

Modern Computational Harmonic Analysis on Graphs and Networks

4. Calculating uncertainty principles on graphs

Wolfgang Erb

University of Padova

C.I.M.E. Summer School "Modern Perspectives in Approximation Theory: Graphs, Networks, quasi-interpolation and Sampling Theory" July 21-24, 2025, Cetraro (CS), Italy

wolfgang.erb@unipd.it

Outline of this presentation

Goal: description and computation of uncertainty principles on graphs.

- How can space and frequency localization be defined on graphs
- How can uncertainty principles be defined
- How can we calculate the shapes of the uncertainties
- Some applications in space-frequency analysis of signals

Prerequisites: graph Fourier transform and graph convolution

Remember: the graph convolution of two signals y and x is defined as

$$y * x := \mathbf{UM}_{\hat{y}} \hat{x} = \underbrace{\mathbf{UM}_{\hat{y}} \mathbf{U}^*}_{\mathbf{C}_y} x, \text{ where } \mathbf{M}_{\hat{y}} = \operatorname{diag}(\hat{y}_1, \dots \hat{y}_n).$$

Uncertainty principles in harmonic analysis

Uncertainty principles describe the following phenomenon encountered in different settings of harmonic analysis:

"A function and its Fourier transform can not both be well-localized"

One famous examples is Heisenberg's uncertainty principle:

Theorem 1 (Heisenberg-Pauli-Weyl)

For any $f \in L^2(\mathbb{R})$ and any $a, b \in \mathbb{R}$, we have

$$\int_{\mathbb{R}} (t-a)^2 |f(t)|^2 \mathrm{d}t \int_{\mathbb{R}} (\omega-b)^2 |\hat{f}(\omega)|^2 \mathrm{d}\omega \geq \frac{\|f\|_2^4}{(4\pi)^2}$$

Equality holds if and only if $f(x) = Ce^{2ibt}e^{-\gamma(t-a)^2}$, with $C \in \mathbb{C}$, $\gamma > O$.

Normalizing f such that $||f||_2 = 1$, we can visualize this uncertainty as:

$$y = \left(\int_{\mathbb{R}} (\omega - b)^2 |\hat{f}(\omega)|^2 d\omega \right)^{1/2}$$

$$xy \ge \frac{1}{4\pi}$$

$$xy < \frac{1}{4\pi}$$

$$x = \left(\int_{\mathbb{R}} (t - a)^2 |f(t)|^2 dt \right)^{1/2}$$

Landau-Pollak-Slepian uncertainty principle

Assume that $||f||_2 = 1$ and that the time and frequency localization of f in the intervals [-a, a] and [-b, b] is described through the values

$$lpha^2 = \int_{-a}^{a} |f(t)|^2 \mathrm{d}t, \quad \beta^2 = \int_{-b}^{b} |\hat{f}(\omega)|^2 \mathrm{d}\omega.$$

Then the pairs (α, β) can attain only the following values in $[0, 1]^2$:

Vertex-frequency localization on graphs

For a vertex-frequency analysis of a signal x on G we use spatial and spectral filter functions $f, g \in \mathbb{R}^n$ with the properties

$$0 \le f \le 1, \ 0 \le \hat{g} \le 1, \quad \text{and} \quad \|f\|_{\infty} = \|\hat{g}\|_{\infty} = 1.$$
 (1)

Based on the filters f and g we introduce the localization operators

$$\begin{split} \mathbf{M}_{f} x (\mathbf{v}) &:= f(\mathbf{v}) x(\mathbf{v}) & \text{(pointwise product)}, \\ \mathbf{C}_{g} x (\mathbf{v}) &:= (g * x) (\mathbf{v}) = \mathbf{U} \mathbf{M}_{\hat{g}} \mathbf{U}^* x (\mathbf{v}) & \text{(graph convolution)}. \end{split}$$

- We call **M**_f with the filter f space localization operator;
- We call C_g with the filter g frequency localization operator;
- M_f and C_g are symmetric and positive semidefinite;
- \mathbf{M}_f and \mathbf{C}_g have spectral norm equal to 1.

Vertex-frequency localization on graphs

For \mathbf{M}_f and \mathbf{C}_g we define the expectation values

$$\bar{\mathbf{m}}_f(x) := \frac{\langle \mathbf{M}_f x, x \rangle}{\|x\|^2}, \qquad \bar{\mathbf{c}}_g(x) := \frac{\langle \mathbf{C}_g x, x \rangle}{\|x\|^2}.$$

• x is called space-localized with respect to f if $\bar{\mathbf{m}}_f(x)$ is close to one.

