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Outline of this talk

1 Kernel-based interpolation on graphs
▶ The Graph Fourier Transform, convolution and generalized translation on graphs

▶ How to set up kernel-based interpolation on graphs

▶ Approximation and classification with Graph basis functions (GBFs)

2 Krylov subspace methods for the approximation of kernels ;methods
▶ Block Krylov methods for the approximation of matrix functions

▶ How to guarantee positive definiteness in Krylov space approximations

3 Partition of Unity Methods (PUMs)
▶ How to generate partition of unities on graphs

▶ How to combine PUMs with GBF approximation
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Recapitulation: the Graph Fourier Transform

We write the eigendecomposition of the graph Laplacian L = D− A as

L = UΛU∗,

where Λ = diag(λ1, . . . , λn) contains the eigenvalues of L (increasingly
ordered) and the unitary matrix U = (u1, u2, . . . , un) the eigenvectors.

Then, the Graph Fourier transform of x is defined as

x̂ = U∗x , with k-th. entry x̂k = u∗kx = ⟨x , uk⟩.

The inverse Fourier transform is correspondingly given as

x = Ux̂ .
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Example: the bunny graph

The first 8 eigenfunctions of the graph Laplacian L on the bunny graph.
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Convolution on graphs

Convolution in R

(x ∗ y)(s) =
∫
R
x(t)y(s − t)dt.

In the Fourier domain:

(̂x ∗ y)(ω) = x̂(ω)ŷ(ω)

Graph convolution

No translation available
Idea: define convolution
via graph Fourier transform

(̂x ∗ y)k = x̂k ŷk

We define the graph convolution as

y ∗ x := UMŷ x̂ = UMŷU
∗x , where Mŷ = diag(ŷ1, . . . ŷn).

Further, we define the convolution matrix Cy ∈ Rn×n as

Cy = UMŷU
∗.

Note: the graph convolution depends on the choice of the basis uk .
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Generalized translation on graphs

Translation in R

In the weak sense, we have

x(t + s) = (x ∗ δs)(t)

=

∫
R
x̂(ω)e−2πıωse−2πıωtdω

Graph translation

We can define a general-
ized translation as

Cδvx = (δv ∗ x)
= UMδ̂v

U∗x

Warnings:

In general, no group structure for the generalized translation

In general, the matrix Cδv is not unitary.

Depends on the choice of the basis elements uk .
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Interpolation on graphs

Graph signals are functions x : V → R on the node set of G , we can
represent them as vectors x = (x(v1), . . . , x(vn))

∗ ∈ Rn.
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Interpolation problem: from the knowledge of the signal x on a subset

W = {w1, . . . ,wN} ⊂ V ,

reconstruct the signal x on V .
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1. Idea: Bandlimited signals

First approach: interpolate the given data x(w), w ∈ W in the space of
bandlimited signals

BM = span{u1, . . . , uM}.

Drawbacks:

If N = M, uniqueness of interpolant is not guaranteed. W is not
necessarily a norming set for BM .

Also if interpolant can be calculated, bad-conditioning occurs
(Runge-type artifacts).
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2. Idea: kernels for interpolation

Consider a kernel K : V × V → R on the graph G . A kernel K allows to
introduce a linear operator K : L(G ) → L(G ) as

Kx(vi ) =
n∑

j=1

K (vi , vj)x(vj).

We can as well write it as a matrix K ∈ Rn×n given by

K =


K (v1, v1) K (v1, v2) . . . K (v1, vn)
K (v2, v1) K (v2, v2) . . . K (v2, vn)

...
...

. . .
...

K (vn, v1) K (vn, v2) . . . K (vn, vn)

 .

The kernel K is called positive definite, if the matrix K is symmetric and
positive definite.
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2. Idea: kernels for interpolation
Assume that the kernel K is positive definite. Then, in the space

NK ,W =

{
x ∈ L(G ) | x(v) =

N∑
k=1

ckK (v,wk)

}

we can find a unique interpolant IW x such that

IW x(w) = x(w), for all w ∈ W .

The coefficients ck of the interpolant can be calculated as
K (w1,w1) K (w1,w2) . . . K (w1,wN)
K (w2,w1) K (w2,w2) . . . K (w2,wN)

...
...

. . .
...

