
Modern Computational Harmonic Analysis on
Graphs and Networks

3. Graph Wedgelets: geometric wavelets for data compression

Wolfgang Erb
University of Padova

C.I.M.E. Summer School
”Modern Perspectives in Approximation Theory:
Graphs, Networks, quasi-interpolation and
Sampling Theory”
July 21-24, 2025, Cetraro (CS), Italy

wolfgang.erb@unipd.it

Wolfgang Erb Graph Wedgelets 1 / 41

wolfgang.erb@unipd.it


What is in this picture?

Signature image: piecewise constant approximation using 2 wedges.
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What is in this picture?

This is a piecewise constant approximation of the picture using 20 wedges.
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What is in this picture?

Piecewise constant approximation of the picture using 200 wedges.
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What is in this picture?

Piecewise constant approximation of the picture using 2000 wedges.
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What is in this picture?

Piecewise constant approximation with 20000 wedges.
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What is in this picture?

This is the original.

Wolfgang Erb Graph Wedgelets 2 / 41



What is in this picture?

This is a segmentation of the image.
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Goal of this presentation
Study piecewise constant approximation of graph signals (or images) by
discrete wedgelets. More precisely, we will consider geometric wavelets
based on binary wedge partitioning trees (BWPs) on graphs.
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Figure 1: Binary wedge partitioning tree on the Minnesota graph
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Adaptive piecewise constant approximation of images

For image decomposition and compression with piecewise constant
functions there exists a large amount of literature. Most techniques are
based on continuous models including a tree-based hierarchical
decomposition of the image and a proper discretization.

Classical Haar functions and Haar wavelets

Adaptive triangulation (Cohen, Dyn, Hecht, Mirebeau, Demaret, Iske)

• Quadtrees (Leonardi, Kunt, Samet)

Tetralets (Krommweh)

• Wedgelets (Donoho, Demaret, Friedrich, Führ, Wicker, Romberg,
Wakin, Choi, Baraniuk)

• Binary space partitionings (Radha, Leonardi, Naylor, Vetterli).
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Adaptive piecewise constant approximation of images

Comparison between different adaptive tree-based dictionaries for the
approximation of a piecewise constant image.

Left: Quadtree
Middle: Binary space partitioning (BSP)
Right: Wedgelets (Donoho)

Images taken from Kassim, Lee, Zonoobi, IEEE Trans. Image. Process. 2009

Wolfgang Erb Graph Wedgelets 5 / 41



Adaptive piecewise constant approximation of images

Comparison between different
adaptive methods for the
approximation of the
Cameraman with 0.15bpp.

(a) JPEG2000, 16.60 dB
(b) BSP, 17.9 dB
(c) Wedgelets, 15.8 dB
(d) Original image

Images taken from Kassim, Lee,

Zonoobi, IEEE Trans. Image. Process.

2009
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Adaptive piecewise constant approximation of images

Observation: there is an inherent trade-off in adaptive decompositions.

High adaptivity & large dictionaries lead to sparse representations of
images, the computational cost and memory expenses for the single
atoms are large (for instance in binary space partitionings)

Low adaptivity & small dictionaries require many elements to
represent the image, the computational cost and memory expenses of
the single atoms are low (for instance in quadtrees)

Observation in literature: Highly adaptive methods as binary space
partitionings are competitive to JPEG2000 mainly in low-bit compression.
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Why do we want to transfer such concepts on graphs?

We can use graphs to describe images in a discrete way. In
implementations we don’t have to think about possible discretizations.

On graphs we have efficient algorithms to calculate distances,
partitions and splittings.

Graphs are dimensionless. Once we have a particular tool for graphs,
we can also use it for higher dimensional data, as for instance videos.

The graph Laplacian offers a discrete way to measure smoothness of
images/signals.
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Why do we want to transfer such concepts on graphs?

Independently, graphs are interesting objects as they allow to model
complex irregular structures with a simple discrete structure.

Examples:

Social networks: nodes = persons, edges = relations

Transport networks: nodes = crossing, edges = streets

Images: nodes = pixels, edges connect nearby pixels.

Information on graphs is given in terms of graph signals. Also for graph
signals compression techniques are needed if n gets large.
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Graphs and graph signals

We consider simple and undirected graphs G given as

G = (V ,E ,A),

i.e., with vertices
V = {v1, . . . , vn}

undirected edges E ⊂ V × V , and a symmetric adjacency matrix
A ∈ Rn×n with non-negative entries{

Ai ,j > 0 if (vi , vj) ∈ E ,

Ai ,j = 0 otherwise.

Further, we need a metric distance d between the nodes.

