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Goal of this presentation

Introduction to computational methods for harmonic analysis on graphs.

1 Today: An introduction to spectral graph theory
▶ The graph Laplacian and the Graph Fourier Transform (GFT).

▶ Graph Convolution and graph signal processing

2 In the next days:
▶ Spectral clustering and dimensionality reduction.

▶ How to describe and compute uncertainty principles on graphs.

▶ Kernel methods for approximation and classification on graphs based
on positive definite graph basis functions.

▶ Construction possibilities for adaptive wavelets on graphs.
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Why are graphs interesting?

Graphs offer the possibility to model complex irregular structures and
relations inside these structures.

Examples:

Social networks: nodes = persons, edges = relations

Transport networks: nodes = cities, edges = streets

Meshes: nodes = mesh nodes, edges = edges of triangulation
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Graphs
We consider simple and undirected graphs G given as a triplet

G = (V ,E ,A),

with vertices
V = {v1, . . . , vn}

undirected edges E ⊂ V × V and a symmetric adjacency matrix A ∈ Rn×n

with non-negative entries{
Ai ,j > 0 if ei ,j = (vi , vj) ∈ E ,

Ai ,j = 0 otherwise.

Standard A: only entries 1 (if there is an edge) and 0.
The degree matrix D ∈ Rn×n is the diagonal matrix with entries{

Di ,i =
∑n

j=1Ai ,j

Di ,j = 0 if i ̸= j .
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Labeled graph Degree matrix D

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2



Adjacency matrix A

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0




2 0 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 1





0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0
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Example of a weighted graph

The adjacency matrix A for this graph is given as

A =


0 0.8 0.8 0 0

0.8 0 0.8 0 0
0.8 0.8 0 0.1 0
0 0 0.1 0 0.9
0 0 0 0.9 0


For this graph we get the degree matrix D = diag(1.6, 1.6, 1.7, 1, 0.9).
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Graph distance

The weight Ai ,j > 0 for the edge ei ,j is a measure for the strength of the
relation between vi and vj. As a respective distance, we can take the
inverse 1/Ai ,j and define the length ℓ(ei ,j) as

ℓ(ei ,j) = ℓ(vi , vj) =
1

Ai ,j
if vi is connected with vj .

A path in G is a finite sequence c = (w1, . . . ,wk) of distinct vertices for
which (wi ,wi+1) ∈ E . The length ℓ(c) of the path c is given by the sum
of the edge lengths in the path, i.e.,

ℓ(c) =
k−1∑
i=1

ℓ((wi ,wi+1)).

The minimal length of a path connecting two nodes v and w is referred to
as graph distance between v and w. The maximal graph distance between
two nodes of G is referred to as diameter of G .
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Example

We consider again the following weighted connected graph.

The three nodes on the left (and the three edges connecting them), and
the two nodes on the right form connected subgraphs. The graph distance
between the outer left and the outer right node of this graph is

1

0.8
+

1

0.1
+

1

0.9
= 12.36111 . . .

This corresponds also already to the diameter of this graph.
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Graph signals

Graph signals are mappings x : V → R (or x : V → C)
A signal x is defined on the vertices v ∈ V of the graph

We can represent x as a vector

x = (x(v1), . . . , x(vn))
∗ ∈ Rn (∈ Cn).

The linear space of all signals is denoted by L(G ).

Fig.: Illustration of a graph signal x .
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Graph signals

Example: brain connectivity networks:

vertices: neural elements of the brain

edges: pairwise relationships between elements

graph signal: brain functional activity on vertices

Fig.: Illustration of signals on a brain connectivity graph, Manjunatha et al. 2023

Wolfgang Erb Spectral Graph Theory 10 / 47



Graph signal processing (GSP)
In applications, graphs and graph signals might by huge. Necessity of
efficient signal processing tools on graphs.
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Interpolation

Sampling
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Goal of GSP: study of graph signals and possible processing tools

Analysis of smoothness of signals (spaces of signals)

Decomposition of signals (Fourier, wavelets, frames, etc.)