K (wN ,w1) K (wN ,w2) . . . K (wN ,wN)


︸ ︷︷ ︸

KW=E∗
WKEW


c1
c2
...
cN

 =


x(w1)
x(w2)

...
x(wN)

 .
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How to obtain meaningful kernels on graphs?

Idea: link kernels with spectral graph structure.

RBF-kernel in R

Use Kf (t, s) = f (t − s)
with a positive definite
radial basis function f .

IW x(t) =
N∑

k=1

ck f (t − wk)

GBF-kernel on graphs [1]

Use Kf (v,w) = Cδw f (v)
with a positive definite
graph basis function f .

IW x(v) =
N∑

k=1

ckCδwk
f (v)

Definition: we call a graph signal f positive definite (p.d.) if the
kernel Kf (v,w) = Cδw f (v) is positive definite.
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Characterization of p.d. functions

Bochner’s Theorem on R

A continuous function f is
p.s.d. if and only if it is the
inverse Fourier transform of a
non-negative Borel measure.

Bochner’s result on graphs

A graph signal f is p.s.d. if and
only if f̂k ≥ 0 for all k.
A graph signal f is p.d. if and
only if f̂k > 0 for all k.

Note: for a p.d. GBF f the Mercer decomposition of Kf is given as

Kf (v,w) =
n∑

k=1

f̂kuk(v)uk(w).
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Examples of GBF kernels

1 Diffusion kernels [5] are based on the eigendecomposition
L =

∑n
k=1 λkuku

∗
k of the graph Laplacian and given as

K = e−tL =
n∑

k=1

e−tλkuku
∗
k .

2 Variational splines [6,9] are based on the decomposition

K = (ϵIn + L)−s =
n∑

k=1

1

(ϵ+ λk)s
uku

∗
k .

3 Kernels with a polynomial decay in the eigenbasis:

K =
n∑

k=1

1

ks
uku

∗
k .

Wolfgang Erb Graph Basis Functions 13 / 49



Example of GBF kernels

Figure 1: Illustration of columns K (·,w) of the kernels matrices in Example (1)
and (3). The ringed node corresponds to w. These columns can be interpreted as
generalized translates of a graph basis function f (see [1] for more details).
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2. Example of GBF kernels

Figure 2: Illustration of columns K (·,w) of the kernels matrices in Example (1)
and (3) for another center node w. These columns can be interpreted as
generalized translates of a graph basis function f (see [1] for more details)

.
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Algorithm 1: Kernel-based interpolation on graphs

Input: Samples x(w1), . . . , x(wN), and a positive definite kernel K .

Calculate the N kernel columns K (·,w1), . . . ,K (·,wN).

Solve the linear system of equations
K (w1,w1) K (w1,w2) . . . K (w1,wN)
K (w2,w1) K (w2,w2) . . . K (w2,wN)

...
...

. . .
...

K (wN ,w1) K (wN ,w2) . . . K (wN ,wN)


︸ ︷︷ ︸

KW=E∗
WKEW


c1
c2
...
cN

 =


x(w1)
x(w2)

...
x(wN)

 .

Calculate the kernel interpolant

IW x(v) =
N∑

k=1

ckK (v,wk).

Wolfgang Erb Graph Basis Functions 16 / 49



Examples: interpolation on bunny graph

GBF interpolation for the input signal x = u4.
Left: GBF interpolant for 40 given nodes (out of 900 nodes) and the GBF fpol,4.

Right: interpolation error with respect to the original signal.
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Time-critical parts in the calculation of the interpolant

Time-critical parts in the calculation of IW x

1 For graphs (with an irregular structure) the N kernel columns
K (·,wk) = Kewk

, k ∈ {1, . . . ,N} have to be calculated in a first step.
This might be cost-intensive for large graphs.

2 The resolution of the interpolation problem KW c = x(W ) might get
computationally expensive if N is large.

We will consider two strategies two overcome these issues.

1 Krylov subspace techniques to generate the kernel columns K (·,wk)
efficiently [2].

2 Partition of unity methods (PUMs) to reduce cost-intensive
calculations by splitting the graph into smaller subgraphs [3].
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Software for efficient kernel methods on graphs

A software for efficient interpolation on graphs can be found as Matlab
package GBFlearn at

https://github.com/WolfgangErb/GBFlearn

or as Python version (by G. Santin) at

https://github.com/GabrieleSantin/GraphBasisFunctions

GBF stands for graph basis function. Important kernels defined upon
the graph Fourier transform can be described through GBFs [1].

