moreover, Im(ĝσ) =

Im(φ̂
1
2
σAσ) ⊆ Im(φ̂σ) which finally gives g ∈ H(φ). Now we obtain

‖g − gn‖H = ‖φ̂† 1
2 (ĝ − ĝn)‖2 = ‖A− φ̂† 1

2 ĝn‖2
n→∞
−→ 0.

This yields the completeness of H(φ).
It remains to show that K(x, y) = Lxφ(y) is the reproducing kernel of H(φ).
The assertion then follows from Proposition 3.1. At first, we see that H(φ)
contains φ. Indeed, since

‖φ̂† 1
2 φ̂‖2 =

(∑

σ∈Ĝ

dσ‖φ̂
† 1
2
σ φ̂σ‖

2
ϕ2

) 1
2

=
(∑

σ∈Ĝ

dσ‖φ̂
† 1
2
σ φ̂

1
2
σ φ̂

1
2
σ‖

2
ϕ2

) 1
2

and Im(φ̂
1
2
σ ) ⊆ Im(φ̂σ) for all σ ∈ Ĝ we obtain ‖φ̂† 1

2 φ̂‖2 = ‖φ̂‖1 from which

the claim follows. Moreover, from (Lxφ)̂σ = φ̂σ π
∗
σ(x) for all σ ∈ Ĝ and the

invariance of ‖ · ‖2 with respect to a sequence of unitary operators we see that
Lxφ ∈ H(φ) for every x ∈ G. Finally, the reproduction property follows from

〈g, Lxφ〉H =
∑

σ∈Ĝ

dσtr
(
φ̂†
σ ĝσ
(
φ̂σπ

∗
σ(x)

)∗)

=
∑

σ∈Ĝ

dσtr
(
ĝσπσ(x)

)
= g(x).

The elements of the space H(φ) can therefore be regarded as continuous func-

tions whose Fourier transform lies in a weighted l2(Ĝ) space where the weights
are given by the sequence of the pseudo inverse φ̂†.

4 Application to the rotation group

We now are going to apply the results of the previous section to the group of
rotations in the Euclidean space R

3, i.e.

SO(3) = {x ∈ GL(3,R) : xTx = e, detx = 1}.

In order to do so, we collect briefly some fundamental facts about the group
SO(3). The rotation group is a compact semisimple Lie group and it can be
parameterized in different ways. Most suitable for us is the parameterization
on the projective space. This is given as follows: Let Kπ be the closed ball with
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4 Application to the rotation group

radius π in R
3 and identify antipodal points on the surface. This is the three

dimensional real projective space. An element x ∈ SO(3) is determined by its
rotation axis given by x · r = r, ‖r‖ = 1, and its rotation angle α(x) ∈ [0, π]
defined by 〈v, x · v〉 = cosα(x), where v ∈ {r}⊥, ‖v‖ = 1. The element x ∈
SO(3) is now identified with a point in the projective space Kπ by x→ α(x)r.

A translation invariant metric on SO(3) is given by

d(x, y) := α(y−1x).

The easiest way to prove this statement is to look at the double cover of Kπ

which can be identified with the three dimensional unit sphere S3 ⊂ R
4. There,

the rotation angle corresponds exactly with the geodesic distance.

For l ∈ N and −l ≤ n ≤ l, let Y l
n denote the canonical orthonormal basis of

spherical harmonics on the space of square integrable functions on the unit
sphere S

2 ⊂ R
3 and Hl := span{Y l

n : −l ≤ n ≤ l}. Now define

Dl
m,n(x) =

∫

S2

Y l
m(xs)Y l

n(s)ds,

and let

Dl(x) =
(
Dl
m,n(x)

)l
m,n=−l

, l ∈ N.

It is well known that the Dl, l ∈ N, form a complete set of unitary irreducible
representations of the rotation group. Thus, the dual object SO(3)̂ can be
identified with N and, due to the Peter-Weyl theorem, the matrix elements
Dl
m,n constitute an orthonormal basis of L2(SO(3)). Bochner’s theorem now

reads as follows.

