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Based on a result of Rösler and Voit for ultraspherical polynomials, we
derive an uncertainty principle for compact Riemannian manifolds M . The
frequency variance of a function in L2(M) is therein defined by means of the
radial part of the Laplace-Beltrami operator. The proof of the uncertainty
rests upon Dunkl theory. In particular, a special differential-difference op-
erator is constructed which plays the role of a generalized root of the radial
Laplacian. Subsequently, we prove with a family of Gaussian-like functions
that the deduced uncertainty is asymptotically sharp. Finally, we specify
in more detail the uncertainty principles for well known manifolds like the
d-dimensional unit sphere and the real projective space.
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1 Introduction

The most common mathematical description of the uncertainty principle is the following
classical formulation, referred to as Heisenberg-Pauli-Weyl inequality (cf. [7], [8], [13]).

Theorem 1.1. If f ∈ L2(R) with xf(x), f ′, xf ′(x) ∈ L2(R) and a, b ∈ R, then∫
R
(t− a)2|f(t)|2dt ·

∫
R
(ω − b)2|f̂(ω)|2dω ≥ ‖f‖

4

16π2
, (1)

Equality is attained if and only if f(t) = Ce2πib(t−a)e−γ(t−a)2 for C ∈ C and γ > 0.
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1 Introduction

In signal analysis, f(t) denotes the amplitude of a signal at a point t and the Fourier
transform f̂ describes how the signal is build up from different frequencies. Inequality
(1) states that a signal can not be well-localized simultaneously in the space and the
frequency domain. The quantum mechanical interpretation of inequality (1) formulated
in Heisenberg’s pathbreaking work [14] is similar. In any quantum state, the values of
two conjugate observables such as position and momentum can not both be precisely
determined.

If the function f is defined on a manifold different from Rd, the question of how to
formulate an uncertainty principle like (1) becomes more difficult. On the unit circle T,
an interesting approach was pursued by Breitenberger in [2]. If one sets the frequency
variance of a function f ∈ L2(T) as varF (f) = 〈f ′, f ′〉T− 〈f ′, f〉2T and the mean value as
ε(f) = 1

2π

∫ 2π

0
eit|f(eit)|2dt, then it is possible to prove (cf. [2], [21], [23]) the following

uncertainty principle:

Theorem 1.2. If f ∈ AC(T) ⊂ L2(T) with f ′ ∈ L2(T) and ‖f‖T = 1, then

(1− |ε(f)|2) · varF (f) ≥ 1

4
|ε(f)|2. (2)

The constant 1
4
on the right hand side is optimal.

As the Heisenberg-Pauli-Weyl inequality, also (2) has a physical interpretation. If one
reads the value

varS(f) =
1− |ε(f)|2

|ε(f)|2

as the angular variance of a periodic function f (see Figure 1 for the geometric interpre-
tation), then inequality (2) states that the values of the two observables angular position
and angular momentum can not both be exactly determined at the same time.

Based on inequality (2), there have been similar attempts to construct uncertainty prin-
ciples on the unit sphere Sd. Remarkable in this context are the papers of Rösler &
Voit [27], Narcovich & Ward [20], Goh & Goodman [12] and Freeden & Windheuser [9].
Of special interest for the present article are the techniques developed in [27]. Therein,
Rösler & Voit proved the following uncertainty principle for radial functions on the unit
sphere.

Theorem 1.3. If f ∈ L2(Sd)∩C2(Sd), ‖f‖Sd = 1, is radial with respect to a point p ∈ Sd,
i.e. f(x) = F (x · p), define the spherical mean value by ε(f, p) =

∫
Sd

(x · p)|f(x)|2dµ(x)
as well as the frequency variance by varF (f) = 〈−∆Sdf, f〉Sd, where ∆Sd denotes the
Laplace-Beltrami operator on Sd. Then

(1− |ε(f, p)|2) · varF (f) ≥ d2

4
|ε(f, p)|2, (3)

and the constant d2

4
on the right hand side is optimal.
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2 Preliminaries on Riemannian Manifolds
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Figure 1: Geometric interpretation of the angular variance varS(f) on the unit circle T.
The function f is chosen such that ε(f) = 3

4
i and varS(f) = 7

9
.

In the present work, we are going to extend the uncertainty principle (3) to compact
Riemannian manifolds M . The corresponding frequency variance of a function f ∈
L2(M) relies on the radial part of the Laplace-Beltrami operator ∆M . To define a space
variance on M , we use, similarly as in (2) and (3), an appropriately introduced mean
value ε(f, p). The proof of the uncertainty inequality itself is based on an operator
theoretic approach as described in [7], [8] and [29]. For this approach to work, we need
the root of the radial Laplace-Beltrami operator which can be obtained in a generalized
form by means of Dunkl theory. In a further step, we are going to prove the asymptotic
sharpness of the introduced uncertainty inequality. This is done by constructing an
appropriate family of Gaussian-like functions on the manifold M . Finally, we discuss in
more detail the uncertainty principle on some special manifolds like the unit sphere Sd

and the real projective space RPdπ.

The paper is organized as follows. In Section 2, some preliminaries on compact Rie-
mannian manifolds are introduced. The main result of the paper together with the
formulation of the uncertainty principle can be found in Section 3. Herein, also the
Dunkl operator, essentially for the proof of the uncertainty, is defined. In Section 4,
we proof the asymptotic sharpness of the uncertainty inequality. In the final sections,
we give some examples and additional information on special aspects of the uncertainty
principle.

2 Preliminaries on Riemannian Manifolds

In this preliminary part, we summarize some basic facts about Riemannian manifolds
and introduce the necessary notation for the upcoming sections. The details can be
found among other standard references in [1], [4] and [10].
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2 Preliminaries on Riemannian Manifolds

In the following, we denote byM a compact and connected Riemannian manifold without
boundary and by Mp the tangent space at a point p ∈ M . A distance metric d(p, q)
between two points p and q on M can be introduced by setting

d(p, q) := inf
w

∫ b

a

|w′(t)|dt,

where w ranges over all piecewise differentiable paths w : [a, b]→M satisfying w(a) = p
and w(b) = q. The metric d(·, ·) turns M into a metric space.

Since the compactness of M implies the geodesic completeness [4, Theorem 1.7.2], there
exists for every p ∈ M and ξ ∈ Mp an unique geodesic γξ : R→ M satisfying γξ(0) = p
and γ′ξ(0) = ξ. Moreover, the Hopf-Rinow-Theorem [4, Theorem 1.7.1] ensures that any
two points p, q ∈ M can be joined by a minimal geodesic with length d(p, q). Through
the geodesic γξ, one can define the exponential map expp : Mp →M by

expp tξ := γξ(t),

for all t ∈ R and ξ ∈ Mp. For p ∈ M and δ > 0, we introduce on M the open ball and
the sphere with center p as

B(p, δ) := {x ∈M, d(x, p) < δ},
S(p, δ) := {x ∈M, d(x, p) = δ}.

By the same token, we define on the tangent space Mp

B(p, δ) := {ξ ∈Mp, ‖ξ‖ < δ},
S(p, δ) := {ξ ∈Mp, ‖ξ‖ = δ},

Sp := S(p, 1).