GBFlearn contains simple scripts for the generation and application
of GBFs on graphs as the solution of interpolation and classification
problems [1,4]. Efficient schemes based an Krylov subspace
approximations and PUMs have been incorporated [2,3].

Wolfgang Erb Graph Basis Functions 19 / 49

https://github.com/WolfgangErb/GBFlearn
https://github.com/GabrieleSantin/GraphBasisFunctions


Krylov subspace methods

GBF kernels on graphs are usually given as matrix functions of the
symmetric graph Laplacian L such that the kernel functions read as

K (·,w) = ϕ(L)ew,

where ϕ is a positive function on the spectrum of L.

Idea: use Krylov subspace methods to approximate the matrix-vector
product ϕ(L)ew with a polynomial pϕ,m(L)ew. For the interpolation
algorithm we need N of these, i.e. we want to obtain a polynomial
approximation of the form

pϕ,m(L)EW ≈ ϕ(L)EW , (1)

where EW ∈ Rn×N is the block

EW = [ew1 , . . . , ewN
] ∈ Rn×N .
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Classical block Lanczos methods

Consider the block Krylov space

Kcbl
m (L,EW ) =

{
m−1∑
k=0

LkEWCk : Ck ∈ RN×N

}
.

An orthonormal system {q1, . . . , qmN} ⊂ Rn of vectors related to the

classical Krylov space K(cbl)
m (L,EW ) can be obtained by applying m − 1

steps of a block Lanczos algorithm to the initial block
Q1 = [q1, . . . , qN ] = EW . We store also the remaining basis elements in
n × N-blocks Qk by setting

Qk = [q(k−1)N+1, . . . , qkN ], k ∈ {1, . . . ,m}.
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The blocks Q1, . . . ,Qm in Kcbl
m (L,EW ) are determined in such a way that

after m − 1 steps the block Lanczos relation

L[Q1, . . .Qm] = [Q1, . . . ,Qm+1]H̃m, (2)

is satisfied with a block tridiagonal matrix H̃m ∈ R(m+1)N×mN of the form

H̃m =

H1,1H1,2

H2,1H2,2
. . .

. . .
. . . Hm−1,m

Hm,m−1 Hm,m
Hm+1,m



 Hm.

The blocks Hk+1,k ∈ RN×N are upper triangular and invertible and satisfy
Hk+1,k = H∗

k,k+1, while Hk,k = H∗
k,k . In addition, the classical block

Lanczos method enforces the system {q1, . . . , qmN} to be orthonormal.
An approximation of ϕ(L)EW is given by

p
(cbl)
ϕ,m (L)EW := [Q1, . . . ,Qm+1]ϕ(Hm+1)F1.
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Algorithm 2: Classical Block Lanczos to approximate ϕ(L)EW

1: Q1 = EW , Q0 = 0, H0,1 = 0;

2: for k = 1 to m do

3: X = LQk −Qk−1Hk−1,k ;
4: Hk,k = Q∗

k X;
5: X = X−QkHk,k ;
6: Compute reduced QR

decomposition of X such that

Qk+1Hk+1,k = X,

with Qk+1 ∈ Rn×N

containing N orthonormal
columns qkN+1, . . ., q(k+1)N

and Hk+1,k ∈ RN×N is upper
triangular;

7: Set Hk,k+1 = Hk+1,k ;

8: end for

9: Set up Hm from the blocks
Hk+1,k , Hk,k , k ∈ {1, . . . ,m},
and calculate

U = ϕ(Hm)F1,

where F1 ∈ RmN×N contains
the identity matrix as first
N × N-block and all the
remaining blocks of F1 are zero.

10: Return p
(cbl)
ϕ,m−1(L)EW :=

[Q1, . . . ,Qm]U as an
approximation to ϕ(L)EW .
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Theoretical advantages of classical block Lanczos methods

Lemma 1

Let the spectrum of L be contained in [0,Λ] and the function ϕ be positive

on [0,Λ]. Then the matrix K
(cbl)
W = E∗

W p
(cbl)
ϕ,m (L)EW is symmetric and

positive definite.

Note: this statement in general not true for other block Krylov methods.