Standard A: only entries 1 (if there is an edge) and 0.

Standard d: the length of the shortest path connecting two nodes.
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Graphs and graph signals

Graph signals are mappings f : V → R (or f : V → C)
A signal f is defined on the vertices v ∈ V of the graph

For a graph with n vertices, we can represent f as a vector

f = [f (v1) f (v1) · · · f (vn)]∗ ∈ Rn (∈ Cn).

We use L(V ) to denote the linear space of all graph signals.

Fig.: Illustration of a graph signal f .
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Wavelets on graphs for piecewise constant approximation

As in a continuous setting, wavelets on graphs can be used to

analyse the smoothness of signals in proper spaces;

provide a multiresolution analysis of graph signals;

denoise signals (in terms of properly defined filters);

compress signals on huge graphs.

Large number of available literature also on graphs

Diffusion wavelets (Coifman, Maggioni)

Wavelets and vertex-frequency analysis via spectral graph theory
(Gribonval, Hammond, Ricaud, Shuman, Vandergheynst)

Wavelet packets on graphs (Bulai, Saliani)

Interesting for us are wavelets for piecewise constant approximation of
graph signals. One important approach is based on hierarchical
partitioning trees (Gavish, Nadler, Coifman, Irion, Saito, Murtagh).
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Make things adaptive - binary wedge splits

Definition 1

We call a dyadic partition {V ′,V ′′} of the vertex set V a wedge split if
there exist two nodes v′ and v′′ of V such that V ′ and V ′′ have the form

V ′ = {v ∈ V | d(v, v′) ≤ d(v, v′′)}, and

V ′′ = {v ∈ V | d(v, v′) > d(v, v′′)}.

Fig.: Illustration of a binary wedge split based on two nodes q1 and q2.
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Fig.: Illustration of a binary wedge partitioning based on two nodes q1 and q2 (in red).
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Definition 2 (Binary wedge partitioning (BWP) trees)

A binary wedge partitioning (BWP) tree TQ of G w.r.t. the ordered set
Q = {q1, . . . , qM} ⊂ V is a binary partitioning tree constructed as follows:

1 The root of TQ is the set V . It forms the trivial partition

P(1) = {V (1)
q1 } = {V } and is associated to q1 ∈ Q.

2 For a partition P(m) = {V (m)
q1 , . . . ,V

(m)
qm } of V in TQ consider the

node qm+1 ∈ V
(m)
qj for a j ∈ {1, . . . ,m}. We split V

(m)
qj by a wedge

split based on qj and qm+1 into two disjoint sets V
(m)+
(qj ,qm+1)

and

V
(m)−
(qj ,qm+1)

and obtain the new partition

P(m+1) = {V (m+1)
q1 , . . . ,V (m+1)

qm+1
}

with V
(m+1)
qi = V

(m)
qi if i ̸= {j ,m + 1}, V (m+1)

qj = V
(m)+
(qj ,qm+1)

and

V
(m+1)
qm+1 = V

(m)−
(qj ,qm+1)

.
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Binary wedge partitioning trees
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Fig.: Again the illustration of the BWP tree on the Minessota graph.

Advantage: the tree depends only on the ordered set Q.
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Proposition 3

Let TQ be a BWP tree determined by the ordered set Q = {q1, . . . , qM}.
1 A BWP tree TQ contains 2M − 1 elements: 1 root, 2M − 2 children.

2 The M leaves of the binary tree TQ are given by the elements of the

M-th. partition P(M) = {V (M)
q1 , . . . ,V

(M)
qM }.

3 A BWP tree TQ is complete if and only if |Q| = |V | = n.

4 A BWP tree TQ is balanced with 1
2 ≤ ρ ≤ n−1

n .

Definition 4

The characteristic functions

ω(m)
qi

(v) = χ
V

(m)
qi

(v), 1 ≤ i ≤ m, 1 ≤ m ≤ M,

of the sets V
(m)
qi will be referred to as wedgelets with respect to the BWP

tree TQ . The wedgelets {ω(m)
qi : 1 ≤ i ≤ m} form an orthogonal basis for

the piecewise constant functions on the partition P(m).
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Question: how do we get adaptive wedge splits to approximate functions?

Original image

500 wedgelets

100 wedgelets

1000 wedgelets

Wolfgang Erb Graph Wedgelets 18 / 41



Greedy generation of BWP trees I

There are several possibilities to generate BWP trees

1) Max-distance (MD) greedy wedge splitting: at stage m, the domain

V
(m)
qj with the maximal L2-error is chosen, i.e.

j = argmax
i∈{1,...,m}

∥f − f̄
V

(m)
qi

∥L2(V
(m)
qi

)
, (1)

where

f̄
V

(m)
qi

=
⟨f ,ω(m)

qi
⟩

|V (m)
qi

|
= 1

|V (m)
qi

|

∑
v∈V (m)

qi

f (v).

