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Outline of this presentation

Goal: description and computation of uncertainty principles on graphs.

How can space and frequency localization be defined on graphs

How can uncertainty principles be defined

How can we calculate the shapes of the uncertainties

Some applications in space-frequency analysis of signals

Prerequisites: graph Fourier transform and graph convolution

Remember: the graph convolution of two signals y and x is defined as

y ∗ x := UMŷ x̂ = UMŷU
∗︸ ︷︷ ︸

Cy

x , where Mŷ = diag(ŷ1, . . . ŷn).
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Uncertainty principles in harmonic analysis

Uncertainty principles describe the following phenomenon encountered in
different settings of harmonic analysis:

”A function and its Fourier transform can not both be well-localized”

One famous examples is Heisenberg’s uncertainty principle:

Theorem 1 (Heisenberg-Pauli-Weyl)

For any f ∈ L2(R) and any a, b ∈ R, we have∫
R
(t − a)2|f (t)|2dt

∫
R
(ω − b)2|f̂ (ω)|2dω ≥ ∥f ∥42

(4π)2

Equality holds if and only if f (x) = Ce2ıbte−γ(t−a)2 , with C ∈ C, γ > O.
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Normalizing f such that ∥f ∥2 = 1, we can visualize this uncertainty as:

y =

(∫
R
(ω − b)2|f̂ (ω)|2dω

)1/2

x =

(∫
R
(t − a)2|f (t)|2dt

)1/2

xy ≥ 1
4π

xy < 1
4π
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Landau-Pollak-Slepian uncertainty principle
Assume that ∥f ∥2 = 1 and that the time and frequency localization of f in
the intervals [−a, a] and [−b, b] is described through the values

α2 =

∫ a

−a
|f (t)|2dt, β2 =

∫ b

−b
|f̂ (ω)|2dω.

Then the pairs (α, β) can attain only the following values in [0, 1]2:

β

α
1

1 cos−1 α+ cos−1 β ≥ cos−1 √σ1

σ1: largest possible α for β = 1

σ1

σ1
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Vertex-frequency localization on graphs

For a vertex-frequency analysis of a signal x on G we use spatial and
spectral filter functions f , g ∈ Rn with the properties

0 ≤ f ≤ 1, 0 ≤ ĝ ≤ 1, and ∥f ∥∞ = ∥ĝ∥∞ = 1. (1)

Based on the filters f and g we introduce the localization operators

Mf x (v) := f (v)x(v) (pointwise product),

Cgx (v) := (g ∗ x) (v) = UMĝU
∗x (v) (graph convolution).

We call Mf with the filter f space localization operator;

We call Cg with the filter g frequency localization operator;

Mf and Cg are symmetric and positive semidefinite;

Mf and Cg have spectral norm equal to 1.
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Vertex-frequency localization on graphs

For Mf and Cg we define the expectation values

m̄f (x) :=
⟨Mf x , x⟩
∥x∥2

, c̄g (x) :=
⟨Cgx , x⟩
∥x∥2

.

x is called space-localized with respect to f if m̄f (x) is close to one.

x is called frequency-localized with respect to g if c̄g (x) approaches 1.

We define the set of admissible values related to Mf and Cg as

W(Mf ,Cg ) :=
{
(m̄f (x), c̄g (x)) : ∥x∥ = 1

}
⊂ [0, 1]2. (2)

We call W(Mf ,Cg ) the numerical range of the pair (Mf ,Cg ). All studied
uncertainty principles are linked to the boundaries of W(Mf ,Cg ).
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Space-frequency operators

To investigate the joint localization with respect to both filters f and g
and to describe the set W(Mf ,Cg ), we consider the two operators

R
(θ)
f ,g := cos(θ)Mf + sin(θ)Cg and Sf ,g := C

1/2
g MfC

1/2
g ,

where C
1/2
g is the square root of the positive semidefinite matrix Cg .

R
(θ)
f ,g as combination of Mf and Cg is symmetric for any 0 ≤ θ < 2π.

Sf ,g ∈ Rn×n is positive semi-definite with norm bounded by 1.
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Space-frequency operators

Related to the operators R
(θ)
f ,g , Sf ,g , we consider the expectation values:

r̄
(θ)
f ,g (x) :=

⟨R(θ)
f ,gx , x⟩
∥x∥2

= cos(θ)m̄f (x) + sin(θ)c̄g (x),

s̄f ,g (x) :=
⟨Sf ,gx , x⟩

∥x∥2
.

To formulate uncertainty principles, the largest eigenvalues ρ
(θ)
1 and σ1

and eigenvectors ϕ
(θ)
1 and ψ1 are of major importance.

For σ1, we have

σ1 = ∥Sf ,g∥ = ∥M1/2
f C

1/2
g ∥2 = ∥C1/2

g M
1/2
f ∥2 = ∥M1/2

f CgM
1/2
f ∥.
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Example 1, projection-projection filters
Let χA denote the indicator function of a set A, i.e.

χA(v) :=

{
1 if v ∈ A,
0 if v /∈ A.