Theorem 4.1

A function φ on SO(3) is continuous and positive definite if and only if there
is an unique sequence (Al)l∈N ∈ l1(SO(3)̂) of hermitian positive semidefinite
operators Al ∈ B(Hl) such that

φ(x) =
∑

l∈N

(2l + 1)tr
(
AlDl(x)

)
.

By the Peter-Weyl theorem, we have

Al = φ̂l =

∫

SO(3)

φ(x)Dl(x−1)dµ(x),

where µ denotes the normalized translation invariant Haar measure on SO(3).

Bochner’s theorem states that in order to construct positive definite functions
on SO(3) we need appropriate Fourier coefficients (Al)l∈N. To simplify the
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4 Application to the rotation group

selection, it is reasonable to look at coefficients of the form Al = alid2l+1 where
the al are complex numbers.

A function on a group is called central function if it is constant on conju-
gacy classes. It turns out that functions with Fourier coefficients of the form
Al = alid2l+1 are central functions on SO(3). It can be shown that central
functions on SO(3) depend on the rotation angle only, see [7]. Due to this
symmetry, central functions can be seen as an analog of the radial functions
in R

d. Fundamental central functions on SO(3) are the characters tr(Dl(x)).
We have

tr
(
Dl(x)

)
=

sin
(
(2l + 1)α(x)

2

)

sin
(α(x)

2

) = U2l

(
cos
(α(x)

2

))
,

where Ul is the Chebyshev polynomial of second kind of degree l. For more
details we refer to the monographs [7] and [17]. As an immediate consequence
of Theorem 4.1, we now obtain

Corollary 4.2

A central function φ on SO(3) is continuous and positive definite if and only if
there is an unique sequence (al)l∈N of nonnegative numbers with the property∑

l∈N
(2l + 1)2al <∞ such that

φ(x) =
∑

l∈N

(2l + 1)alU2l

(
cos
(α(x)

2

))
.

We are now prepared to come up with some examples of positive definite
central functions on the rotation group. For the construction we will apply
Corollary 4.2.

Examples

(a) We start from the well known formula

1

1 − 2r cosα+ r2
=

∞∑

l=0

rlUl(cosα),

where 0 < r < 1 and α ∈ [0, π]. This equation implies

∞∑

l=0

rlU2l

(
cos

α

2

)
=

∞∑

l=1

rl
(
Ul(cosα) + Ul−1(cosα)

)
+ 1

= (1 + r)
∞∑

l=0

rlUl(cosα) =
1 + r

1 − 2r cosα+ r2
.

Thus, by Corollary 4.2, the functions

Pr(x) =
(1 − r)2

1 − 2r cosα(x) + r2

11



4 Application to the rotation group

are positive definite and continuous on SO(3). Note that the function is scaled
such that Pr(e) = 1. The Fourier coefficients are then given by

P̂r(l) =
(1 − r)2

1 + r

rl

2l + 1
id2l+1, l ∈ N.

By Theorem 3.2, the native space of the functions Pr is given by

H(Pr) =

{
g ∈ C(SO(3));

∞∑

l=0

(2l + 1)2

rl
tr(ĝlĝ

∗
l ) <∞

}

with the inner product

〈g, h〉Pr
=

1 + r

(1 − r)2

∞∑

l=0

(2l + 1)2

rl
tr(ĝlĥ

∗
l ).

The scaling parameter r determines the localization of Pr around the identity
element. In fact, as r tends to one the tighter the peak of Pr at the point e
gets.
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0.4

0.6

0.8

1

−π ≤ α ≤ π

Fig.1 Pr(α), r = 0.6 Fig.2 Pr(α), r = 0.85

(b) Let m ∈ N and define

Sm(x) =
(1 + 2 cosα(x)

3

)m
, m ∈ N.

Since S1(x) = 1
3
U2(cos(α(x)/2)), the function S1 is positive definite on SO(3).

Therefore, Sm is positive definite, too. Moreover, thanks to S1(x) < S1(e) for
all x 6= e, we can localize the function around e as much as we like by taking
suitable powers. Using the product formula for the Chebyshev polynomials

Ul(x)Uk(x) =
k+l∑

j=|k−l|

Uj(x), k, l ∈ N0, (8)

12



4 Application to the rotation group

we get for k = 2 and l ≥ 2 the formula

Ul(x)U2(x) = Ul−1 + Ul + Ul+2.