Now, we turn to the notion of a cut point. For ξ ∈ Sp, we define

R(ξ) := sup{t > 0 : d(p, γξ(t)) = t}

as the maximal distance in direction ξ for which expp is isometric. The point γξ(R(ξ)) is
referred to as the cut point of the point p along the geodesic γξ(t). Since M is compact,
one can show that the function R(ξ) is Lipschitz continuous [15] and strictly positive on
Sp. Thus, also the ratio

κ(ξ) :=
π

R(ξ)

is a well defined Lipschitz continuous function on Sp. The set Cp := {R(ξ)ξ : ξ ∈ Sp}
is called the tangential cut locus of p in Mp and Cp := expp Cp the cut locus of p in M .
The point set {p} has measure zero, but moreover, one can prove that also the cut locus
Cp is a set of Riemannian measure zero. If we define the sets Dp := {tξ ∈Mp : 0 ≤ t <
R(ξ), ξ ∈ Sp} and Dp := expp Dp, then, as a consequence of the Hopf-Rinow-Theorem,
we get the decomposition (cf. [10, Prop. 2.113])

M = Dp ∪ Cp.
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2 Preliminaries on Riemannian Manifolds

Through the exponential map expp, we can introduce the geodesic spherical coordinates
on M (we use GSC as a shortcut). If a coordinate system ξ = ξ(u) is given on the
unit sphere Sp, where u varies over a domain in Rd−1, then every point q ∈ M can be
described in the GSC as q(t, ξ(u)) = expp(tξ(u)), where 0 ≤ t ≤ R(ξ). In the geodesic
spherical coordinates, the Riemannian measure on M can be determined as [4, III.3]

dV (expp(tξ)) = Θ(t, ξ)dtdµp(ξ),

where Θ is a well defined smooth weight function on [0, R(ξ)]×Sp and dµp denotes the
standard surface measure on Sp. The weight function Θ is zero for t = 0 and strictly
positive for all points (t, ξ) ∈ (0, R(ξ))×Sp.

For an integrable function f , the integration on M can be written in the GSC as∫
M

fdV =

∫
Dp

f(expp tξ)Θ(t, ξ)dtdµp(ξ) =

∫
Sp

∫ R(ξ)

0

f(expp tξ)Θ(t, ξ)dtdµp(ξ).

To simplify the notation, we write f(t, ξ) instead of f(expp tξ). To get rid of the term
R(ξ) in the integral boundaries, we modify the GSC through the coordinate transform
τ = κ(ξ)t. In this modified version of the GSC (denoted as MGSC), every point q ∈M
can be written in the form q(τ, ξ) = expp(

τ
κ(ξ)

ξ(u)), where (τ, ξ) ∈ [0, π]×Sp. The points
q(τ, ξ) with τ = 0 represent the point set {p}, and the points q(τ, ξ) with τ = π describe
the cut locus Cp of p. In the MGSC, the integration on M reads as∫

M

fdV =

∫
Sp

∫ π

0

f
( τ

κ(ξ)
, ξ
)

Θ
( τ

κ(ξ)
, ξ
) 1

κ(ξ)
dτdµp(ξ).

To switch easily between the two coordinate systems GSC and MGSC, we introduce the
functions f̃ and Θ̃ on [0, π]×Sp by

f̃(τ, ξ) := f
( τ

κ(ξ)
, ξ
)

and Θ̃(τ, ξ) =
1

κ(ξ)
Θ
( τ

κ(ξ)
, ξ
)
.

Finally, we define the space of square integrable functions on M as

L2(M) :=
{
f : M → C :

∫
M

|f |2dV <∞
}
.

Endowed with the scalar product 〈f, g〉M :=
∫
M
fḡdV , the space L2(M) is a Hilbert space

with the norm ‖f‖M :=
√
〈f, f〉M . In the GSC and the MGSC, the scalar product reads

as

〈f, g〉M =

∫
Sp

∫ R(ξ)

0

f(t, ξ)g(t, ξ)Θ(t, ξ)dtdµp(ξ)

=

∫
Sp

∫ π

0

f̃(τ, ξ)g̃(τ, ξ)Θ̃(τ, ξ)dτdµp(ξ).
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3 Radial Uncertainty Principles on Compact Riemannian Manifolds

3 Radial Uncertainty Principles on Compact
Riemannian Manifolds

A function F on M is called radial with respect to a point p if, in the GSC centered
at p, it depends solely on the distance variable t. Radial functions of some Riemannian
manifolds are deeply linked to special functions and orthogonal polynomials (see [30] for
a general overview). On the unit sphere Sd, for instance, the radial functions can be
written in terms of Gegenbauer polynomials. Exactly for these radial functions having
an expansion in Gegenbauer polynomials, Rösler & Voit [27] proved the uncertainty
principle (3). Later on, these results were extended to spherical Bessel functions [28], to
Jacobi polynomials [17], and to Laguerre and Hermite polynomials [18]. In the present
work, we will adopt the theory developed in those papers, especially the Dunkl theory
used therein, to prove a radial uncertainty principle on compact Riemannian manifolds.

To define a frequency variance, Rösler & Voit used in [27] the second order differential
operator of the Gegenbauer polynomials. The analog on a Riemannian manifold M is
the Laplace-Beltrami Operator ∆M . For a radial function F onM , the Laplace-Beltrami
Operator ∆M assumes locally at p the particular form [1, Proposition G.V.3]

(∆MF )(t, ξ) =
d2

dt2
F (t) +

∂tΘ(t, ξ)

Θ(t, ξ)

d

dt
F (t),

where ∂tΘ denotes the partial derivative of the weight function Θ with respect to the
variable t. This operator can be extended to the whole manifold M and used globally
for functions f on M . In the GSC, we define

(∆p,tf)(t, ξ) :=
∂2

∂t2
f(t, ξ) +

∂tΘ(t, ξ)

Θ(t, ξ)

∂

∂t
f(t, ξ). (4)

For radial functions, the operator ∆p,t corresponds locally with the Laplace-Beltrami
operator ∆M . Therefore, the operator ∆p,t is referred to as radial Laplace operator. As
a domain of the radial Laplace operator, we use the set

D(∆p,t) :=
{
f ∈ C2(M) :

∂

∂t
f(0, ξ) =

∂

∂t
f(R(ξ), ξ) = 0, ξ ∈ Sp

}
. (5)

Since M is compact, D(∆p,t) is a dense subset of L2(M). If we switch to the MGSC,
the radial Laplacian reads as

(∆p,tf)∼(τ, ξ) = κ(ξ)2
( ∂2

∂τ 2
f̃(τ, ξ) +

∂τ Θ̃(τ, ξ)

Θ̃(τ, ξ)

∂

∂τ
f̃(τ, ξ)

)
.

With these preliminaries, we introduce the (radial) frequency variance varF,p(f) of a
function f ∈ D(∆p,t) ⊂ L2(M) as

varF,p(f) := 〈−∆p,tf, f〉M . (6)
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3 Radial Uncertainty Principles on Compact Riemannian Manifolds

Since in (6) only the radial frequencies of the function f are used to determine the
frequency variance, the subsequent uncertainty principle will also have a predominant
radial character.