• x is called frequency-localized with respect to g if $\bar{\mathbf{c}}_g(x)$ approaches 1.

We define the set of admissible values related to \mathbf{M}_f and \mathbf{C}_g as

$$\mathcal{W}(\mathbf{M}_f, \mathbf{C}_g) := \left\{ (\bar{\mathbf{m}}_f(x), \bar{\mathbf{c}}_g(x)) : \|x\| = 1 \right\} \subset [0, 1]^2.$$
(2)

We call $\mathcal{W}(\mathbf{M}_f, \mathbf{C}_g)$ the numerical range of the pair $(\mathbf{M}_f, \mathbf{C}_g)$. All studied uncertainty principles are linked to the boundaries of $\mathcal{W}(\mathbf{M}_f, \mathbf{C}_g)$.

Space-frequency operators

To investigate the joint localization with respect to both filters f and g and to describe the set $\mathcal{W}(\mathbf{M}_f, \mathbf{C}_g)$, we consider the two operators

 $\mathbf{R}_{f,g}^{(\theta)} := \cos(\theta) \, \mathbf{M}_f + \sin(\theta) \, \mathbf{C}_g \quad \text{and} \quad \mathbf{S}_{f,g} := \mathbf{C}_g^{1/2} \mathbf{M}_f \mathbf{C}_g^{1/2},$

where $C_g^{1/2}$ is the square root of the positive semidefinite matrix C_g .

- $\mathbf{R}_{f,g}^{(\theta)}$ as combination of \mathbf{M}_f and \mathbf{C}_g is symmetric for any $0 \le \theta < 2\pi$.
- $\mathbf{S}_{f,g} \in \mathbb{R}^{n \times n}$ is positive semi-definite with norm bounded by 1.

Space-frequency operators

Related to the operators $\mathbf{R}_{f,g}^{(\theta)}$, $\mathbf{S}_{f,g}$, we consider the expectation values:

$$\bar{\mathbf{r}}_{f,g}^{(\theta)}(x) := \frac{\langle \mathbf{R}_{f,g}^{(\theta)} x, x \rangle}{\|x\|^2} = \cos(\theta) \bar{\mathbf{m}}_f(x) + \sin(\theta) \bar{\mathbf{c}}_g(x),$$
$$\bar{\mathbf{s}}_{f,g}(x) := \frac{\langle \mathbf{S}_{f,g} x, x \rangle}{\|x\|^2}.$$

To formulate uncertainty principles, the largest eigenvalues $\rho_1^{(\theta)}$ and σ_1 and eigenvectors $\phi_1^{(\theta)}$ and ψ_1 are of major importance.

For σ_1 , we have

$$\sigma_1 = \|\mathbf{S}_{f,g}\| = \|\mathbf{M}_f^{1/2} \mathbf{C}_g^{1/2}\|^2 = \|\mathbf{C}_g^{1/2} \mathbf{M}_f^{1/2}\|^2 = \|\mathbf{M}_f^{1/2} \mathbf{C}_g \mathbf{M}_f^{1/2}\|.$$

Example 1, projection-projection filters

Let $\chi_{\mathcal{A}}$ denote the indicator function of a set \mathcal{A} , i.e.

$$\chi_{\mathcal{A}}(\mathrm{v}) := \left\{ egin{array}{cc} 1 & ext{if } \mathrm{v} \in \mathcal{A}, \ 0 & ext{if } \mathrm{v}
otin \mathcal{A}. \end{array}
ight.$$

For a subset A of the node set V and a subset B of the frequencies, we define the filter functions f and g as

$$f = \chi_{\mathcal{A}} \quad \hat{g} = \chi_{\mathcal{B}}.$$
 (3)

• M_f and C_g are in this case orthogonal projectors satisfying

$$\mathbf{M}_f^2 = \mathbf{M}_f$$
 and $\mathbf{C}_g^2 = \mathbf{C}_g$.

• $S_{f,g}$ is in this case equivalently given as $S_{f,g} = C_g M_f C_g$.

References:

- Studied by Landau, Pollak and Slepian in the 60's for signals on \mathbb{R} .
- General theory for projection operators in Hilbert spaces (Havin & Jöricke).
- Studied for graphs by Tsitsivero, Barbarossa, Di Lorenzo.