Thus, by a simple induction over m one can show that

Sm(x) =
m∑

l=0

nl
3m
U2l

(
cos

α(x)

2

)
,

where nl are strictly positive integers which can be computed recursively.

The native space in this case is finite dimensional and can be written as

H(Sm) = span{Dl
µ,ν ; 0 ≤ l ≤ m, −l ≤ µ, ν ≤ l}

with the inner product

〈g, h〉Sm
=

m∑

l=0

3m

nl
tr(ĝl ĥ

∗
l ).
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1
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Fig.3 Sm(α), m = 8 Fig.4 Sm(α), m = 32

(c) The next example is given by the fundamental solution of the diffusion
equation on SO(3). The eigenvalues of the Laplacian on SO(3) are −l(l+1), l ∈
N. The diffusion kernel is then given by

Gt(x) =
∞∑

l=0

(2l + 1)e−l(l+1)tU2l

(
cos

α(x)

2

)
, t ≥ 0. (9)

The kernel can not be expressed in closed form, but, due to the fast decay of
the coefficients, it can be well approximated by truncation of the series. The
native space for Gt is given by

H(Gt) =
{
g ∈ SO(3) :

∞∑

l=0

(2l + 1)el(l+1)ttr(ĝl ĝ
∗
l )
}
.

The scalar product reads as

〈g, h〉Gt
=

∞∑

l=0

(2l + 1)el(l+1)ttr(ĝl ĥ
∗
l ).
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Fig.5 Gt(α)/Gt(0), t = 0.1 Fig.6 Gt(α)/Gt(0), t = 0.01

(d) Another way of getting a family of positive definite functions is to start
from a known convergent sine series. As an example, we take the absolutely
convergent series

∞∑

l=1

pl

l!
sin(lα) = ep cos(α) sin(p sin(α)), α ∈ [0, π],

where p > 0. To come up with a series of Chebyshev polynomials of even
degree, we transform the latter formula appropriately. We have

ep cos(α) sin(p sin(α)) cos(
α

2
) =

∞∑

l=1

pl

l!
sin(lα) cos(

α

2
)

=
1

2

∞∑

l=1

pl

l!

(
sin
(
(2l + 1)

α

2

)
+ sin

(
(2l − 1)

α

2

))

=
1

2

∞∑

l=1

(pl
l!

+
pl+1

(l + 1)!

)
sin
(
(2l + 1)

α

2

)
+
p

2
sin
(α
2

)

=
1

2

∞∑

l=1

pl

(l + 1)!
(p+ l + 1) sin

(
(2l + 1)

α

2

)
+
p

2
sin
(α
2

)
.

Dividing now by sin(α
2
), we get

ep cos(α) sin(p sin(α))

tan(α
2
)

=
1

2

∞∑

l=1

pl

(l + 1)!
(p+ l + 1)

sin
(
(2l + 1)α

2

)

sin
(
α
2

) +
p

2

=
1

2

∞∑

l=1

pl

(l + 1)!
(p+ l + 1)U2l

(
cos
(α
2

))
+
p

2
.

Finally, scaling by 1
2epp

, we have

Ep(x) = e−p(1−cosα(x)) sin(p sinα(x))

2p tan(α(x)
2

)
, p > 0.
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5 Approximation problems

Thus, from the computations above we obtain

H(Ep) =

{
g ∈ C(SO(3));

∞∑

l=1

(2l + 1)2(l + 1)!

pl−1(p+ l + 1)
tr(ĝlĝ

∗
l ) <∞

}

with the inner product

〈g, h〉Ep
= 4epĝ(0)ĥ(0) +

∞∑

l=1

(2l + 1)24ep(l + 1)!

pl−1(p+ l + 1)
tr(ĝlĥ

∗
l ).

Similarly to Sm, the larger the value p is chosen the better the function Ep
localizes at the identity e.