For the proof of the uncertainty principle, we will use an operator theoretic approach.
For this purpose, we have to express the frequency variance (6) as the squared norm of
an operator acting on f . Hence, we are searching for the root of the operator −∆p,t. In
a generalized form, such a root can be obtained by means of Dunkl theory.

In [27], Rösler & Voit extended L2-functions on [0, π] to even periodic functions on
(−π, π] and used the resulting symmetry to define a differential-difference operator on
(−π, π]. This so called Dunkl operator turned out to be a generalized root of the second
order differential operator of the Gegenbauer polynomials.

Proceeding in a similar way, we extend a function f on M onto a twofold copy X of
M . Using the MGSC, this is done by doubling the range of τ and considering τ as a
periodic variable. The set X is defined as X = (−π, π]×Sp, where the points (π, ξ) and
(−π, ξ) are identified with each other for all ξ ∈ Sp. The weight function Θ̃ is extended
symmetrically onto X, i.e.

Θ̃(τ, ξ) = Θ̃(|τ |, ξ), (τ, ξ) ∈ (−π, π]×Sp. (7)

The extension of the derivative ∂τ Θ̃ onto X is defined such that it is odd in τ , i.e.

∂τ Θ̃(−τ, ξ) = −∂τ Θ̃(τ, ξ), (τ, ξ) ∈ (−π, π]×Sp. (8)

In this way, ∂τ Θ̃ can be seen as the Radon-Nikodym derivative of the symmetric ex-
tension Θ̃ with respect to the variable τ . Next, we define a volume element on X by
dV := 1

2
Θ̃(τ, ξ)dτdµp(ξ). Moreover, we introduce the Hilbert space of square integrable

functions on X as
L2(X) :=

{
g : X → C :

∫
X

|g|2dV <∞
}

with scalar product 〈g1, g2〉X :=
∫
X
g1g2dV and the subspace of even functions as

L2
e(X) :=

{
g ∈ L2(X) : g(τ, ξ) = g(−τ, ξ) a.e.

}
.

For a function f ∈ L2(M) and an even function g ∈ L2
e(X), we can define in the MGSC

the even extension operator and the restriction operator as

e : L2(M)→ L2(X), e(f)(τ, ξ) := f̃(|τ |, ξ), (9)
r : L2

e(X)→ L2(M), r(g)∼(τ, ξ) := g(τ, ξ). (10)

In particular, these operators constitute isometric isomorphisms between L2(M) and
L2
e(X). Similar as in [27], we introduce now the following differential-difference operator

on L2(X), referred to as Dunkl operator:

(Tτg)(τ, ξ) := κ(ξ)
( ∂
∂τ
g(τ, ξ) +

∂τ Θ̃(τ, ξ)

Θ̃(τ, ξ)

(
g(τ, ξ)− g(−τ, ξ)

)
2

)
, (11)
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3 Radial Uncertainty Principles on Compact Riemannian Manifolds

(τ, ξ) ∈ (−π, π]×Sp, defined on the domain

D(Tτ ) :=
{
g ∈ C(X) :

∂

∂τ
g ∈ C(X)

}
.

By (9) and (10), the Dunkl operator Tτ and the radial Laplacian ∆p,t are related by

−∆p,tf = r((iTτ )
2e(f)), for f ∈ D(∆p,t). (12)

Thus, the operator iTτ is the desired generalized root of −∆p,t. For the proof of the
uncertainty principle, it is essential that iTτ is symmetric.

Lemma 3.1. The operator iTτ is symmetric and densely defined on L2(X).

Proof. We essentially follow the proof of Lemma 3.1 in [27]. To check the symmetry of
iTτ , we take f, g ∈ D(Tτ ). Integration by parts with respect to the variable τ yields∫

Sp

∫ π

−π

∂

∂τ
f(τ, ξ)g(τ, ξ)Θ̃(τ, ξ)dτdµp(ξ) = −

∫
Sp

∫ π

−π
f(τ, ξ)

∂

∂τ

(
g(τ, ξ)Θ̃(τ, ξ)

)
dτdµp(ξ)

=−
∫

Sp

∫ π

−π
f(τ, ξ)

( ∂
∂τ
g(τ, ξ) + g(τ, ξ)

∂τ Θ̃(τ, ξ)
Θ̃(τ, ξ)

)
Θ̃(τ, ξ)dτdµp(ξ).

Now, we get by definition of the operator Tτ :∫
Sp

∫ π

−π
(iTτf)(τ, ξ)g(τ, ξ)Θ̃(τ, ξ)dτdµp(ξ) =

=− i
∫

Sp

κ(ξ)
∫ π

−π

(
f(τ, ξ)

∂

∂τ
g(τ, ξ) + f(τ, ξ)g(τ, ξ)

∂τ Θ̃(τ, ξ)
Θ̃(τ, ξ)

)
Θ̃(τ, ξ)dτdµp(ξ)

+ i

∫
Sp

κ(ξ)
∫ π

−π

f(τ, ξ)− f(−τ, ξ)
2

g(τ, ξ)
∂τ Θ̃(τ, ξ)
Θ̃(τ, ξ)

Θ̃(τ, ξ)dτdµp(ξ)

=− i
∫

Sp

κ(ξ)
∫ π

−π

(
f(τ, ξ)

∂

∂τ
g(τ, ξ) +

f(τ, ξ) + f(−τ, ξ)
2

g(τ, ξ)
∂τ Θ̃(τ, ξ)
Θ̃(τ, ξ)

)
Θ̃(τ, ξ)dτdµp(ξ)

=− i
∫

Sp

κ(ξ)
∫ π

−π

(
f(τ, ξ)

∂

∂τ
g(τ, ξ) + f(τ, ξ)

g(τ, ξ)− g(−τ, ξ)
2

∂τ Θ̃(τ, ξ)
Θ̃(τ, ξ)

)
Θ̃(τ, ξ)dτdµp(ξ)

=
∫

Sp

∫ π

−π
f(τ, ξ)(iTτg)(τ, ξ)Θ̃(τ, ξ)dτdµp(ξ).

2

Uncertainty principles in a Hilbert space can, in general, be formulated by using the
commutator of two densely defined operators (cf. [7], [8], [29]). As underlying Hilbert
space we consider the space L2(X). As a position operator A : L2(X) → L2(X), we
fix an arbitrary function h ∈ D(Tτ ) and set Ag := h g for g ∈ L2(X). As frequency
operator B : L2(X)→ L2(X), we take the Dunkl operator iTτ , i.e. Bg := iTτg. Clearly,
A is a normal operator and B is symmetric due to Lemma 3.1. Also, both operators
are densely defined in L2(X). Therefore, we can use an operator theoretic approach
involving a symmetric and a normal operator (cf. [29, Theorem 5.1]) to prove the
following uncertainty:
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3 Radial Uncertainty Principles on Compact Riemannian Manifolds

Theorem 3.2. For an even function g ∈ L2
e(X) ∩ D(Tτ ), a function h ∈ D(Tτ ), and

a ∈ C, b ∈ R, the following uncertainty principle holds:

‖(h− a)g‖X · ‖(iTτ − b)g‖X ≥
1

2
|〈g · Tτh, g〉X |. (13)

Proof. Since A is a normal operator and B is symmetric, we have due to [29, Theorem
5.1]

‖(A− a)g‖X · ‖(B − b)g‖X ≥
1

2
|〈[A,B]g, g〉X |

for all functions in D(AB) = D(BA) = D(Tτ ). For the commutator of A and B defined
on D(Tτ ), we get

[A,B]g(τ, ξ) = −iκ(ξ)
( ∂
∂τ
h(τ, ξ)g(τ, ξ) +

∂τ Θ̃(τ, ξ)

Θ̃(τ, ξ)

(
h(τ, ξ)− h(−τ, ξ)

)
2

g(−τ, ξ)
)
.