As soon as j is determined, the subsequent node set qm+1 is chosen by the
selection rule

qm+1 = argmax
v∈V (m)

qj

d(qj , v),

i.e., qm+1 is the vertex in V
(m)
qj furthest away from qj .
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Greedy generation of BWP trees II

2) Fully-adaptive (FA) greedy wedge splitting:

The subset V
(m)
qj to be split is selected according to (1), i.e.,

j = argmax
i∈{1,...,m}

∥f − f̄
V

(m)
qi

∥L2(V
(m)
qi

)
,

and also the node qm+1 is chosen according to an adaptive rule. If

{V (m)+
(qj ,q)

,V
(m)−
(qj ,q)

} denotes the partition of V
(m)
qj for the wedge split

determined by qj and a second node q, we choose qm+1 such that

∥f − f̄
V

(m) +
(qj ,q)

∥2
L2(V

(m) +
(qj ,q)

)
+ ∥f − f̄

V
(m)−
(qj ,q)

∥2
L2(V

(m)−
(qj ,q)

)
(2)

is minimized over all q ∈ V
(m)
qj .
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Greedy generation of BWP trees III

3) Randomized (R) greedy wedge splitting:

If the size of the subset V
(m)
qj is large, an alternative to the fully-adaptive

procedure is a randomized splitting strategy.

In this strategy, the minimization of the quantity (2) is performed on a

subset of 1 ≤ R ≤ |V (m)
qj | randomly picked nodes of V

(m)
qj .

The parameter R acts as a control parameter giving a result close or
identical to FA-greedy if R is chosen large enough.

Wolfgang Erb Graph Wedgelets 21 / 41



Algorithm 1: Wedgelet encoding of a graph signal

Input: Function f , first node q1 ∈ V , P(1) = {V } = {V (1)
q1 } and size M.

for m = 2 to M do
1) Greedy selection of subset: calculate j according to the rule (1) as

j = argmax
i∈{1,...,m−1}

∥∥f − f̄
V

(m−1)
qi

∥∥
L2(V

(m−1)
qi

)
;

2) Conduct one of the following alternatives:
Max-distance (MD) greedy procedure;

Fully-adaptive (FA) greedy procedure;

Randomized (R) greedy procedure;

3) Generate new partition P(m) from the partition P(m−1) by a wedge

split of the subset V
(m−1)
qj into the children sets V

(m−1) +
(qj ,qm)

and V
(m−1)−
(qj ,qm)

;

4) Compute mean values f̄
V

(m)
qi

, i ∈ {1, . . . ,m}, for the new partition

P(m) by an update from P(m−1).

Output: Q = {q1, . . . , qM},
{
f̄
V

(M)
q1

, . . . , f̄
V

(M)
qM

}
.
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Algorithm 2: Wedgelet decoding of a graph signal

Input: Q = {q1, . . . , qM},
{
f̄
V

(M)
q1

, . . . , f̄
V

(M)
qM

}
.

Calculate the partition P(M) = {V (M)
q1 , . . . ,V

(M)
qM } of V by elementary wedge

splits along the BWP tree TQ .

Output: The wedgelet approximation

WM f (v) =
M∑
i=1

f̄
V

(M)
qi

ω(M)
qi

(v)

of f . For M = n, Wnf = f is reconstructed.
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Graph signal approximation with wedgelets

Approximation of a binary function on the Minnesota graph with 1, 4, 9 and 39 wedge splits
(from left to right). The red rings indicate the center nodes Q. The number of wrongly
classified nodes equals 356, 286, 110, and 12, respectively.
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Comparison to non-adaptive wavelet approaches on graphs

Comparison between best m-term approximation using BWP wavelets (FA-greedy, R-greedy with
R = 50 and MD-greedy) and non-adaptive Haar-type wavelet dictionaries for two test functions
(piecewise constant functions on Minnesota graph).
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Image approximation with wedgelets

a)
b) c) d)

e)

f) g) h)

Fig. BWP image approximation.
a) original 481× 321-image; b)c) FA-greedy BWP compression for M = 2000, M = 1000;
d) wavelet details between b) and c); e) Computational times of the BWP variants;
f)g) MD-greedy compression for M = 2000, M = 1000; h) wavelet details between f) & g).
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Comparison to continuous wedgelets

a)

b) c) d)

e) f) g)

Comparison of 4 image approximation techniques based on piecewise approximation:
a) original 481× 321 image; b) graph wedgelet compression using 500 most relevant BWP
wavelet coefficients (PSNR: 38.297 dB) c)d) continuous wedgelet compression using 506 wedges
(PSNR: 36.828 dB, code by F. Friedrich) e) Haar wavelet compression using 500 most relevant
coefficients (PSNR: 34.764 dB) f)g) quadtree compression with 505 blocks (PSNR: 31.662 dB,
intern Matlab implementation).
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Memory requirements for a wedgelet compression

Beside the quantized mean values f̄
V

(M)
qi

, we also have to store the BWP

tree TQ in terms of the node set Q.