−pi −pi/2 0 pi/2 pi

0

0.2

0.4

0.6

0.8

1

−π ≤ α ≤ π
−pi −pi/2 0 pi/2 pi

0

0.2

0.4

0.6

0.8

1

−π ≤ α ≤ π

Fig.7 Ep(α), p = 4 Fig.8 Ep(α), p = 16

5 Approximation problems

We now turn to the problem of approximating a function from the native
space by a linear combination of the corresponding positive definite function.
Let us briefly describe the problem. Assume φ ∈ CP (G) and X × C =
{(x1, ξ), . . . , (xn, ξn)} ⊂ G × C to be a given data set. Let us further as-
sume that ξj = g(xj), where g ∈ H(φ). Now we would like to approximate g
by

sg(x) =
n∑

j=1

aj φ(x−1
j x), (10)

where the coefficients aj are determined according to sg(xj) = ξj. This leads
to the linear system

Aφ a = ξ, (11)

where Aφ = (φ(x−1
i xj))

n
i,j=1,a = (a1, . . . , an)

t, ξ = (ξ1, . . . , ξn)
t. The matrix

Aφ is hermitian and positive semidefinite. Now, one has to address at least
two problems. Firstly, we have to make sure that (10) can be solved in a stable

15



5 Approximation problems

manner. Therefore, it is important to have good estimates for the condition
number

κ(Aφ) =
λmax
λmin

. (12)

Here λmin, λmax denotes the smallest and the greatest eigenvalue of Aφ respec-
tively. Secondly, we need estimates for the approximation error |g(x)− sg(x)|.
In order to come up with error estimates, it is useful to represent the approx-
imating function sg in a different way. This representation is given by

sg(x) =
n∑

i=1

ui(x)g(xi). (13)

The functions ui are defined pointwise by

Aφ u(x) = φ(x), (14)

where u(x) = (u1(x), . . . , un(x))
T and φ(x) = (φ(x−1

1 x), . . . , φ(x−1
n x))T . Using

the fact that H(φ) is a reproducing kernel Hilbert space with kernel Lxφ, we
obtain

|g(x) − sg(x)| = |g(x) −
n∑

i=1

ui(x)g(xi)| = |〈g, Lxφ−

n∑

i=1

ui(x)Lxi
φ〉φ|

≤ ‖g‖φ‖Lxφ−
n∑

i=1

ui(x)Lxi
φ‖φ.

(15)
Usually, the function PX,φ(x) = ‖Lxφ −

∑n
i=1 ui(x)Lxi

φ‖φ is referred to as
power function, see [18]. The power function depends on the point x, on the
set X and on φ, but does not depend on g. Using the reproducing kernel
property, we obtain

P 2
X,φ(x) = φ(e) − 2

n∑

j=1

uj(x)φ(x−1
j x) +

n∑

j=1

n∑

k=1

uj(x)uk(x)φ(x−1
j xk). (16)

It can be shown that the quadratic form (16) is minimized pointwise by the
vector u(x).

5.1 Stability

The estimate of the condition number κ(Aφ) is strongly related to the separa-
tion distance of the set X. This parameter is defined as

qX := min{d(xi, xj) : 1 ≤ i, j ≤ n, i 6= j}, (17)
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5 Approximation problems

where d(x, y) = α(y−1x). Let φ ∈ CP (SO(3)) be a central positive definite
function with Fourier coefficients φ̂l = alid2l+1. Now, let

amin(M) := min
l≤2M

{al}, M ∈ N.

Then we have the following result.

Theorem 5.1

Let φ ∈ CP (SO(3)) be a central positive definite function on SO(3). Then we
have

λmin(Aφ) ≥
1

2
amin(M)(M + 1)3,

for any M satisfying

M + 1 ≥
14.65

qX
.

Proof. We consider the polynomial kernel

FM(x) =
M∑

l=0

U2l

(
cos

α(x)

2

)
=

sin
(
(M + 1)α

2

)2

sin(α
2
)2

. (18)

and define the auxiliary function GM := amin(M)
(M+1)

F 2
M . We have

GM(e) =
amin(M)

(M + 1)
F 2
M(e) = amin(M)(M + 1)3. (19)

For hermitian positive definite operators Al, Bl ∈ Hl we write Al ≤ Bl if
Bl − Al is a positive definite operator. We are now showing that the Fourier
coefficients of GM are dominated by the Fourier coefficients of φ in the sense
that (ĜM)l ≤ φ̂l for each l ∈ N. We apply the product formula (8) of the
Chebyshev polynomials to get

F 2
M =

(M−1∑

k=0

U2k + U2M

)2

=
(M−1∑

k=0

U2k

)2

+ U2
2M + 2

M∑

k=0

U2MU2k

=
(M−1∑

k=0

U2k

)2

+
2M∑

k=0

U2k + 2
M−1∑

k=0

M+k∑

j=M−k

U2j

=
(M−1∑

k=0

U2k

)2

+
2M∑

k=0

(1 + 2(M − |M − k|))U2k.