Thus, for an even function g ∈ L2
e(X), we have [A,B]g = −g · iTτh. 2

The minimum of ‖(A− a)g‖X and ‖(B − b)g‖X is attained at (cf. [8], [29])

a =
〈Ag, g〉X
‖g‖2

X

and b =
〈Bg, g〉X
‖g‖2

X

, (14)

respectively . Since the derivative ∂
∂τ
g of an even function g ∈ D(Tτ ) ∩ L2

e(X) is odd,
i.e. it satisfies ∂

∂τ
g(τ, ξ) = − ∂

∂τ
g(−τ, ξ) a.e., we get 〈Bg, g〉X = i〈Tτg, g〉X = 0. Hence,

the minimum of ‖(B − b)g‖X is attained at b = 0. For the special values (14) of a and
b, the uncertainty product (13) reads as(

‖hg‖2
X −
|〈hg, g〉X |2

‖g‖2
X

)
· ‖Tτg‖2

X ≥
1

4
|〈g · Tτh, g〉X |2. (15)

For a function f ∈ L2(M), we take now the even extension e(f) ∈ L2
e(X) and use

inequality (15) to get an uncertainty principle for compact Riemannian manifolds. For
the function h characterizing the position operator, we set, similarly as in [27] and [17],
h(τ, ξ) = eiτ . Of course, also other choices for h are possible (cf. [29]), but in general
eiτ is a reasonable option. In fact, the function eiτ is well defined on X, is periodic in
the variable τ and lies in the domain of the Dunkl operator Tτ . Next, we define the
generalized mean value as

ε(f, p) := 〈eiτe(f), e(f)〉X =
1

2

∫
Sp

∫ π

−π
eiτ |e(f)(τ, ξ)|2Θ̃(τ, ξ)dτdµp(ξ)

=

∫
Sp

∫ π

0

cos(τ)|f̃(τ, ξ)|2Θ̃(τ, ξ)dτdµp(ξ)

=

∫
Sp

∫ R(ξ)

0

cos(κ(ξ)t)|f(t, ξ)|2Θ(t, ξ)dtdµp(ξ). (16)
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3 Radial Uncertainty Principles on Compact Riemannian Manifolds

If the function f is normalized such that ‖f‖M = 1, then the value ε(f, p) lies between
−1 and 1. The generalized mean value is an indication on how well the function f is
localized at a point p. The closer ε(f, p) gets to 1, the better f is localized at p. We
formulate now our main result.

Theorem 3.3. If f ∈ L2(M) ∩ D(∆p,t) with ‖f‖M = 1, then the following uncertainty
principle holds:(

1− ε(f, p)2
)
· 〈−∆p,tf, f〉M ≥

1

4

∣∣∣〈(κ(ξ) cos
(
κ(ξ)t

)
+
∂tΘ(t, ξ)

Θ(t, ξ)
sin
(
κ(ξ)t

))
f, f〉M

∣∣∣2.
(17)

Proof. If f ∈ L2(M) ∩ D(∆p,t), then the even extension e(f) ∈ D(Tτ ) is an element of
the domain of the Dunkl operator Tτ . As a multiplier function h in inequality (15), we
choose h(t, ξ) = eiτ . Then, h ∈ D(Tτ ) and in inequality (15), we get

‖he(f)‖2
X = ‖e(f)‖2

X = ‖f‖2
M = 1,

|〈he(f), e(f)〉X |2 = |〈eiτe(f), e(f)〉X |2 = ε(f, p)2,

iTτh(τ, ξ) = κ(ξ)
(
− eiτ − ∂τ Θ̃(τ, ξ)

Θ̃(τ, ξ)
sin(τ)

)
.

Further, since ∂τ Θ̃(τ,ξ)

Θ̃(τ,ξ)
sin(τ) is an even function in τ , we conclude

〈e(f) · iTτh, e(f)〉X = −
〈
κ(ξ)

(
eiτ +

∂τ Θ̃(τ, ξ)
Θ̃(τ, ξ)

sin(τ)
)
e(f), e(f)

〉
X

= −1
2

∫
Sp

κ(ξ)
∫ π

−π

(
eiτ +

∂τ Θ̃(τ, ξ)
Θ̃(τ, ξ)

sin(τ)
)
|e(f)(τ, ξ)|2Θ̃(τ, ξ)dτdµp(ξ)

= −
∫

Sp

κ(ξ)
∫ π

0

(
cos(τ) +

∂τ Θ̃(τ, ξ)
Θ̃(τ, ξ)

sin(τ)
)
|f̃(τ, ξ)|2Θ̃(τ, ξ)dτdµp(ξ)

= −
∫

Sp

∫ R(ξ)

0

(
κ(ξ) cos

(
κ(ξ)t

)
+
∂tΘ(t, ξ)
Θ(t, ξ)

sin
(
κ(ξ)t

))
|f(t, ξ)|2Θ(t, ξ)dtdµp(ξ)

= −
〈(
κ(ξ) cos

(
κ(ξ)t

)
+
∂tΘ(t, ξ)
Θ(t, ξ)

sin
(
κ(ξ)t

))
f, f

〉
M
.

Finally, using the symmetry of iTτ and relation (12), we get for f ∈ D(∆p,t):

〈−∆p,tf, f〉M = −〈(iTτ )2e(f), e(f)〉X = ‖Tτe(f)‖2
X .

2

For even and normalized functions in the weighted Hilbert space L2([−π, π], w), the
following uncertainty principle was shown in [12] by Goh and Goodman:

1−
( ∫ π

0
cos(t)|f(t)|2w(t)dt

)2( ∫ π
0
|f(t)|2(cos(t)w(t) + sin(t)w′(t))dt

)2 ·
∫ π

0

|f ′(t)|2w(t)dt ≥ 1

4
. (18)

10



3 Radial Uncertainty Principles on Compact Riemannian Manifolds

Our uncertainty inequality (17) presented above resembles this weighted uncertainty
(18). This is not surprising, since in both cases the theory and the techniques used
are conceptually the same. In contrast to [12], we considered even L2-functions defined
on the higher dimensional compact set X = (−π, π] × Sp and a weight function Θ̃
which depends both on the variable τ and the direction ξ. Therefore, (17) can be
considered as an extension of (18). Moreover, in our case the weight function Θ̃ plays
a more substantial role since it contains implicitly information on the geometry of the
Riemannian manifoldM . Similar to the inequalities (17) and (18) is also the uncertainty
principle [18, Corollary 7] developed by Li and Liu in which the weight function w is
linked to a Sturm-Liouville operator.