Theorem 5

Assume that the mean values f̄
V

(M)
qi

are given in a quantized form with at

most K different values. Then, the wedgelet encoding in Algorithm 1
requires a memory of at most

⌈log2(n) + log2(K )⌉M
n

bits per node.

Example: In the particular case of an image with 512× 512 = 218 pixels
and an image depth of K = 28 = 256 colors we get by Theorem 5 that a
representation with M = 1000 wedgelets requires a memory of less than
0.1 bits per pixel.
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Geometric wavelets related to graph wedgelets

Instead of storing mean values
{
f̄
V

(M)
q1

, . . . , f̄
V

(M)
qM

}
, we can alternatively

encode WM f using geometric wavelets w.r.t the BWP tree TQ .

Let W ′,W ∈ TQ such that W ′ is a child of W . Then, the wavelet
component ψW ′(f ) is given as (Dekel, Leviatan [4])

ψW ′(f )(v) =

(
⟨f , χW ′⟩
|W ′|

− ⟨f , χW ⟩
|W |

)
χW ′(v). (3)

In this way, we obtain for every child W ′ in TQ a wavelet component

ψW ′(f ) of f . For the root V ∈ T , we set ψV (f )(v) =
⟨f ,χV ⟩
|V | .

Using geometric wavelets as a description for the wedgelet approximation
is particularly suited if a further compression of f is desired, for instance by
using an m-term approximation of f with m < M.
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m-term approximation with geometric wavelets

To see whether a graph signal f can be approximated sparsely by piecewise
constant functions on the elements of a BWP tree, the L2-error
∥f − Sm(f )∥L2(V ) can be analyzed, where Sm(f ) denotes the best m-term
approximation

Sm(f )(v) =
m∑
i=1

ψWi
(f )(v) (4)

of f w.r.t. m wavelets ψWi
(f ), i ∈ {1, . . . ,m}. These Haar-type wavelets

are sorted descendingly in terms of the L2-norm:

∥ψW1(f )∥L2(V ) ≥ ∥ψW2(f )∥L2(V ) ≥ ∥ψW3(f )∥L2(V ) ≥ · · · .

Picking the m components with the largest L2-norm, we obtain the best
non-linear m-term approximation Sm(f ) of f .
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m-term approximation with geometric wavelets

To study m-term approximation the following energy functional is of main
relevance (see, for instance, Devore). It is the discrete counterpart of a
functional given by Dekel & Leviatan for binary space partitionings in
hypercubes.

Definition 6

For 0 < r <∞, we define the r -energy of the wavelet components of f
with respect to a BWP tree TQ as

Nr (f , TQ) =

 ∑
W∈TQ

∥ψW (f )∥rL2(V )

 1
r

.

For wavelets, this functional is used in the characterization of Besov spaces
and measures the sparseness of the wavelet representation of a signal f .
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Similar as the r -energy functional Nr (f , TQ), the next Besov-type
smoothness term quantifies how well f can be approximated with
piecewise constant functions on a BWP tree.

Definition 7

For α > 0, 1
2 ≤ ρ < 1, and 0 < r <∞, we define the geometric

Besov-type smoothness measure | · |GBα
r
as

|f |GBα
r
= inf
T ∈BWP

(∑
W∈T

|W |−αr sup
w∈W

∑
v∈W

|f (v)− f (w)|r
)1

r

.

In Dekel & Leviatan and Karaivanov & Petrushev, the corresponding
spaces of functions have been referred to as geometric B-spaces. |f |GBα

r
is

not linked to one particular BWP tree but allows to quantify the
sparseness of f w.r.t. a largy family of BWP trees.
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Theorem 8

Let α > 0, 1
2 ≤ ρ < 1 and 1/r = α+ 1/2. Further, let TQ(f ) be a near

best BWP tree, i.e.,

Nr (f , TQ(f )) ≤ C inf
T ∈BWP

Nr (f , T ).