Denoising of signals (convolution filters)

Sampling and interpolation of signals

Uncertainty principles
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Graph Laplacian

The main ingredient for GSP is the graph Laplacian.

The graph Laplacian L ∈ Rn×n is defined as the matrix

L = D− A, Li ,j :=

{
Di ,i if i = j

−Ai ,j if i ̸= j
.

The normalized graph Laplacian LN ∈ Rn×n is defined as

LN = D− 1
2LD− 1

2 = In −D− 1
2AD− 1

2 .

The random walk graph Laplacian LRW ∈ Rn×n is defined as

LRW = D−1L = In −D−1A.

The matrices L and LN are symmetric and positive semi-definite. The
normalizations ensure that the spectrum of LRW and LN is in [0, 2].
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Labeled graph G
Graph Laplacian L

2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1

−1 0 0 0 −1 2




2 −1 0 0 −1 0
−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1

−1 −1 0 −1 3 0
0 0 0 −1 0 1
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Example of a weighted graph

The graph Laplacian L for this graph is given as

L =


1.6 −0.8 −0.8 0 0

−0.8 1.6 −0.8 0 0
−0.8 −0.8 1.7 −0.1 0

0 0 −0.1 1 −0.9
0 0 0 −0.9 0.9
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Interpretation of the graph Laplacian
The graph Laplacian operates on a signal x ∈ L(G ) as

Lx(vi ) =
∑

(vi ,vj )∈E

Ai ,j(x(vi )− x(vj))

In many cases, L is a discretization of a continuous Laplacian

Example 1: the path graph Pn

Path graph Pn with n nodes and weights Ai,j = h−1.

Laplacian for Pn (interior nodes)

Lx(vi ) =
2x(vi )− x(vi+1)− x(vi−1)

h

is a second order difference quotient that approximates −d2x
dt2

(t).
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Basic properties of the graph Laplacian

Theorem 1

For the graph Laplacian L ∈ Rn×n of a graph G = (V ,E ,A) we have

1 L is symmetric;

2 All the rows (and columns) sum up to 0, i.e. Le = 0 for
e = [1, . . . , 1]∗. This implies that L has an eigenvalue λ1 = 0 with
eigenvector e ∈ Rn.

3 For every x ∈ Rn, we have

x∗Lx =
1

2

∑
(vi ,vj )∈E

Ai ,j(x(vi )− x(vj))
2.

This implies that L is positive semidefinite and its eigenvalues are all
nonnegative: 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.
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Proof of Theorem 1

The two properties 1) and 2) follow directly from the definition of the
graph Laplacian. Property 3) is shown by the following short calculation:

n∑
i,j=1

Ai,j (x(vi )− x(vj))
2 =

n∑
i,j=1

Ai,jx(vi )
2 +

n∑
i,j=1

Ai,jx(vj)
2 − 2

n∑
i,j=1

Ai,jx(vi )x(vj)

=
n∑

i=1

Di,ix(vi )
2 +

n∑
j=1

Dj,jx(vj)
2 − 2

∑
i,j=1

Ai,jx(vi )x(vj)

= 2x∗Dx − 2x∗Ax

= 2x∗(D− A)x = 2x∗Lx .

□
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Theorem 2

1) For the normalized graph Laplacian LN ∈ Rn×n we have

LN is symmetric and

x∗LNx =
1

2

∑
(vi ,vj )∈E

Ai ,j

x(vi )

D
1/2
i ,i

−
x(vj)

D
1/2
j ,j

2

.

This implies that LN is positive semidefinite and its eigenvalues are all
nonnegative.