Another interesting uncertainty principle for compact Riemannian manifolds based on
a different approach can be found in the work [19] of Martini. Here, it is shown that for
all α, β > 0 and f ∈ L2(M) with null mean value the following inequality holds:

‖f‖M ≤ Cα,β‖tαf‖
β

α+β

M · ‖(−∆M)
β
2 f‖

α
α+β

M .

This inequality is a special case of a more general theory treating uncertainty principles
on abstract measure spaces (see also [5] and [26]). The proof of this inequality is mainly
based on the spectral theorem and on estimates involving the heat semigroup generated
by the Laplace-Beltrami operator ∆M . In contrast to (17), the constant Cα,β in the
above inequality is not explicitly known.

Turning back to the frequency variance in inequality (17), formula (12) implies that

〈−∆p,tf, f〉M = ‖Tτe(f)‖2
X =

∥∥∥κ(ξ)
∂

∂τ
e(f)

∥∥∥2

X
=
∥∥∥ ∂
∂t
f
∥∥∥2

M

for f ∈ D(∆p,t). So, instead of (6) we could have defined the frequency variance also as

varF,p(f) =
∥∥∥ ∂
∂t
f
∥∥∥2

M
. (19)

This formula illustrates that the frequency variance in our notion is completely de-
termined by the radial derivative of the function f . Many authors (see for instance
[12] or [19]) prefer to use the full Laplace-Beltrami operator for the frequency vari-
ance (i.e. varF (f) = 〈−∆Mf, f〉M) instead of the radial approach (6). However, since
varF,p(f) ≤ 〈−∆Mf, f〉M for functions f that are locally supported at p ∈ M , we get a
more stringent inequality in (17) if we use the radial Laplacian.

Using the alternative definition (19) of the frequency variance, inequality (17) can be
proven for a larger class of functions, namely for

D( ∂
∂t

) :=
{
f ∈ C(M) :

∂

∂t
f ∈ C(M),

∂

∂t
f(0) =

∂

∂t
f(R(ξ)) = 0, ξ ∈ Sp

}
.

Similar as in the case of the Breitenberger uncertainty principle, Theorem 3.3 motivates
the definition

varS,p(f) := d2 1− ε(f, p)2

|〈
(
κ(ξ) cos(κ(ξ)t) + ∂tΘ(t,ξ)

Θ(t,ξ)
sin(κ(ξ)t)

)
f, f〉M |2

(20)

11



4 Sharpness of the Uncertainty Principle

for the position variance of f ∈ L2(M) at p ∈M . Then, we get the uncertainty inequality

varS,p(f) · varF,p(f) ≥ d2

4
(21)

for all normalized functions f ∈ D(∆p,t), provided that the right hand side of inequality
(17) is not zero.

The expectation value of a density f ∈ L2(M), ‖f‖M = 1, can be found by means of
the generalized mean value ε(f, p). We have already remarked that for all points p the
value ε(f, p) is a measure on how well the function f is localized at p. The closer ε(f, p)
gets to 1, the more the mass of f is concentrated at p. The point at which f is localized
best is then the point pf where ε(f, p) gets maximal, i.e.

pf = arg sup
p∈M

ε(f, p).

If pf is uniquely determined, we call it the expectation value of f .

4 Sharpness of the Uncertainty Principle

In this section, we show that the uncertainty inequalities (17) and (21) are asymptotically
sharp. In particular, we construct a family Hλ of Gaussian-like functions on the manifold
M such that, for λ→ 0, we attain equality in (17) and (21). For this purpose, we need
some properties of the Gaussian bell. First of all, we have for k ∈ N0 and σ ∈ R+ the
well known moment formulas (cf. [22, p. 110])∫ ∞

0

t2ke−
t2

σ2 dt =

√
π

2

(2k)!

4kk!
σ2k+1, (22)∫ ∞

0

t2k+1e−
t2

σ2 dt =
k!

2
σ2k+2. (23)

On [0,∞), we define now for d ∈ N, d ≥ 1, the Gaussians

Gd,σ(t) :=


√

2√
π

4kk!
(2k)!

1
σk+1/2 e

− t2

2σ2 if d = 2k + 1,√
2
k!

1
σk+1 e

− t2

2σ2 if d = 2k + 2.

The moment formulas (22) and (23) imply that Gd,σ is a function in the weighted Hilbert
space L2

d = L2([0,∞), td−1dt) normalized such that ‖Gd,σ‖L2
d

= 1. Moreover, we get the
following result:

12



4 Sharpness of the Uncertainty Principle

Lemma 4.1. Consider Gd,σ as an element of the Hilbert space L2
d. Then

〈
(
− d2

dt2
− d− 1

t

d

dt

)
Gd,σ, Gd,σ〉L2

d
=
d

2

1

σ2
, (24)

〈t2Gd,σ, Gd,σ〉L2
d

=
d

2
σ2, (25)

〈 d
dt
Gd,σ,

d

dt
Gd,σ〉L2

d
=
d

2

1

σ2
. (26)

Proof. We prove equation (24) by direct calculation and using the formulas (22) and
(23). For d odd and k = d−1

2
, we get

〈(− d2

dt2
− d−1

t
d
dt

)Gd,σ, Gd,σ〉L2
d

=

∫ ∞
0

2√
π

4kk!

(2k)!

1

σ2k+1

(
− d2

dt2
− 2k

t

d

dt

)
e−

t2

2σ2 e−
t2

2σ2 t2kdt

=

∫ ∞
0

2√
π

4kk!

(2k)!

1

σ2k+1

(
− t2

σ4
+ (2k + 1)

1

σ2

)
e−

t2

σ2 t2kdt

= −1

4

k!

(2k)!

(2k + 2)!

(k + 1)!

1

σ2
+ (2k + 1)

1

σ2
=
d

2

1

σ2
.

On the other hand, for d even and k = d−2
2
, we have

〈(− d2

dt2
− d−1

t
d
dt

)Gd,σ, Gd,σ〉L2
d

=

∫ ∞
0

2

k!

1

σ2k+2

(
− d2

dt2
− 2k + 1

t

d

dt

)
e−

t2

2σ2 e−
t2

2σ2 t2k+1dt

=

∫ ∞
0

2

k!

1

σ2k+2

(
− t2

σ4
+ (2k + 2)

1

σ2

)
e−

t2

σ2 t2k+1dt

= −(k + 1)!

k!

1

σ2
+ (2k + 2)

1

σ2
=
d

2

1

σ2
.