Taking the Fourier transform on both sides, we get

(F̂ 2
M)l =

((M−1∑

k=0

U2k

)2)̂
l
+

1 + 2(M − |M − l|)

2l + 1
χ[0,2M ](l)id2l+1

≤
((M−1∑

k=0

U2k

)2)̂
l
+ χ[0,2M ](l)id2l+1.
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5 Approximation problems

Induction over M , yields

(F̂ 2
M)l ≤ (M + 1)id2l+1, 0 ≤ l ≤ 2M,

(F̂ 2
M)l = 02l+1, l > 2M.

Thus, we get the desired estimate

(ĜM)l =
amin(M)

(M + 1)
(F̂ 2

M)l ≤ amin(M)χ[0,2M ](l)id2l+1 ≤ φ̂l, l ∈ N. (20)

The function φ − GM is therefore positive definite by Theorem 4.1 and Ger-
schgorin’s theorem implies

n∑

i,j=1

cicjφ(x−1
i xj) ≥

n∑

i,j=1

cicjGM(x−1
i xj)

≥ ‖c‖2
2

(
GM(e) − max

1≤j≤n

n∑

i=1,i6=j

|GM(x−1
i xj)|

)
.

(21)

In order to obtain our desired estimate, we show

max
1≤j≤n

n∑

i=1,i6=j

|GM(x−1
i xj)| ≤

GM(e)

2
, (22)

for an appropriate M > 0. Now, we assume w.l.o.g that the maximum in (22)
is attained at x1 = e. Then we get

max
1≤j≤n

n∑

i=1,i6=j

|GM(x−1
i xj)| =

n∑

j=2

|GM(xj)|.

We now decompose the rotation group into subsets of the form

RqX ,m := {x ∈ SO(3) : mq ≤ d(x, e) < (m+ 1)q}.

From [6], we have the following upper bound for the number of points from X
which can be contained in a set Rqx,m:

|RqX ,m ∩X| ≤ 141m2.

For the function GM , we have

|GM(x)| =
amin(M)

M + 1

sin
(
(M + 1)α

2

)4

sin(α
2
)4

≤
amin(M)π4

(M + 1)α(x)4
=

π4GM(e)

((M + 1)α(x))4
.

Thus, an upper bound for GM on RqX ,m is given by

|GM(x)| ≤ GM(e)
π4

((M + 1)mqX)4
, x ∈ RqX ,m.
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5 Approximation problems

Summarizing all statements, we finally get the following estimate

n∑

j=2

|GM(xj)| ≤
∞∑

m=1

|RqX ,m ∩X| sup
x∈RqX,m

|GM(x)|

≤ GM(e)
141π4

((M + 1)qX)4

∞∑

m=1

1

m2
≤ GM(e)

24π6

((M + 1)qX)4
.

In order to ensure that the last expression is less then 1
2
GM(e), we have to

chose

M + 1 ≥
(48π6)

1
4

qX
≥

14.65

qX
.

Example

The following table contains the lower bounds for amin(M) and λmin(Aφ) for
the functions introduced in section 4. To simplify things, we apply Theorem
5.1 with M + 1 = 16/qX .

amin(M) λmin

Pr
(1 − r)2

1 + r

r2M

4(M + 1)
32

(1 − r)2

(1 + r)r2
r

32
qX q−2

X

Gt e−4(M+1)2t 211e
− 322

q2
X

t
q−3
X

Ep
p2M−1

8ep(2M + 1)!

28

p3ep
p32/qX

Γ(32/qX)
q−3
X

Remark that this method doesn’t work with the function Sm since in that case
only finite many Fourier coefficients are different from zero.