For a subset A of the node set V and a subset B of the frequencies, we
define the filter functions f and g as

f = χA ĝ = χB. (3)

Mf and Cg are in this case orthogonal projectors satisfying

M2
f = Mf and C2

g = Cg .

Sf ,g is in this case equivalently given as Sf ,g = CgMfCg .

References:

Studied by Landau, Pollak and Slepian in the 60’s for signals on R.
General theory for projection operators in Hilbert spaces (Havin & Jöricke).

Studied for graphs by Tsitsivero, Barbarossa, Di Lorenzo.
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Example 2, distance-projection filters
Consider the graph geodesic distance d(v,w) on G . We set

dw(v) := d(v,w), d∞w := max
v∈V

d(v,w).

Then, as spatial filter f and frequency filter g , we define

f (v) = 1− dw(v)

d∞w
, and ĝ = χB, (4)

i.e., the spatial filter f incorporates the distance dw to a reference node w .
For this distance filter f we have

Mf x = x − 1
d∞w

Mdwx , m̄f (x) = 1− x∗Mdwx
d∞w ∥x∥2 .

References:

Similar distance-projection filters have been used also in a continuous setting
on the real line and on the sphere (Erb, Mathias).
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Example 3, Distance-Laplace filter

Another spectral filter ĝ = (ĝ1 · · · ĝn) on Ĝ can be defined as

ĝj = 1− λj/2, (5)

where λj denotes the j-th. smallest eigenvalue of the graph Laplacian L.
In this case, we get

Cgx = U(In − 1
2Mλ)U

∗x = (In − 1
2L)x .

Using a (modified) distance filter as a spatial filter, we get

m̄f (x) = 1−
x∗M

d2w
x

(d∞w )2∥x∥2 , c̄g (x) = 1− x∗Lx
2∥x∥2 .

References:

Agaskar, Lu used such filters to obtain uncertainties on graphs based on
spatial and spectral spreads.
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Examples of spatial filters

From left to right the following spatial filters:

f1(v) = χA(v) (Example 1), f2(v) = 1− dw(v)

d∞w
(Example 2),

f3(v) = 1−
(
dw(v)

d∞w

) 1
2

, f4(v) = 1−
(
dw(v)

d∞w

)2

(Example 3).

Wolfgang Erb Uncertainty on Graphs 13 / 25



Uncertainty principle related to the operator Sf ,g

Theorem 2

The range W(Mf ,Cg ) is contained in the domain W(f ,g)
γ given by

W(f ,g)
γ =

(t, s)∈ [0, 1]2

∣∣∣∣∣∣∣∣∣
s ≤ γf ,g (t) if ts ≥ σ

(f ,g)
1 ,

1− s ≤ γf ,g∗(t) if t(1− s) ≥ σ
(f ,g∗)
1 ,

s ≤ γf ∗,g (1− t) if (1− t)s ≥ σ
(f ∗,g)
1 ,

1− s ≤ γf ∗,g∗(1− t) if (1− t)(1− s) ≥ σ
(f ∗,g∗)
1


where σ

(f ,g)
1 is the largest eigenvalue of Sf ,g ,

γf ,g : [σ
(f ,g)
1 , 1] → R : γf ,g (t) :=

(
(t σ

(f ,g)
1 )

1
2 + ((1− t)(1− σ

(f ,g)
1 ))

1
2
)2
.

and f ∗ = 1− f , g∗ = 1− g .
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Uncertainty principle related to the operator Sf ,g

Graphical version of Theorem 2.

c̄g (x)

m̄f (x)
1

1

W(Mf ,Cg )

W(f ,g)
γ

σ
(f ,g)
1

1− σ
(f ∗,g∗)
1

1− σ
(f ∗,g∗)
1

σ
(f ∗,g)
1

σ
(f ,g∗)
1

1− σ
(f ∗,g)
1

σ
(f ,g)
1

1− σ
(f ,g∗)
1

Note: If Mf and Cg are projectors, we have W(Mf ,Cg ) = W(f ,g)
γ .
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Uncertainty principle related to the operator R
(θ)
f ,g

Theorem 3

For every 0 ≤ θ < 2π, we have the inclusion

W(Mf ,Cg ) ⊆ [0, 1]2 ∩H(θ),

with the half-plane

H(θ) := {(t, s) | cos(θ) t + sin(θ) s ≤ ρ
(θ)
1 }

having a supporting line L(θ) that intersects the boundary of W(Mf ,Cg ).
On the other hand, for every point p on the boundary of W(Mf ,Cg ) we
have an angle 0 ≤ θ < 2π such that p ∈ L(θ). For this angle, we get an

eigenvector ϕ
(θ)
1 (not necessarily unique) corresponding to the largest

eigenvalue ρ
(θ)
1 of R

(θ)
f ,g such that

p = (ϕ
(θ)∗
1 Mf ϕ

(θ)
1 , ϕ

(θ)∗
1 Cgϕ

(θ)
1 ).
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Uncertainty principle related to the operator R
(θ)
f ,g

Graphical version of Theorem 3.

c̄g (x)

m̄f (x)
1

1 (
m̄f (ϕ

(θ)
1 ), c̄g (ϕ

(θ)
1 )

)

W(Mf ,Cg )

H(θ)∩[0,1]2

L(θ)

Note: for n ≥ 3, the numerical range W(Mf ,Cg ) is convex.
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Numerical calculation of W(Mf ,Cg)

Using a set Θ = {θ1, . . . θK} ⊂ [0, 2π) of K ≥ 3 different angles, we
approximate the numerical range W(Mf ,Cg ) with the two K -gons

P(Θ)
out (Mf ,Cg ) :=

K⋂
k=1

H(θ) =
K⋂

k=1

{
(t, s) | cos(θk) t + sin(θk) s ≤ ρ

(θk )
1

}
,

P(Θ)
in (Mf ,Cg ) := conv{p(θ1), p(θ2), . . . p(θK )}.