Wolfgang Erb

Uncertainty on Graphs

Example 2, distance-projection filters Consider the graph geodesic distance d(v, w) on *G*. We set

$$\mathrm{d}_\mathrm{w}(\mathrm{v}) := \mathrm{d}(\mathrm{v},\mathrm{w}), \quad \mathrm{d}^\infty_\mathrm{w} := \max_{\mathrm{v}\in V} \mathrm{d}(\mathrm{v},\mathrm{w}).$$

Then, as spatial filter f and frequency filter g, we define

$$f(\mathbf{v}) = 1 - \frac{\mathrm{d}_{\mathrm{w}}(\mathbf{v})}{\mathrm{d}_{\mathrm{w}}^{\infty}}, \quad \text{and} \quad \hat{g} = \chi_{\mathcal{B}}, \tag{4}$$

i.e., the spatial filter f incorporates the distance d_w to a reference node w. For this distance filter f we have

$$\mathbf{M}_f x = x - \frac{1}{\mathrm{d}_{\mathrm{w}}^{\infty}} \mathbf{M}_{\mathrm{d}_{\mathrm{w}}} x, \quad \bar{\mathbf{m}}_f(x) = 1 - \frac{x^* \mathbf{M}_{\mathrm{d}_{\mathrm{w}}} x}{\mathrm{d}_{\mathrm{w}}^{\infty} \|x\|^2}.$$

References:

 Similar distance-projection filters have been used also in a continuous setting on the real line and on the sphere (Erb, Mathias).

Example 3, Distance-Laplace filter

Another spectral filter $\hat{g} = (\hat{g}_1 \ \cdots \ \hat{g}_n)$ on \hat{G} can be defined as

$$\hat{g}_j = 1 - \lambda_j/2,\tag{5}$$

where λ_j denotes the *j*-th. smallest eigenvalue of the graph Laplacian **L**. In this case, we get

$$C_g x = U(I_n - \frac{1}{2}M_\lambda)U^* x = (I_n - \frac{1}{2}L)x.$$

Using a (modified) distance filter as a spatial filter, we get

$$\bar{\mathbf{m}}_f(x) = 1 - \frac{x^* \mathbf{M}_{\mathrm{d}^w_w} x}{(\mathrm{d}^w_w)^2 \|x\|^2}, \qquad \bar{\mathbf{c}}_g(x) = 1 - \frac{x^* \mathbf{L} x}{2 \|x\|^2}.$$

References:

• Agaskar, Lu used such filters to obtain uncertainties on graphs based on spatial and spectral spreads.

Examples of spatial filters

From left to right the following spatial filters: $f_1(v) = \chi_A(v)$ (Example 1), $f_2(v) = 1 - \frac{d_w(v)}{d_w^{\infty}}$ (Example 2), $f_3(v) = 1 - \left(\frac{d_w(v)}{d_w^{\infty}}\right)^{\frac{1}{2}}$, $f_4(v) = 1 - \left(\frac{d_w(v)}{d_w^{\infty}}\right)^2$ (Example 3).

Wolfgang Erb

Uncertainty principle related to the operator $S_{f,g}$

Theorem 2

The range $\mathcal{W}(\mathbf{M}_{f}, \mathbf{C}_{g})$ is contained in the domain $\mathcal{W}_{\gamma}^{(f,g)}$ given by

$$\mathcal{W}_{\gamma}^{(f,g)} \!\!=\!\! \left\{\!\! (t,s) \!\in\! [0,1]^2 \left| egin{array}{ccc} s \leq \gamma_{f,g}(t) & \textit{if } ts \geq \sigma_1^{(f,g)}, \ 1-s \leq \gamma_{f,g^*}(t) & \textit{if } t(1-s) \geq \sigma_1^{(f,g^*)}, \ s \leq \gamma_{f^*,g}(1-t) & \textit{if } (1-t)s \geq \sigma_1^{(f^*,g)}, \ 1-s \leq \gamma_{f^*\!,g^*}(1-t) & \textit{if } (1-t)(1-s) \geq \sigma_1^{(f^*\!,g^*)} \!
ight\}\!\!$$

where $\sigma_1^{(f,g)}$ is the largest eigenvalue of $\mathbf{S}_{f,g}$, $\gamma_{f,g} : [\sigma_1^{(f,g)}, 1] \to \mathbb{R} : \quad \gamma_{f,g}(t) := ((t \, \sigma_1^{(f,g)})^{\frac{1}{2}} + ((1-t)(1-\sigma_1^{(f,g)}))^{\frac{1}{2}})^2.$ and $f^* = 1 - f$, $g^* = 1 - g$. Uncertainty principle related to the operator $S_{f,g}$ Graphical version of Theorem 2.