For sequentially applied Lanczos the matrix K
(sbl)
W = E∗

W p
(sbl)
ϕ,m (L)EW can

even have imaginary eigenvalues.
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Figure 3: Eigenvalues of E∗
W p

(kr)
ϕ,5 (L)EW for five different Krylov subspace

methods kr ∈ {cbl, gbl, sbl, cheb, cheb2}, with kernel ϕ(L) = e−tL, t = 20.
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Proof

Using the same notation as in the description of Algorithm 2, we can

rewrite the block vector p
(cbl)
ϕ,m−1(L)EW as

E∗
W p

(cbl)
ϕ,m−1(L)EW = E∗

W [Q1, . . . ,Qm]ϕ(Hm)F1 = F∗
1ϕ(Hm)F1.

In particular, E∗
W p

(cbl)
ϕ,m−1(L)EW corresponds to the first N × N principal

submatrix of the matrix ϕ(Hm). As L is symmetric, also the block Lanczos
matrix Hm is symmetric. Further, the block Lanczos relation (2) implies
the identity

[q1, . . . , qmN ]
∗L[q1, . . . , qmN ] = Hm.

These two properties in combination with the Cauchy interlacing theorem
guarantee that the spectrum of Hm is contained in the same interval [0,Λ]
as the spectrum of L. Thus, if ϕ is positive on [0,Λ], the matrix ϕ(Hm) is
symmetric and positive definite. Therefore, also the principal submatrix

E∗
W p

(cbl)
ϕ,m−1(L)EW = F∗

1ϕ(Hm)F1 is symmetric and positive definite.
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Error estimates

Theorem 2

Let L ∈ Rn×n be symmetric with spectrum in [0,Λ]. Then, we get∥∥∥ϕ(L)EW − p
(cbl)
ϕ,m (L)EW

∥∥∥
F
≤ 2

√
NEm(ϕ),

where
Em(ϕ) = min

p∈Πm

max
λ∈[0,Λ]

|ϕ(λ)− p(λ)|

denotes the best approximation error for the function ϕ in the space of
polynomials Πm of degree less or equal to m on the interval [0,Λ].

Note: it is also possible to use Chebyshev interpolation for the
approximation of ϕ(L). In this case, one gets the bound∥∥∥ϕ(L)EW − p

(cheb)
ϕ,m (L)EW

∥∥∥
F
≤

√
N
(
2 + 2

π log(m + 1)
)
Em(ϕ).
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Error estimates

Theorem 3

Let ϕ be continuous and positive on [0,Λ] with

ϕmin = min
λ∈[0,Λ]

|ϕ(λ)| and ϕmax = max
λ∈[0,Λ]

|ϕ(λ)|.

Then, for m → ∞, we have the asymptotic bound

∥IW x − IW x (cbl)∥2 ≤̇
∥x∥2
ϕmin

(
1 +

ϕmax

ϕmin

)∥∥∥ϕ(L)EW − p
(cbl)
ϕ,m (L)EW

∥∥∥
F
.
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Lanczos approximation

Figure 4: Lanczos approximation of a diffusion and a variation spline kernel on the
path graph. The blue line indicates the support of the approximant, the error with
respect to the exact kernel column is measured in the uniform norm.
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Chebyshev approximation

Figure 5: Chebyshev approximation of a diffusion and a variation spline kernel on
the path graph. The blue line indicates the support of the approximant, the error
with respect to the exact kernel column is measured in the uniform norm.
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Experiment
On the bunny graph we calculate two kernel interpolants IW x iteratively
with five different block Krylov methods.

Figure 6: Uniform error ∥IW x − IW x (kr)∥∞ for five block Krylov methods
kr ∈ {cbl, gbl, sbl, cheb, cheb2} in terms of the iteration numbers m.
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Warning

The last figure shows only one side of the medal. Classical block Krylov
methods can perform poorly in practice if the block size N gets large.

Operations cbl gbl sbl cheb

MVs mN mN mN mN
DOTs O(mN2) O(mN) O(mN) -
AXPYs O(mN2) O(mN) O(mN) O(mN)
ϕ(Hm)/ck(ϕ) O(mN3) +O(m2N2) O(m2) O(m2N) O(m logm)

Table 1: Required operations to calculate p
(kr)
ϕ,m(L)EW for the Krylov space

methods kr ∈ {cbl, gbl, sbl, cheb}.
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Warning

Classical block Krylov methods perform also poorly in terms of memory
requirements.