The convexity of the numerical range W(Mf ,Cg ) (for n ≥ 3) combined
with the statements of Theorem 3 imply the following result.

Theorem 4

Let Θ = {θ1, . . . θK} ⊂ [0, 2π) be a set of K ≥ 3 different angles and
n ≥ 3. Then,

P(Θ)
in (Mf ,Cg ) ⊆ W(Mf ,Cg ) ⊆ P(Θ)

out (Mf ,Cg ).
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Algorithm 1: Calculation of polygonal approximation to W(Mf ,Cg )

Input: Mf , Cg , angles
0 ≤θ1<θ2< · · ·<θK < 2π,
with K ≥ 3. Set θ0 = θK .

for k ∈ {1, 2, . . . ,K} do
Create
R
(θk )
f ,g = cos(θk)Mf +sin(θk)Cg ;

Calculate norm. eigenvector

ϕ
(θk )
1 for max. eigenvalue ρ

(θk )
1 ;

Create boundary point p(θk ) =(
ϕ
(θk )∗
1 Mf ϕ

(θk )
1 , ϕ

(θk )∗
1 Cgϕ

(θk )
1

)
.

Generate interior polygon

P(Θ)
in (Mf,Cg) =

conv{p(θ1),. . . ,p(θK )} to
approximate W(Mf ,Cg ).

for k ∈ {1, 2, . . . ,K} do
Create the outer vertex q(θk ).

Generate P(Θ)
out (Mf ,Cg ) =

conv{q(θ1), . . . q(θK )} as a polygon
exterior to W(Mf ,Cg ).

Fig.: Interior and exterior
approximation of the numerical
range W(Mf ,Cg ) based on
Algorithm 1 with K = 7 vertices.
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Shapes of uncertainty - illustrations

The numerical range W(Mf ,Cg ) for four filter pairs on the sensor
network. The first, second and fourth plot correspond to the filters
described in Example 1, 2 and 3.

The dots represent the position (m̄f (ψk), c̄g (ψk)) of the eigenvectors of
the operator Sf ,g . The color (from black to white) of the dots indicates
the corresponding eigenvalue σk (in the range from 1 to 0).
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Shapes of uncertainty - illustrations

The numerical range W(Mf ,Cg ) for four filter pairs on the bunny
network. The first, second and fourth plot correspond to the filters
described in Example 1, 2 and 3.

The dots represent the position (m̄f (ψk), c̄g (ψk)) of the eigenvectors of

the operator R
(θ)
f ,g with θ = 9π/20. The color (from black to white) of the

dots indicates the corresponding eigenvalue ρ
(θ)
k (in the range from 1 to 0).
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Space-frequency localization of eigenvectors of Sf ,g , R
(θ)
f ,g .

Top row: the eigenvector ψ1 of the operator Sf ,g for the sensor graph and
four different filter pairs.

Bottom row: the eigenvector ϕ
(θ)
1 of the operator R

(θ)
f ,g with θ = 9

20π for
the bunny graph and four filter pairs.
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Space-frequency localization of eigenvectors of Sf ,g .

The eigenvectors ψ1 ψ10, ψ50 and ψ200 of Sf ,g on the bunny graph for the
distance-projection filter (Example 2).

Wolfgang Erb Uncertainty on Graphs 23 / 25



Conclusion

Uncertainty relations are useful tool for the development of basis
systems/dictionaries on graphs with prescribed space-frequency properties.

Sf ,g and R
(θ)
f ,g provide explicit uncertainty principles for graphs;

The operator R
(θ)
f ,g can be used to calculate the shapes of the

uncertainties (aka the numerical range W(Mf ,Cg ));

The eigendecompositions of the operators Sf ,g and R
(θ)
f ,g help to

construct orthogonal basis systems with a space-frequency behavior
determined by the operators Mf and Cg ;

The shapes of the uncertainties provide useful information on the
joint range of the localization operators Mf and Cg and on how
complementary the two filters f and g are.
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Thanks a lot for your attention!

General introduction to Graph Signal Processing:

[1] Ortega, A. Introduction to Graph Signal Processing, Cambridge University Press (2022)

Article related to this talk:

[2] Erb, W. Shapes of Uncertainty in Spectral Graph Theory, IEEE Trans. Inform. Theory
67:2 (2021), 1291-1307

Software to create the uncertainty shapes

https://github.com/WolfgangErb/GUPPY
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