2) The eigenvalues of LRW correspond to the eigenvalues of LN and

(i)
∑n

k=1 λi = n

(ii) λi ∈ [0, 2] for all i ∈ {1, . . . , n}.
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Example

The graph Laplacian L of the graph

is given as

L =


1.6 −0.8 −0.8 0 0

−0.8 1.6 −0.8 0 0
−0.8 −0.8 1.7 −0.1 0

0 0 −0.1 1 −0.9
0 0 0 −0.9 0.9

 .

The eigenvalues of L are 0 < 0.0788 < 1.8465 < 2.4000 < 2.4747. The
eigenvalues of LN and LRW are 0 < 0.0693 < 1.4773 < 1.5000 < 1.9534.
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Example

We consider a modified graph (having two connected components) with
the adjacency matrix

A =


0 0.8 0.8 0 0

0.8 0 0.8 0 0
0.8 0.8 0 0 0
0 0 0 0 0.9
0 0 0 0.9 0


It is easy to check that the characteristic polynomial of the corresponding
graph Laplacian is given as

det(λI− L) = λ2(λ− 2.4)2(λ− 1.8).

Thus, the graph Laplacian L of the modified graph has a repeated
eigenvalue λ1 = λ2 = 0 with multiplicity 2 (which is equal to the number
of connected components).
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Theorem 3

The multiplicity of the zero eigenvalue of the Laplacians L, LN and LRW
equals the number of connected components of the graph G .

Interpretation

This is a first example in which we see that the graph Laplacian
contains relevant information about the geometric structure of a
graph. The multiplicity of the zero eigenvalue gives automatically the
number of connected components.

If only one eigenvalue of L is zero and there are k − 1 eigenvalues of
L that are very close to zero, we get a computational indication that
the graph G consists of k components that are only weakly connected
between each other. This is a theoretical explanation of why spectral
graph clustering works.
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Proof. Part 1)

1) The multiplicity of λ1 = 0 is at least the number k of connected
components of G .

Assume that the connected components correspond to the partition of V
into disjoint sets V1, . . . ,Vk . Define k vectors w1, . . . ,wk s.t.

wi (vj) = 1/
√
|Vi | if vj ∈ Vi , and 0 otherwise.

For i ∈ {1, . . . , k}, we have ∥wi∥2 = 1. Additionally, for i ̸= j , we have
⟨wi ,wj⟩ = 0. Finally, Lwi = 0 holds true.

Hence there is a set of k orthonormal vectors that are all eigenvectors of
L, with respect to the eigenvalue 0.
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Proof, part 2)

2) To see that the multiplicity of λ1 = 0 is at most k, we consider

x∗Lx =
1

2

∑
(vi ,vj )∈E

Ai ,j(x(vi )− x(vj))
2.

This expression can only be zero if x is constant on every connected
component. To see that there is no way of finding a k + 1st vector x that
is a zero eigenvector, orthogonal to w1, . . . ,wk , observe that any
eigenvector x must be nonzero on some node. Hence, we can assume that
x is nonzero on a node in Vi , and, thus, nonzero and constant on all nodes
in Vi , in which case x can not be orthogonal to wi . Therefore, there can
be no k + 1st eigenvector with eigenvalue 0. □
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The Cheeger constant
The Cheeger constant hG of a connected graph G is a measure on how
well the vertices of G can be separated in two connected components by
removing edges of G . If the constant hG is small, the graph G has a
bottleneck so that it is easy to split the graph in two parts.

The volume of the set W is defined as

vol(W ) =
∑

i : vi∈W
Di ,i .

The volume of the entire vertex set V is then vol(V ) =
∑n

i=1Di ,i .
The set of edges of G having endpoints in W1 and W2 is

E (W1,W2) = {(w1,w2) ∈ E : w1 ∈ W , w2 ∈ W2)} ⊂ E .

The size of E (W1,W2) is given as

|E (W1,W2)| =
∑

i ,j : vi∈W1,vj∈W2

Ai ,j .