Storage cbl gbl sbl cheb

Qk/Tk(L)EW mnN mnN mn 2n
Hm/ck(ϕ) O(mN2) O(m) O(m) m

Table 2: Memory requirements for the calculation of the matrix polynomial

p
(kr)
ϕ,m(L)EW for the Krylov space methods kr ∈ {cbl, gbl, sbl, cheb}.
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Partition of Unity Methods (PUMs)

To reduce the computational load, a second strategy consists in the usage
of a Partition of Unity Method.

Observation:

On smaller segments of the graph, the computational load to solve
the interpolation problem is much smaller.

In Euclidean setting, the combination of RBFs with PUMs yields
significantly sparser system matrices in collocation or interpolation
problems, and, therefore, a considerable speed-up of calculations

Idea: calculate local interpolants on small subgraphs of G instead of a
global one and merge them via a Partition of Unity.

Advantage for graphs: segmentation algorithms on graphs allow to
generate partition of unities in a simple way.
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Partition of Unities on a graph
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Figure 7: Schematic sketch of a partition of unity on a graph.

Definition 4

Let {Vj}Jj=1 be a cover of the vertex set V . Then, a partition of unity

{φ(j)}Jj=1 subordinate to this cover is a set of functions φ(j) ∈ L(G ),
j ∈ {1, . . . , J}, such that

supp(φ(j)) ⊆ Vj , φ(j) ≥ 0, and
J∑

j=1

φ(j)(v) = 1 for all v ∈ V .
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Construction of the partition of unity

We construct a cover {Vj}Jj=1 of the node set V and a partition of unity

{φ(j)}Jj=1 subordinate to {Vj}Jj=1 by the following three operations:

a) We use a (modified) J-center clustering algorithm to decompose V
into J disjoint clusters Cj . For this we use the graph geodesic as a
distance between two nodes.

b) We augment the clusters Cj with neighboring nodes and obtain a
cover of overlapping subdomains Vj , j ∈ {1, . . . , J}.

c) We use Shepard weight functions on the cover {Vj}Jj=1 to obtain a

desired partition of unity {φ(j)}Jj=1.
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a) J-center clustering for graphs

Algorithm 3: Greedy J-center clustering based on interpolation nodes

Input: The interpolation nodes W = {w1, . . . ,wN}, a starting center
q1 ∈ W and the number J of partitions.

for j = 2 to J do
select a center qj = argmax

w∈W
min

q∈{q1,...,qj−1}
d(q,w) farthest away from

Qj−1 = {q1, . . . , qj−1}.
Calculate the J clusters

Cj =

{
v ∈ V : d(qj , v) = min

q∈{q1,...,qJ}
d(q, v)

}
, j ∈ {1, . . . , J}.

Return centers QJ = {q1, . . . , qJ} and clusters {C1, . . . ,CJ}.
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b) Augmentation of the clusters

We enlarge the clusters Cj to obtain overlapping subdomains Vj .

Method: add all vertices to Cj that have a graph distance to Cj less than
or equal to r ≥ 0.

Algorithm 4: Augmentation of clusters with neighbors of distance r

Input: A cluster Cj and an enlargement distance r ≥ 0.

Add all nodes v ∈ V with a graph distance less than r to Cj , i.e.,

Vj = Cj ∪ {v ∈ V | d(v,w) ≤ r , w ∈ Cj}.

Return subdomain Vj .

Note: although possible, it is not recommendable to use the disjoint
clusters Cj , j ∈ {1, . . . , J}, directly as subdomains for the PUM, as the
topological information of the graph G gets lost.
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c) Creation of Partition of Unity with Shepard weights

A simple construction principle to generate a partition of unity {φ(j)}Jj=1 is
based on Shepard weights:

If ψ(j), j ∈ {1, . . . , J}, denote nonnegative weight functions on V with
supp(ψ(j)) ⊆ Vj and

∑J
j=1 ψ

(j) > 0, then the functions

φ(j)(v) =
ψ(j)(v)∑J
j=1 ψ

(j)(v)
, v ∈ V ,

form a partition of unity subordinate to {Vj}Jj=1.