Similarly, equations (25) and (26) follow by direct calculation. 2

Now, we choose δ > 0 small enough such that B(p, δ) ⊂ Dp ⊂ M and introduce a
smooth cut-off function ϕδ : [0,∞)→ [0, 1] with ϕδ(t) = 1 for 0 ≤ t ≤ δ

2
, 0 ≤ ϕδ(t) ≤ 1

for δ
2
≤ t ≤ δ, and ϕδ(t) = 0 for t ≥ δ. Further, we set cξ = κ(ξ)−

1
2 and define for

λ ∈]0,∞[ the following function in the GSC at p ∈M :

Hλ(t, ξ) :=
Gd,cξλ(t)ϕδ(t)

‖Gd,cξλϕδ‖M
. (27)

The function Hλ is compactly supported in B(p, δ) an element of the domain of the
operator ∆p,t. If |Sp| denotes the surface volume of the unit sphere Sp, then we have:

13



4 Sharpness of the Uncertainty Principle

Proposition 4.2.

lim
λ→0

(1− ε(Hλ, p)
2)

λ2
=

d

2|Sp|

∫
Sp

κ(ξ)dµp(ξ), (28)

lim
λ→0

λ2〈∆p,tHλ, Hλ〉M =
d

2|Sp|

∫
Sp

κ(ξ)dµp(ξ), (29)

lim
λ→0
〈
(
κ(ξ) cos(κ(ξ)t) +

∂tΘ(t, ξ)

Θ(t, ξ)
sin(κ(ξ)t)

)
Hλ, Hλ〉M =

d

|Sp|

∫
Sp

κ(ξ)dµp(ξ). (30)

In particular, the uncertainty inequalities (17) and (21) are asymptotically sharp.

Proof. Beside Lemma 4.1, we need two facts for the proof of Proposition 4.2. The first
one is a property of the weight function Θ. If δ > 0 is chosen small enough, we have for
t ≤ δ the Taylor expansion (cf. [3, XII 8])

Θ(t, ξ) = td−1 − Ric(ξ, ξ)

6
td+1 + O(td+2), (31)

∂tΘ(t, ξ) = (d− 1)td−2 − (d+ 1) Ric(ξ, ξ)

6
td + O(td+1), (32)

where Ric(·, ·) denotes the Ricci tensor on Mp × Mp. The second fact concerns the
Gaussian Gd,cξλ. Since the term cξ = κ(ξ)−

1
2 is uniformly bounded above and below by

positive constants, there exists for δ > 0 and ε > 0 a λδ,ε such that for all λ < λδ,ε and
ξ ∈ Sp we have ∫ ∞

δ/2

Gd,cξλ(t)
2td−1dt < ε. (33)

We consider now the L2-norm of the function Gd,cξλϕδ onM . Using the Taylor expansion
(31) of the weight function Θ and property (25) of Lemma 4.1, we get the estimate

lim
λ→0
‖Gd,cξλϕδ‖2

M = lim
λ→0

∫
Sp

∫ δ

0

Gd,cξλ(t)
2ϕδ(t)

2Θ(t, ξ)dtdµp(ξ)

= lim
λ→0

∫
Sp

∫ δ

0

Gd,cξλ(t)
2ϕδ(t)

2
(
td−1 + O(td+1)

)
dtdµp(ξ)

≤ lim
λ→0

∫
Sp

∫ ∞
0

Gd,cξλ(t)
2
(
td−1 + O(td+1)

)
dtdµp(ξ)

= lim
λ→0
|Sp|+ O(λ2) = |Sp|,

where |Sp| denotes the volume of the d − 1 dimensional unit sphere Sp in the tangent

14



4 Sharpness of the Uncertainty Principle

space Mp. Using property (33), we get for an arbitrary ε > 0 and λ < λδ,ε

‖Gd,cξλϕδ‖2
M =

∫
Sp

∫ δ

0

Gd,cξλ(t)
2ϕδ(t)

2
(
td−1 + O(td+1)

)
dtdµp(ξ)

≥
∫

Sp

∫ ∞
0

Gd,cξλ(t)
2
(
td−1 + O(td+1)

)
dtdµp(ξ)− ε|Sp|

= (1− ε)|Sp|+ O(λ2).

Therefore,
lim
λ→0
‖Gd,cξλϕδ‖2

M = |Sp|. (34)

We consider now equation (28). Using the Taylor expansion (31) of the weight function
Θ and equation (25), we get the upper estimate

1− ε(Hλ, p) =
1

‖Gd,cξλϕδ‖2
M

∫
Sp

∫ δ

0

(
1− cos(κ(ξ)t)

)
Gd,cξλ(t)

2ϕδ(t)
2Θ(t, ξ)dtdµp(ξ)

≤ 1

‖Gd,cξλϕδ‖2
M

∫
Sp

κ(ξ)2

∫ δ

0

t2

2
Gd,cξλ(t)

2ϕδ(t)
2Θ(t, ξ)dtdµp(ξ)

≤ 1

‖Gd,cξλϕδ‖2
M

∫
Sp

κ(ξ)2

∫ ∞
0

t2

2
Gd,cξλ(t)

2
(
td−1 + O(td+1)

)
dtdµp(ξ)

=
d

4
λ2 1

‖Gd,cξλϕδ‖2
M

∫
Sp

κ(ξ)dµp(ξ) + O(λ4).

Further, since ε(Hλ, p) ≤ 1, we have (1 + ε(Hλ, p)) ≤ 2. In total, we get

lim
λ→0

1− ε(Hλ, p)
2

λ2
≤ 2 lim

λ→0

1− ε(Hλ, p)

λ2
≤ d

2|Sp|

∫
Sp

κ(ξ)dµp(ξ). (35)

Next, we turn to equation (29). For the following estimate, we use the Taylor expansion
(31) and equation (26) of Lemma 4.1.∥∥∥ ∂

∂t
Hλ

∥∥∥2

M
=

1

‖Gd,cξλϕδ‖2
M

∫
Sp

∫ δ

0

∣∣∣ ∂
∂t

(
Gd,cξλ(t)ϕδ(t)

)∣∣∣2Θ(t, ξ)dtdµp(ξ)

≤ 1

‖Gd,cξλϕδ‖2
M

∫
Sp

∫ ∞
0

[∣∣∂tGd,cξλ(t)
∣∣2 + 2|∂tGd,cξλ(t)|‖∂tϕδ‖∞+

+ |Gd,cξλ(t)|‖∂tϕδ‖2
∞

](
td−1 + O(td+1)

)
dtdµp(ξ)

=
d

2

1

λ2

1

‖Gd,cξλϕδ‖2
M

∫
Sp

κ(ξ)dµp(ξ) + O
(1

λ

)
.