If Ai ,j ∈ {0, 1}, then |E (W1,W2)| corresponds to the number of
edges between W1 and W2.
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The Cheeger constant

For a subset W ⊂ V , we define the Cheeger ratio of W as

hW =
|E (W ,W c)|

min{vol(W ), vol(W c)}
,

where W c = V \W is the complement of the set W in V . For the full
vertex set W = V , we set hV = 1.

The Cheeger constant of the graph G is now given as the minimum
possible ratio

hG = min
W⊂V

hW .
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The Cheeger inequality

Theorem 4 (Cheeger inequality)

Let G be connected. Then, the Cheeger constant hG and the second
eigenvalue λ2 > 0 of the normalized graph Laplacian LN are linked as

h2G
2

≤ λ2 ≤ 2hG .

The Cheeger inequality for graphs is a discrete analog of the classical
Cheeger inequality for Riemannian manifolds. It relates the Cheeger
constant hG to the second smallest eigenvalue λ2 > 0 of LN . From this
result, we see that the size of the second eigenvalue λ2 > 0 of LN provides
relevant information on how easily a graph can be split in two connected
components by removing edges of G .
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Proof of the upper estimate
We assume that the minimum Cheeger ratio hG is attained by a set W
with vol(W ) ≤ vol(V )/2 such that

hG = hW =
|E (W ,W C )|

vol(W )
.

Consider the graph signal x given as

x(vi ) = χW (vi )−
vol(W )

vol(V )
.

Then, x∗De = χ∗
WDe − vol(W )

vol(V ) e
∗De = vol(W )− vol(W ) = 0. Thus, the

Rayleigh characterization of the eigenvalue λ2 yields

λ2 ≤
x∗Lx

x∗Dx
=

χ∗
WLχW

vol(W )− vol(W )2

vol(V )

=
|E (W ,W c)|

vol(W )(1− vol(W )
vol(V ) )

≤ 2hG .

This proves the upper bound in the Cheeger inequality. □
Wolfgang Erb Spectral Graph Theory 27 / 47



The Graph Fourier Transform
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Spectral decomposition of the Laplacian
For the symmetric positive-semidefinite matrix L there exists a set

{u1, u2, . . . , un}

of real-valued orthonormal eigenvectors with respect to the eigenvalues
0 = λ1 ≤ · · · ≤ λn. This set is an orthonormal basis of the space L(V )

endowed with the inner product ⟨x , y⟩ =
n∑

i=1

x(vi )y(vi )

In other words, the graph Laplacian L has a spectral decomposition

L = UΛU∗,

where Λ = diag(λ1, . . . , λn) is a diagonal matrix with the increasingly
ordered eigenvalues of L on the diagonal and U is a unitary matrix given by

U = [u1 u2 . . . un].

Similar decompositions hold true for the normalized matrices LN and LRW .
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The Laplacian and the Fourier transform on graphs

Graph Fourier transform

Idea: use the orthonormal eigenvectors

Luk = λkuk , k ∈ {1, . . . , n},

of the graph Laplacian L as Fourier basis and set

x̂k = ⟨x , uk⟩ =
n∑

i=1

x(vi )uk(vi ).

Note: also on the real line the Fourier components of a function f can be
interpreted as the inner product of the function f with the eigenfunctions
of the Laplace operator.
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Example 1: the path graph Pn

The eigenvalues and eigenfunctions can be written explicitly as

λk = 2− 2 cos
(
(k−1)π

n

)
and

u1 =
1√
n
, uk(vi ) =

√
2
n cos

(
(k−1)π(i−0.5)

n

)
, k ≥ 2.

The graph Fourier transform corresponds in this case to the Discrete
Cosine Transform (DCT II).
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Example 2: the bunny graph

The first 8 eigenfunctions of the graph Laplacian L on the bunny graph.
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Example 3: circle graphs
We consider the circle graph Cn = {1, . . . , n} with the set of edges given as

E = {(i , j) ∈ Cn × Cn : |i − j | = 1 mod n}.