Example: We consider the disjoint clusters Cj as subsets of the augmented
domains Vj . Then, choosing ψ

(j)(v) = 1Cj
(v), the corresponding partition

of unity is given as
φ(j)(v) = ψ(j)(v) = 1Cj

(v).
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Example

Figure 8: Partition of the Minnesota graph in J = 8 subdomains via reduced
J-center clustering (dark domains) and domain augmentation (red nodes, r = 8).
The ringed nodes indicate the centers of the subdomains.
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PUM for Kernel-based interpolation

Algorithm 5: Kernel-PUM interpolation on graphs

Input: (i) Samples x(w1), . . . , x(wN) ∈ R at the interpolation nodes
W = {w1, . . . ,wN},

(ii) Number J of subdomains.

1.a) Use J-center clustering to decompose V into J disjoint clusters Cj .

1.b) Create J subdomains Vj by augmenting the clusters Cj into J
overlapping subdomains Vj = {vj1 , . . . , vjnj } with nj elements.

1.c) Generate Partition of Unity {φ(j)}Jj=1 subordinate to the cover

{Vj}Jj=1 such that

supp(φ(j)) ⊆ Vj , φ
(j) ≥ 0, and

J∑
j=1

φ(j)(v) = 1 for all v ∈ V .
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PUM for Kernel-based interpolation

Algorithm 4: Kernel-PUM interpolation on graphs

2. Extract local graphs and local Laplacians L(j) For all subdomains Vj ,
j ∈ {1, . . . , J}, generate the subgraphs Gj = (Vj ,Ej), with the node sets Vj ,
the edges Ej = {(v,w) ∈ E | v,w ∈ Vj} and the local Laplacian

L(j) =

Lj1,j1
· · · Lj1,jnj

...
. . .

...
Ljnj ,j1

· · · Ljnj ,jnj

 .

If required, calculate the spectral decomposition L(j) = U(j)Mλ(j)U(j)∗ to
define a local graph Fourier transform on the subgraphs Gj .

3.a) Construct a local kernel K (j)(v,w) on the subgraph Gj . One possibility
is to use the variational spline kernel

K(j) = (ϵInj + L(j))−s =

nj∑
k=1

1

(ϵ+ λ
(j)
k )s

u
(j)
k u

(j)∗
k , ϵ > −λ(j)1 , s > 0.
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PUM for Kernel-based interpolation

Algorithm 4: Kernel-PUM interpolation on graphs

3.b) For the sampling sets Wj = W ∩ Vj with Nj ≥ 1 elements solve

K
(j)
Wj

c(j) = x(Wj).

3.c) Calculate the local kernel interpolants IWj
x on Gj :

IWj
x(v) =

Nj∑
i=1

c
(j)
i K (j)(v,wji ).

4. A global kernel-PUM interpolant on G is then given as

IW x(v) =
J∑

j=1

φ(j)(v)IWj
x(v).
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Example

Figure 9: PUM interpolation based on local interpolants with the variational
spline kernel (ϵ = 0.001, s = 2) on J = 3 subdomains and 200 samples (black
ringed nodes). The red ringed nodes denote the centers qj of the subdomains.
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Important parameters for PUM interpolation

J: the number of domains in the partition of unity. The applied
greedy J-center clustering generates a quasi-uniform clustering of the
given graph (can be verified theoretically).

r : augmentation distance for the initial clusters. It determines how
strong the domains of the PU overlap.

ϵ, s: parameters of the variational spline kernel, s describes the
smoothness of the kernel, ϵ the localization on the graph domain.

Setting for numerical tests:

Minnesota graph with n = 2642 vertices and 3304 edges.

Variational spline kernel with s = 2 and ϵ = 0.001.

Test function for interpolation is very smooth, a linear combination of
the first 10 eigenvectors of the normalized graph Laplacian.
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Some experiments

1. Observation: Compared to a global kernel interpolation a PUM
interpolant is less accurate for smooth functions but requires less time.
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Figure 10: RRMSEs and CPU times (in seconds) obtained for GBF-PUM (with
J = 8 and r = 8) and the global GBF scheme in terms of N interpolation nodes.
We used the variational spline kernel with ϵ = 0.001 and s = 2.
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Some experiments

2. Observation: for the interpolation of smooth signals, a larger overlap
parameter r is useful (but the computational cost gets larger).
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Figure 11: Analysis of the impact of the parameter r on errors (left) and times
(right) obtained for the GBF-PUM with J = 8 in terms of N interpolation nodes.
We use the variational spline kernel with ϵ = 0.001 and s = 2.
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Thanks a lot for your attention!
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