Thus, we get

lim
λ→0

λ2〈∆p,tHλ, Hλ〉M = lim
λ→0

λ2
∥∥∥ ∂
∂t
Hλ

∥∥∥2

M
≤ d

2|Sp|

∫
Sp

κ(ξ)dµp(ξ). (36)
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5 Uncertainty Principles on the Unit Sphere and the Real Projective Space

Finally, we take a look at equation (30). Due to (31) and (32), the function ∂tΘ(t,ξ)
Θ(t,ξ)

sin(κ(ξ)t)
has locally at p the Taylor expansion

∂tΘ(t, ξ)

Θ(t, ξ)
sin(κ(ξ)t) = (d− 1)κ(ξ) + O(t2). (37)

Using (37) and property (33), we derive for an arbitrary ε > 0 and λ < λδ,ε

〈
(
κ(ξ) cos(κ(ξ)t) +

∂tΘ(t, ξ)

Θ(t, ξ)
sin(κ(ξ)t)

)
Hλ, Hλ〉M =

=
1

‖Gd,cξλϕδ‖2
M

∫
Sp

∫ δ

0

(
κ(ξ) cos(κ(ξ)t) +

∂tΘ(t, ξ)

Θ(t, ξ)
sin(κ(ξ)t)

)
·

·
(
Gd,cξλ(t)ϕδ(t)

)2
Θ(t, ξ)dtdµp(ξ)

=
d

‖Gd,cξλϕδ‖2
M

∫
Sp

κ(ξ)

∫ δ

0

(
Gd,cξλ(t)ϕδ(t)

)2(
td−1 + O(td+1)

)
dtdµp(ξ)

≥ d

‖Gd,cξλϕδ‖2
M

∫
Sp

κ(ξ)dµp(ξ)(1− ε) + O(λ2)

Thus, we conclude

lim
λ→0
〈
(
κ(ξ) cos(κ(ξ)t) +

∂tΘ(t, ξ)

Θ(t, ξ)
sin(κ(ξ)t)

)
Hλ, Hλ〉M ≥

d

|Sp|

∫
Sp

κ(ξ)dµp(ξ). (38)

Now, inserting the inequalities (35), (36) and (38) in the uncertainty inequality (17),
we get the same value on both sides, namely d2

4|Sp|2
( ∫

Sp
κ(ξ)dµp(ξ)

)2. Thus, inequalities
(35), (36) and (38) are in fact equalities and the statement is proven. 2

5 Uncertainty Principles on the Unit Sphere and the
Real Projective Space

In this section, we consider two important examples of compact Riemannian manifolds,
the unit sphere Sd and the real projective space RPdπ. For both, we derive an uncertainty
principle from the general inequality (17) and relate it to uncertainties known from the
literature.

We start with the d-dimensional unit sphere Sd. If p ∈ Sd, we identify the tangent space
(Sd)p at p with the orthogonal complement p⊥ of the linear vector space Rp in Rd+1. An
arbitrary point x ∈ Sd can be represented as

x = x(t, ξ) = cos(t)p+ sin(t)ξ,

where t ∈ [0, π] and ξ ∈ Sp is a unit vector in the hyperplane p⊥. Since for fixed ξ the
functions γξ(t) = x(t, ξ) describe the geodesics on Sd (see [4, II.3]), the coordinates (t, ξ)
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5 Uncertainty Principles on the Unit Sphere and the Real Projective Space

correspond exactly with the GSC at p. The cut locus Cp of p consists of the single point
{−p}. Further, R(ξ) = π for all ξ ∈ Sd−1, and the weight function Θ can be determined
as [1, C.III]

Θ(t, ξ) = sin(t)d−1. (39)

Moreover, the Laplace-Beltrami operator on Sd is given as (cf. [3, II.5])

∆Sdf(t, ξ) =
∂2

∂t
f(t, ξ) + (d− 1)

cos(t)

sin(t)

∂

∂t
f(t, ξ) +

∆Sd−1(f(t, ξ)|Sd−1)

sin2(t)
. (40)

and the radial Laplace operator as

∆p,tf(t, ξ) =
∂2

∂t
f(t, ξ) + (d− 1)

cos(t)

sin(t)

∂

∂t
f(t, ξ). (41)

The uncertainty principle on Sd can now be formulated as follows:

Corollary 5.1. If f ∈ L2(Sd) ∩ D(∆p,t) and ‖f‖Sd = 1, then the following uncertainty
principle holds: (

1− ε(f, p)2
)
· 〈−∆p,tf, f〉Sd ≥

d2

4
ε(f, p)2. (42)

The constant d2

4
on the right hand side is optimal.

Proof. If we apply Theorem 3.3 to the unit sphere Sd and use the respective weight
function (39), the only thing that remains to validate is the right hand side of inequality
(17). This can be done by the following simple calculation:

〈
(

cos(t) +
∂tΘ(t, ξ)

Θ(t, ξ)
sin(t)

)
f, f〉2Sd =

(
ε(f, p) + 〈(d− 1)

cos(t)

sin(t)
sin(t)f, f〉Sd

)2

= (d ε(f, p))2.

The optimality of the constant d2

4
is a consequence of Proposition 4.2. 2

If we consider as a special case the radial functions on Sd, inequality (42) corresponds
exactly with the uncertainty principle (3) proven in [27] for functions having an expansion
in terms of the Gegenbauer polynomials C( d−1

2 )

n . This is not a surprising result, since
the polynomials C( d−1

2 )

n constitute a basis for the radial, square integrable functions on
Sd and the radial Laplacian (41) corresponds to the second order differential operator of
the corresponding Gegenbauer polynomials. The sharpness of inequality (42) is therefore
also a consequence of the sharpness of inequality (3).

Other works treating uncertainty principles on the unit sphere attained similar results,
but worked with slightly different techniques. In [20], Narcovich and Ward used a vector
valued differential operator to split the Laplace-Beltrami operator on S2. Also Goh and
Goodman [11], [12] worked with a vector valued differential operator to prove a similar
uncertainty principle on Sd.
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5 Uncertainty Principles on the Unit Sphere and the Real Projective Space

If we adopt the general definition (20) of the space variance to the unit sphere, we get

varS,p(f) =
1− ε(f, p)2

ε(f, p)2
.

In [6], [24] and [25], this definition of space variance was used to determine optimally
space localized band-limited polynomials and wavelets on the torus T and on the unit
sphere Sd.

Let us now turn to the real projective space RPdπ. We consider the sphere Sd(2) with
radius 2 and define the antipodal map A : S2(2) → S2(2) as Ax = −x. The real
projective space RPdπ with diameter π is then defined as the quotient of Sd(2) under
the antipodal map. The identification of RPdπ with Sd(2)/A allows the introduction of
geodesic spherical coordinates as in the case of the unit sphere. In this way, the volume
element on RPdπ can be deduced from (39) as

dV = 2d−1 sin
( t

2

)d−1

dtdµp(ξ), (43)

where the geodesic length t varies between 0 and π. The cut locus Cp on RPdπ corresponds
to the set of points lying on the equator of Sd(2) with respect to the point p. Due to our
special construction, the distance R(ξ) from p to the cut locus Cp is, independently of
ξ, equal to π. Due to (43), we have Θ(t, ξ) = 2d−1 sin( t

2
)d−1, and the radial part of the

Laplacian is given as

∆p,tf(t, ξ) =
∂2

∂t2
f(t, ξ) +

(d− 1)

2

cos( t
2
)

sin( t
2
)

∂

∂t
f(t, ξ).

Now, an uncertainty principle for the real projective space can be formulated as follows:

Corollary 5.2. Let f ∈ L2(RPdπ) ∩ D(∆p,t) and ‖f‖RPdπ = 1, then the following uncer-
tainty principle holds:(

1− ε(f, p)2
)
· 〈−∆p,tf, f〉RPdπ ≥

((d− 1)

4
+

(d+ 1)

4
ε(f, p)

)2

. (44)

The constants on the right hand side are optimal.