Note: If \mathbf{M}_f and \mathbf{C}_g are projectors, we have $\mathcal{W}(\mathbf{M}_f, \mathbf{C}_g) = \mathcal{W}_{\gamma}^{(f,g)}$.

Wolfgang Erb

Uncertainty principle related to the operator $\mathbf{R}_{f,g}^{(\theta)}$

Theorem 3

For every $0 \le \theta < 2\pi$, we have the inclusion

$$\mathcal{W}(\mathsf{M}_f,\mathsf{C}_g)\subseteq [0,1]^2\cap\mathcal{H}^{(heta)},$$

with the half-plane

$$\mathcal{H}^{(heta)} := \{(t,s) \mid \cos(heta) \, t + \sin(heta) \, s \leq
ho_1^{(heta)} \}$$

having a supporting line $\mathcal{L}^{(\theta)}$ that intersects the boundary of $\mathcal{W}(\mathbf{M}_f, \mathbf{C}_g)$. On the other hand, for every point p on the boundary of $\mathcal{W}(\mathbf{M}_f, \mathbf{C}_g)$ we have an angle $0 \le \theta < 2\pi$ such that $p \in \mathcal{L}^{(\theta)}$. For this angle, we get an eigenvector $\phi_1^{(\theta)}$ (not necessarily unique) corresponding to the largest eigenvalue $\rho_1^{(\theta)}$ of $\mathbf{R}_{f,g}^{(\theta)}$ such that

$$\boldsymbol{\rho} = (\phi_1^{(\theta)*} \mathbf{M}_f \phi_1^{(\theta)}, \phi_1^{(\theta)*} \mathbf{C}_g \phi_1^{(\theta)}).$$

Uncertainty principle related to the operator $\mathbf{R}_{f,g}^{(\theta)}$ Graphical version of Theorem 3.

Note: for $n \geq 3$, the numerical range $\mathcal{W}(\mathbf{M}_f, \mathbf{C}_g)$ is convex.

Numerical calculation of $\mathcal{W}(\mathbf{M}_f, \mathbf{C}_g)$

Using a set $\Theta = \{\theta_1, \dots, \theta_K\} \subset [0, 2\pi)$ of $K \geq 3$ different angles, we approximate the numerical range $\mathcal{W}(\mathbf{M}_f, \mathbf{C}_g)$ with the two K-gons

$$egin{aligned} &\mathcal{P}_{ ext{out}}^{(\Theta)}(\mathsf{M}_f,\mathsf{C}_g) := igcap_{k=1}^{\mathcal{K}} \mathcal{H}^{(heta)} &= igcap_{k=1}^{\mathcal{K}} \left\{ (t,s) \mid \cos(heta_k) \, t + \sin(heta_k) \, s \leq
ho_1^{(heta_k)}
ight\}, \ &\mathcal{P}_{ ext{in}}^{(\Theta)}(\mathsf{M}_f,\mathsf{C}_g) := \operatorname{conv} \{ p^{(heta_1)}, p^{(heta_2)}, \dots p^{(heta_k)} \}. \end{aligned}$$

The convexity of the numerical range $\mathcal{W}(\mathbf{M}_f, \mathbf{C}_g)$ (for $n \ge 3$) combined with the statements of Theorem 3 imply the following result.

Theorem 4

Let $\Theta = \{\theta_1, \dots, \theta_K\} \subset [0, 2\pi)$ be a set of $K \ge 3$ different angles and $n \ge 3$. Then,

$$\mathcal{P}_{\mathrm{in}}^{(\Theta)}(\mathsf{M}_f,\mathsf{C}_g)\subseteq\mathcal{W}(\mathsf{M}_f,\mathsf{C}_g)\subseteq\mathcal{P}_{\mathrm{out}}^{(\Theta)}(\mathsf{M}_f,\mathsf{C}_g).$$

Algorithm 1: Calculation of polygonal approximation to $\mathcal{W}(M_f, C_g)$

Input: M_f , C_g , angles $0 < \theta_1 < \theta_2 < \cdots < \theta_K < 2\pi.$ with K > 3. Set $\theta_0 = \theta_K$. for $k \in \{1, 2, ..., K\}$ do Create $\mathbf{R}_{f,g}^{(\theta_k)} = \cos(\theta_k) \mathbf{M}_f + \sin(\theta_k) \mathbf{C}_g;$ Calculate norm. eigenvector $\phi_1^{(\theta_k)}$ for max. eigenvalue $\rho_1^{(\theta_k)}$; Create boundary point $p^{(\theta_k)} =$ $\left(\phi_1^{(\theta_k)*} \mathbf{M}_f \phi_1^{(\theta_k)}, \phi_1^{(\theta_k)*} \mathbf{C}_g \phi_1^{(\theta_k)}\right).$