In fact Cn can also be considered as a group (the cyclic group Z/nZ with
generating element 1. )
As adjacency matrix we have

Ai ,j =

{
1 if (i , j) ∈ E ,

0 otherwise.

Cyclic group C6

Graph Laplacian L of C6

2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1

−1 0 0 0 −1 2
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Example 3: circle graphs

The graph Laplacian L of Cn is a circulant matrix and the normalized
characters

uk(i) =
1√
n
exp

(
ı2πik

n

)
, k ∈ {1, . . . , n},

form a complete orthonormal eigenbasis of L with respect to the
eigenvalues

λk = 2− 2 cos

(
2πk

n

)
.

The graph Fourier transform corresponds in this case to the discrete
Fourier transform. Note that

λk = λn−k ,

i.e., for cyclic groups the eigenspaces of L are degenerate. In particular,
also for general graphs G we can not expect to have unique basis elements
uk for the Fourier transform.
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Interpretation of the graph Fourier transform
The GFT can be interpreted similarly as a classical Fourier transform.

the eigenvalues of the Laplacians L, LN , can be interpreted as
frequencies, i.e., the larger the eigenvalue the higher the frequency of
the respective eigenvector.

The eigenvectors associated with large eigenvalues oscillate rapidly
while the eigenvectors associated with small eigenvalues vary slowly.

The eigenvector associated to the eigenvalue 0 is constant (for L).

The Fourier transform x̂ = (x̂1, . . . , x̂n)
∗ can be interpreted as the

decomposition of a graph signal x into its single frequency components

x(vi ) =
n∑

k=1

x̂kuk(vi ).

The lower frequencies compose smooth part of the signal.

The higher frequencies build the noisy part of the signal.
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Matrix formulation of the GFT

As the grah Laplacian L is symmetric and positive semi-definite, we can
write its eigendecomposition as

L = UΛU∗,

where Λ = diag(λ1, . . . , λn) contains the eigenvalues of L (increasingly
ordered) and the unitary matrix U = [u1 u2 · · · un] the corresponding
eigenvectors.

Then, we can write the Graph Fourier transform of x as

x̂ = U∗x , with k-th. entry x̂k = u∗kx = ⟨x , uk⟩.

The inverse Fourier transform is correspondingly given as

x = Ux̂ .
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Numerical calculation of the GFT

Computational costs for the full GFT:

O(n3) for the calculation of the spectral decomposition of L.
Numerically, the Schur decomposition of L is calculated which, as L is
symmetric, corresponds to the spectral decomposition;

O(n2) for GFTs and inverse GFTs (matrix-vector products).

For large graphs (n >> 1), the calculation of L = UΛU∗ is too expensive.
The following strategies allow to reduce the costs:

If only the eigenpairs with respect to the smallest eigenvalues are
required, we can use Krylov subspace methods;

For particular operations, it is possible to avoid the spectral
decomposition (e.g. in case of a convolution);

For particular graphs (path graph, circle graph) the spectral
decomposition of the Laplacian is explicitly known and fast algorithms
are available (FFT, DCT, DST).
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Convolution on graphs

Convolution in R

(x ∗ y)(s) =
∫
R
x(t)y(s − t)dt.

In the Fourier domain:

(̂x ∗ y)(ω) = x̂(ω)ŷ(ω)

Graph convolution

No translation available
Idea: define convolution
via graph Fourier transform

(̂x ∗ y)k = x̂k ŷk

We define the graph convolution as

y ∗ x := UMŷ x̂ = UMŷU
∗x , where Mŷ = diag(ŷ1, . . . ŷn).

Further, we define the convolution matrix Cy ∈ Rn×n as

Cy = UMŷU
∗.