5.2 Error estimates

To get an error estimate for |g(x)− sg(x)|, g ∈ H(f), we have to find a bound
for the power function PX,φ(x). This will be done in terms of the fill distance

hX = sup
x∈SO(3)

inf
xj∈X

d(x, xj). (23)

The fill distance specifies the maximal distance between a point x ∈ SO(3)
and the set X and thus describes how uniformly the points of the set X are
distributed over the manifold SO(3).

Let
PN = span{Dl

m,n : 1 ≤ l ≤ N, −l ≤ m,n ≤ l}. (24)
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The next lemma is a consequence of the Markov inequality for functions from
PN . The proof is the same as in the case where the underlying manifold is S

d

(see [18] or [10]) and is therefore omitted.

Lemma 5.2

Let X = {x1, . . . , xn} be a subset of SO(3) with fill distance hX ≤ 1
2N

. Then
there exist functions ũi : SO(3) → R such that

(i)
∑n

i=1 ũi(x)p(xi) = p(x) for all p ∈ PN(SO(3)) and x ∈ SO(3).

(ii)
∑n

i=1 |ũi(x)| ≤ 2 for all x ∈ SO(3).

With this preliminary we are able to prove the following error estimate.

Theorem 5.3

Let φ ∈ CP (SO(3)) be a central function with Fourier coefficients alid2l+1, l ∈
N. Let g ∈ H(φ), X = {x1, . . . , xn}, and assume 1

2N+1
≤ hX ≤ 1

2N
.

Then, for x ∈ SO(3), we have

|g(x) − sg(x)| ≤ 3

(
∞∑

l=N+1

(2l + 1)2al

) 1
2

‖g‖φ.

Proof. We have
|g(x) − sg(x)| ≤ PX,φ(x)‖g‖φ.

Let x0 = x and u0(x) = −1. Then, by using Corollary 4.2, we obtain the
following expression for the power function

P 2
X,φ(x) = ‖Lxφ−

n∑

i=1

ui(x)Lxi
φ‖2

φ = ‖

n∑

i=0

ui(x)Lxi
φ‖2

φ

=
∞∑

l=0

(2l + 1)al

n∑

i=0

n∑

j=1

ui(x)uj(x)U2l

(
cos
(α(x−1

i xj)

2

))
.

Since the quadratic form (16) is minimized pointwise by the functions ui, we
obtain an upper bound by replacing the ui’s by the functions ũi from the
previous lemma. Setting again ũ0(x) = −1, we get

P 2
X,f (x) ≤

∞∑

l=N+1

(2l + 1)al

n∑

i,j=0

ũi(x)ũj(x)U2l

(
cos
(α(x−1

i xj)

2

))

≤
∞∑

l=N+1

(2l + 1)2al

n∑

i,j=0

|ũi(x)ũj(x)|

≤

∞∑

l=N+1

(2l + 1)2al

(
1 +

n∑

i=1

|ũi(x)|

)2

≤ 9
∞∑

l=N+1

(2l + 1)2al.
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Note that, since the function φ is central and in CP (SO(3)), Bochner’s theorem
4.2 ensures the existence of

∑∞
l=N+1(2l + 1)2al.

We can express the error estimates in terms of the fill distance hX if some
information on the decay of the Fourier coefficients is known.

Theorem 5.4

Under the same assumptions as in Theorem 5.3, we have

(1) If (2l + 1)2al ≤ c(2l + 1)−s with s > 1, then

‖g − sg‖∞ ≤ C h
s−1
2

X ‖g‖φ.

(2) If (2l + 1)2al ≤ ce−s(2l+1) with s > 0, then

‖g − sg‖∞ ≤ C e
− s

2(hX )‖g‖φ.

Proof. Inserting the assumptions on the Fourier coefficients in Theorem 5.3,
we get

(1)
∞∑

l=N+1

(2l + 1)2al ≤ c

∫ ∞

N

(1 + 2l)−sdl =
c

2(s− 1)
(2N + 1)−s+1 ≤

c

2(s− 1)
(hX)s−1,

(2)
∞∑

l=N+1

(2l + 1)2al ≤ c

∫ ∞

N

e−s(2l+1)dl =
c

2s
e−s(2N+1) ≤

c

2s
e−s/hX .

This proves the statements.
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