Then, we have the equivalences

C1Nr (f , TQ(f )) ≤ |f |GBα
r
≤ C2Nr (f , TQ(f )).

with constants C1 and C2 that depend only on α and ρ. Further,

∥f − Sm(f )∥L2(V ) ≤ Cm−α|f |GBα
r
.

The constants C1,C2,C > 0 depend only on r and ρ.

The proof is largely based on the works of Dekel & Leviatan and
Karaivanov & Petrushev.
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Graph wedgelets in image segmentation
Goal of the application: use graph wedgelets as a splitting method to
obtain efficient split-and-merge segmentation schemes for images.

Method: combine the already introduced adaptive wedgelet splits of
images with a simple merging strategy for subregions, and apply it to
biomedical images.

a) b) c) d)

Figure 2: Wedgelet split-and-merge segmentation for biomedical images:
a) Original MRI image with glioma b) Wedgelet split into 2500 regions
c) Segmentation with the presented method d) Blue colored segmented glioma
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The merging procedure

Starting point: decomposition of image into M wedgelet domains

{V (M)
q1 , . . . ,V

(M)
qM } with mean values

{
f̄
V

(M)
q1

, . . . , f̄
V

(M)
qM

}
.

Merging strategy: use a bottom-up approach based on a second binary
partitioning tree (Salembier & Garrido, 2000).

Region model: as a model for fR1∪R2 on the union R1 ∪ R2 we use the
upper median of the values fR1 and fR2 on R1 and R2.

The similarity between two regions R1 and R2 is measured by

O(R1,R2) = min(|R1|, |R2|)(fR1 − fR2)
2.

Merging order: The merging starts with those regions where
O(R1,R2) is minimal. The merging scheme is terminated, if a
selected partition size L of subregions is reached.
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Algorithm 3: Merging part of the split-and-merge segmentation

Input: A partition of the vertex set V in M regions R(M) = {R1, . . .RM}
with Ri = V

(M)
qi and initial values fRi = f̄

V
(M)
qi

for i ∈ {1, . . . ,M}.

for m = M to L+ 1 do
1) Selection of regions: determine the regions Ri , Rj in R(m) such that

O(Ri ,Rj) = min(|Ri |, |Rj |)(fRi − fRj )
2

gets minimal.
2) Merge regions Ri and Rj to Ri ∪ Rj and calculate high median

fRi∪Rj =

 fRi if |Ri | > |Rj |,
fRj if |Ri | < |Rj |,
max{fRi , fRj} if |Ri | = |Rj |.

3) Update R(m−1) = R(m) \ {Ri ,Rj} ∪ {Ri ∪ Rj} and the values
fR1 , . . . , fRm−1 for the sets in the new partition R(m−1).

Output: Partition R(L) = {R1, . . . ,RL} of V and values fR1 , . . . , fRL
.
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Application 1: segmentation of gray-scale image

a)

b) c) d)

e) f) g)

Figure 3: Split-and-merge segmentation of a gray-scale image a) original image
with 481× 321 pixels; b)c)d) BWP decomposition of the image using 200, 500
and 1000 domains; e)f)g) Image segmentation based on the application of
Algorithm 3 to the BWP decompositions in b)c)d). Segmentations with 2
components are created.
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Application 2: segmentation of biomedical images

a) b) c) d)

Figure 4: Wedgelet split-and-merge segmentation for biomedical images:
a) Original MRI image with glioma b) Wedgelet split into 2500 regions
c) Segmentation with the presented method d) Blue colored segmented glioma
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a) b) c) d)

Figure 5: a) Original artificial MRI image; b) BWP split into 2500 regions; c)
Segmentation; d) Blue colored segmented white matter

a) b) c) d)

Figure 6: Comparison of BWP segmentation with ground truth of white matter

Wolfgang Erb Graph Wedgelets 39 / 41



Literature

Some of my work related to this talk:

[1] Erb, W. Graph Wedgelets: Adaptive Data Compression on Graphs based
on Binary Wedge Partitioning Trees and Geometric Wavelets. IEEE Trans.
Signal Inf. Process. Netw. 9 (2023), 24-34

[2] Erb, W. Split-and-Merge Segmentation of Biomedical Images Using Graph
Wedgelet Decompositions. In: Gervasi, O., et al. Computational Science
and Its Applications – ICCSA 2025 Workshops, ICCSA 2025, Istanbul,
Turkey, LNCS, Cham, Springer (2026)

[3] Cavoretto, R., De Rossi, A., and Erb, W. Partition of Unity
Methods for Signal Processing on Graphs. J. Fourier Anal. Appl. 27 (2021),
Art. 66.

Software for graph wedgelets and geometric wavelets for images

https://github.com/WolfgangErb/GraphWedgelets
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Thanks a lot for the invitation!
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