Note: the graph convolution depends on the choice of the basis uk .
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Convolution on graphs

We can use the graph convolution to define filter functions on graphs. For
a filter f ∈ L(V ) and x ∈ L(V ) the filtered signal f ∗ x is given as

(f ∗ x)(vi ) = Cf x(vi ) =
n∑

k=1

f̂k x̂k uk(vi ).

A filter function f with f̂k = 0 for k ≥ N < n is called low-pass filter.

A filter function f with f̂k = 0 for k < N < n is called high-pass filter.

Note: The calculation of f ∗ x via the GFT might be too costly. For
particular filter functions f we can avoid the usage of the GFT.
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Convolution on graphs via graph Laplacian
If the filter function is defined in terms of a polynomial of L, the filtered
signal can be obtained without the usage of the spectral decomposition.

For this, define the filter f in terms of the Fourier transform:

f̂k =
N∑
l=0

αlλ
l
k = pN(λk), N ≤ n.

Then, the filtered signal is given as

f ∗ x = U diag(f̂ )U∗x = U diag(pN(λ1), . . . , pN(λ1))U
∗x

= pN(U diag(λ1, . . . , λn)U
∗)x

= pN(L)x =
N∑
l=0

αlL
lx ,

i.e., the filtered signal f ∗ x is an element of the Krylov space K(N+1)(L, x).
To calculate the filtered signal, only matrix-vector products are necessary.
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Design of filters in the Krylov space K(N+1)(L, x)

Strategy for the construction of the filters:

Construct the polynomial pN(λ) in the spectral domain (i.e. on the
eigenvalues of L) such that it satisfies all desired filtering properties
(low-pass, high-pass, band-pass etc.) when multiplied to the Fourier
coefficients x̂ of a signal x .

Use a ”good” basis to represent the polynomial. The monomial basis
λl , l ∈ {0, . . . ,N} is in general not that well suited for this purpose,
better use a properly dilated and shifted Chebyshev basis Tl(λ).

Calculate the filtered signal as

f ∗ x = pN(L)x =
N∑
l=0

βlTl(L)x .

The vector Tl(L)x can be generated efficiently by a three-term recurrence.
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Application: denoising of graph signals

Question: how can we remove the noisy part of a signal?

Figure 1: The original signal x and a noisy signal xnoise on the bunny graph.
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Application: denoising of graph signals

To identify the noisy part of the signal xnoise, let’s have a look at the
Graph Fourier transform of x and xnoise.

Figure 2: The size of the first 100 Fourier coefficients of the original signal x and
the noisy signal xnoise on the bunny graph. We see that starting from k ≈ 15, the
frequency components (x̂noise)k are much larger than for x̂k .
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Application: denoising of graph signals
Idea for the filter function y : generate y such that all frequencies (x̂noise)k ,
k ≥ 21, of xnoise are removed, i.e., calculate

xdenoised = y ∗ xnoise,

where y is a low-pass filter that cuts off all frequencies larger than k = 20.

Figure 3: The Fourier coefficients of the low-pass filter y .
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Application: denoising of graph signals

Result: denoised signal xdenoised calculated in terms of the Fourier
coefficients

(x̂denoised)k =

{
x̂k for k ≤ 20,
0 for k > 20.

Figure 4: The original signal x , the noisy signal xnoise and the denoised xdenoised.
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Application II: graph convolutional neural networks (GCNs)

Graph convolutional neural networks (GCNs) are deep neural networks on
graphs in which the single layers are given as follows:

H(k+1) = ReLU

(
N∑
l=0

α
(k)
l LlH(k)Θ(k)

)
, 0 ≤ k ≤ K − 1,

where

H(k) ∈ Rn×m is the output of the k-th. layer.

H(0) = X corresponds to the input (set of m feature vectors).

Θ(k) ∈ Rm×m are weights to be learned.

α
(k)
i ∈ R are coefficients to be learned.

In each layer, a graph convolution is applied to the previous output H(k).
The filters of the GCN are obtained by a learning procedure.
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Thanks a lot for your attention!
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