Proof. If we apply Theorem 3.3 to the space RPdπ, we get on the right hand side of
inequality (17):

〈
(

cos(t) +
∂tΘ(t, ξ)

Θ(t, ξ)
sin(t)

)
f, f〉2RPdπ =

(
ε(f, p) + 〈d− 1

2

cos( t
2
)

sin( t
2
)

sin(t)f, f〉RPdπ

)2

=
(
ε(f, p) + 〈d− 1

2

(
1 + cos(t)

)
f, f〉RPdπ

)2

=
(d− 1

2
+
d+ 1

2
ε(f, p)

)2

.

The optimality of the constants in (44) follows from Proposition 4.2. 2
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6 Uncertainty Principles on Curves

Through the relation [16, page 41]

C
( d−1

2
)

2n (cos( t
2
)) =

(d−1
2

)n

(1
2
)n

P
( d−2

2
,− 1

2
)

n (cos(t))

between the Gegenbauer polynomials C( d−1
2 )

2n of even order and the Jacobi polynomials
P

( d−2
2 ,− 1

2 )

n , one can check easily that the radial functions on RPdπ are exactly the functions
that have an expansion in terms of the Jacobi polynomials P ( d−2

2 ,− 1
2 )

n . So, inequality (44)
restricted to radial functions on RPdπ is precisely the same as the uncertainty principle
proven in [17] for the Jacobi polynomials P ( d−2

2 ,− 1
2 )

n .

6 Uncertainty Principles on Curves

If the manifold M is a one dimensional curve, we can simplify inequality (17) consid-
erably. We consider a C∞-differentiable Jordan curve γ : (−R,R] → Rd, naturally
parameterized such that |γ′(t)| = 1 for every t ∈ (−R,R]. The geodesic distance on the
curve is then given as

d(γ(t1), γ(t2)) =
∣∣∣ ∫ t2

t1

|γ′(t)|dt
∣∣∣ = |t1 − t2|

and the length of the whole curve is 2R. Now, for the formulation of the uncertainty
principle, we adopt the notation of the previous chapters. Without loss of generality we
can assume that the point p where the uncertainty is referred to corresponds to γ(0).
Then the cut locus corresponds to the point γ(R) and the weight function Θ satisfies
Θ(t, ξ) = |γ′(ξt)| = 1 for all t ∈ [0, R] and ξ ∈ {±1}. The integration along the curve γ
can be written in the GSC as∫

γ

fdγ =
∑

ξ∈{±1}

∫ R

0

f(γ(ξt))dt

and the Laplacian ∆γ translates to

∆γf(γ(ξt)) = ∆p,tf(γ(ξt)) =
d2

dt2
f(γ(ξt)).

If we use the definition (19) for the frequency variance, we can formulate the uncertainty
principle (17) on the curve γ as follows.

Corollary 6.1. If f ∈ D( d
dt

)∩L2(γ) with ‖f‖γ = 1, then the following inequality holds:(
1− ε(f, p)2

)
·
∥∥∥ d
dt
f
∥∥∥2

γ
≥ 1

4

π2

R2
ε(f, p)2, (45)
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7 Estimates of Uncertainty Principles using Comparison Principles

where

ε(f, p) =

∫ R

−R
cos
( π
R
t
)
|f(γ(t))|2dt.

The constant 1
4
on the right hand side of inequality (45)is optimal.

We remark that this result can also be shown in a different way. Since a smooth Jordan
curve γ with length 2R is isometric to the circle with radius R

π
, the uncertainty for γ

can directly be deduced from the Breitenberger uncertainty principle [2]. Further, this
connection implies also the optimality of (45) (cf. [23] for the optimality on the torus).

7 Estimates of Uncertainty Principles using
Comparison Principles

For a general Riemannian manifold M with dimension d ≥ 2, the right hand side of
the uncertainty product (17) is usually hard to determine. We can simplify this term
if some further information on the curvature of the Riemannian manifold is given. In
particular, if we assume that the Ricci curvature satisfies

Ric(ξ, ξ) ≥ κ2
1(d− 1)|ξ|2

for a constant κ1 > 0 and all tangent vectors ξ in the tangent bundle TM , then the
Bonnet-Myers Theorem [4, Theorem II.6.1] states that the value R(ξ) is bounded from
above by π

κ1
. On the other hand, if we assume that all sectional curvatures are less

than or equal to a given constant κ2
2, κ2 ≥ κ1, then Bishop’s comparison Theorem [4,

Theorem III.4.1] states that

∂tΘ(t, ξ)

Θ(t, ξ)
≥ (d− 1)κ2

cos(κ2t)

sin(κ2t)
(46)

for all ξ ∈ Sp and 0 < t < π
κ2
. Moreover, the Morse-Schönberg Theorem [4, Theorem

II.6.3] assures that in this case R(ξ) ≥ π
κ2
. Combining (46) and κ1 ≤ κ(ξ) ≤ κ2, we get

the estimate

κ(ξ) cos(κ(ξ)t) +
∂tΘ(t, ξ)

Θ(t, ξ)
sin(κ(ξ)t) ≥ κ1 cos(κ2t) + (d− 1)κ2

cos(κ2t)

sin(κ2t)
sin(κ1t)

≥ dκ1 cos(κ2t)

for all 0 < t ≤ π
2κ2

. So, if we introduce

εκ2(f, p) =

∫
Sp

∫ π
2κ2

0

cos(κ2t)|f(t, ξ)|2Θ(t, ξ)dtdµp(ξ)
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as a modified mean value, then the above assumptions assure that

ε(f, p) ≥ εκ2(f, p)

holds for all functions f ∈ L2(M) having compact support in B(p, π
2κ2

). Adopting
Theorem 3.3, we immediately get the following local uncertainty principle:

Theorem 7.1. LetM be a compact Riemannian manifold (d ≥ 2) whose Ricci curvature
fulfills

Ric(ξ, ξ) ≥ κ2
1(d− 1)|ξ|2

for all tangent vectors ξ ∈ TM , and all of whose sectional curvatures are less or equal
to a constant κ2

2, κ2 ≥ κ1 > 0. If f ∈ L2(M)∩D(∆p,t), ‖f‖M = 1, has compact support
in B(p, π

2κ2
), then the following inequality holds:(

1− εκ2(f, p)
2
)
· 〈−∆p,tf, f〉M ≥ κ2

1

d2

4
εκ2(f, p)

2. (47)

In the case that M is a d-dimensional sphere with radius 1
κ
, we have κ1 = κ2 = κ.

Inequality (47) then reduces to the well known principle(
1− ε(f, p)2

)
· 〈−∆p,tf, f〉M ≥ κ2d

2

4
ε(f, p)2.

Thus, the point of Theorem 7.1 is that if M is a "sphere-like" manifold where the
curvature κ2 is not varying much, then also the resulting uncertainty principle is very
similar to the uncertainty of a d-dimensional sphere with curvature κ2. In contrast to
the uncertainty principle (17), the sharpness of inequality (47) can not be guaranteed in
general.
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