Generate interior polygon $\mathcal{P}_{in}^{(\Theta)}(\mathbf{M}_{f}, \mathbf{C}_{g}) =$ $\operatorname{conv}\{p^{(\theta_{1})}, \dots, p^{(\theta_{K})}\}$ to approximate $\mathcal{W}(\mathbf{M}_{f}, \mathbf{C}_{g})$. **for** $k \in \{1, 2, \dots, K\}$ **do** \lfloor Create the outer vertex $q^{(\theta_{k})}$. $\begin{array}{l} \textbf{Generate} \ \mathcal{P}_{\text{out}}^{(\Theta)}(\textbf{M}_{f},\textbf{C}_{g}) = \\ & \operatorname{conv}\{q^{(\theta_{1})},\ldots q^{(\theta_{K})}\} \text{ as a polygon} \\ & \text{exterior to } \ \mathcal{W}(\textbf{M}_{f},\textbf{C}_{g}). \end{array}$

Fig.: Interior and exterior approximation of the numerical range $\mathcal{W}(\mathbf{M}_f, \mathbf{C}_g)$ based on Algorithm 1 with K = 7 vertices.

Shapes of uncertainty - illustrations

The numerical range $W(\mathbf{M}_f, \mathbf{C}_g)$ for four filter pairs on the sensor network. The first, second and fourth plot correspond to the filters described in Example 1, 2 and 3.

The dots represent the position $(\bar{\mathbf{m}}_f(\psi_k), \bar{\mathbf{c}}_g(\psi_k))$ of the eigenvectors of the operator $\mathbf{S}_{f,g}$. The color (from black to white) of the dots indicates the corresponding eigenvalue σ_k (in the range from 1 to 0).

Shapes of uncertainty - illustrations

The numerical range $W(\mathbf{M}_f, \mathbf{C}_g)$ for four filter pairs on the bunny network. The first, second and fourth plot correspond to the filters described in Example 1, 2 and 3.

The dots represent the position $(\bar{\mathbf{m}}_f(\psi_k), \bar{\mathbf{c}}_g(\psi_k))$ of the eigenvectors of the operator $\mathbf{R}_{f,g}^{(\theta)}$ with $\theta = 9\pi/20$. The color (from black to white) of the dots indicates the corresponding eigenvalue $\rho_k^{(\theta)}$ (in the range from 1 to 0).

Space-frequency localization of eigenvectors of $\mathbf{S}_{f,g}$, $\mathbf{R}_{f,g}^{(\theta)}$.

Top row: the eigenvector ψ_1 of the operator $\mathbf{S}_{f,g}$ for the sensor graph and four different filter pairs.

Bottom row: the eigenvector $\phi_1^{(\theta)}$ of the operator $\mathbf{R}_{f,g}^{(\theta)}$ with $\theta = \frac{9}{20}\pi$ for the bunny graph and four filter pairs.

Space-frequency localization of eigenvectors of $S_{f,g}$.

The eigenvectors $\psi_1 \psi_{10}$, ψ_{50} and ψ_{200} of $\mathbf{S}_{f,g}$ on the bunny graph for the distance-projection filter (Example 2).

Conclusion

Uncertainty relations are useful tool for the development of basis systems/dictionaries on graphs with prescribed space-frequency properties.

- $S_{f,g}$ and $R_{f,g}^{(\theta)}$ provide explicit uncertainty principles for graphs;
- The operator $\mathbf{R}_{f,g}^{(\theta)}$ can be used to calculate the shapes of the uncertainties (aka the numerical range $\mathcal{W}(\mathbf{M}_f, \mathbf{C}_g)$);
- The eigendecompositions of the operators $S_{f,g}$ and $R_{f,g}^{(\theta)}$ help to construct orthogonal basis systems with a space-frequency behavior determined by the operators M_f and C_g ;
- The shapes of the uncertainties provide useful information on the joint range of the localization operators \mathbf{M}_f and \mathbf{C}_g and on how complementary the two filters f and g are.

Thanks a lot for your attention!

General introduction to Graph Signal Processing:

[1] ORTEGA, A. Introduction to Graph Signal Processing, Cambridge University Press (2022)

Article related to this talk:

[2] ERB, W. Shapes of Uncertainty in Spectral Graph Theory, *IEEE Trans. Inform. Theory* 67:2 (2021), 1291-1307

Software to create the uncertainty shapes

https://github.com/WolfgangErb/GUPPY