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Outline of this presentation

Goal: description and computation of uncertainty principles on graphs.

@ How can space and frequency localization be defined on graphs
@ How can uncertainty principles be defined
@ How can we calculate the shapes of the uncertainties

@ Some applications in space-frequency analysis of signals

Prerequisites: graph Fourier transform and graph convolution

Remember: the graph convolution of two signals y and x is defined as

yxx = UMyX = UMyU" x, where My = diag(y1,...Jn)-
———

Cy
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Uncertainty principles in harmonic analysis

Uncertainty principles describe the following phenomenon encountered in
different settings of harmonic analysis:

"A function and its Fourier transform can not both be well-localized"
One famous examples is Heisenberg's uncertainty principle:
Theorem 1 (Heisenberg-Pauli-Weyl)

For any f € L?(R) and any a,b € R, we have

I£112
(47)2

Equality holds if and only if f(x) = Ce?bte=1(t=2)° wijth C € C, v > O.

/ (t — a)2|F (1)t / (@ - bl (w)2dw >
R R

v
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Normalizing f such that ||f|2 = 1, we can visualize this uncertainty as:

y=( [ brifras) v

A

1
Xy<ﬂ

>
>

X = (/R(t - a)2yf(t)|2dt> v
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Landau-Pollak-Slepian uncertainty principle

Assume that ||f]|2 = 1 and that the time and frequency localization of f in
the intervals [—a, a] and [—b, b] is described through the values

a b
2= [ |f(y)Pdt, = [ [F(w)Pdw.
a /_al(t)l t, /_bl(w)l w

Then the pairs («, 3) can attain only the following values in [0, 1]2:

B

4

7

>

Q
-

cos a4 cos™1 B > cos™t/oq

Y

----901

o1: largest possible a for § =1

1,

R R S )
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Vertex-frequency localization on graphs

For a vertex-frequency analysis of a signal x on G we use spatial and
spectral filter functions f, g € R"” with the properties

0<f<1,0<2<1, and |fllo= &l =1 (1)
Based on the filters f and g we introduce the localization operators

V) (pointwise product),
Cex(v) == (g *x)(v) = UMzU"x (v) (graph convolution).

@ We call M¢ with the filter f space localization operator;
@ We call C; with the filter g frequency localization operator;
@ My and C, are symmetric and positive semidefinite;

@ My and C, have spectral norm equal to 1.
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Vertex-frequency localization on graphs

For M¢ and C; we define the expectation values

m¢(x) = W, Cz(x) = <C|i7|’2x>.

@ x is called space-localized with respect to f if m¢(x) is close to one.

@ x is called frequency-localized with respect to g if C4(x) approaches 1.
We define the set of admissible values related to M¢ and C; as

WMy, €)= {(Mr(x).&(x) : x| =1} c 0,12 ()

We call W(Mg¢, Cgz) the numerical range of the pair (M¢, C,). All studied

uncertainty principles are linked to the boundaries of WW(Mg¢, Cg).
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Space-frequency operators

To investigate the joint localization with respect to both filters f and g
and to describe the set YW(Mg¢, Cg), we consider the two operators

RY) .= cos(0) M +sin(0) C; and  Srz = Cy/*MfCY/?,

where Cé/2 is the square root of the positive semidefinite matrix Cg.
° Rffe; as combination of M¢ and C; is symmetric for any 0 < 6 < 2.

@ S¢, € R™" is positive semi-definite with norm bounded by 1.
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Space-frequency operators

Related to the operators R(feg, St g, we consider the expectation values:

0
<R$7;x, X)

_Sf?;(x) = W = cos()m¢(x) + Sin(Q)Eg(X)’
5.g(x) = W

To formulate uncertainty principles, the largest eigenvalues pge) and o3
and eigenvectors ¢§0) and 17 are of major importance.

For o1, we have

1/2 ~1/2 1/2 1/2 1/2 1/2
o1 = [|Stgll = IMY?CY?|? = ||Cy* MY 1% = IM}C, M.
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Example 1, projection-projection filters
Let x4 denote the indicator function of a set A, i.e.

1 ifveA,
xalv) = { 0 ifvegA
For a subset A of the node set V' and a subset B of the frequencies, we
define the filter functions f and g as
f=xa &=xs5 (3)
@ My and C; are in this case orthogonal projectors satisfying
M7 =M; and C;=C,.
@ St is in this case equivalently given as S¢ , = C;,M¢C,.
References:
@ Studied by Landau, Pollak and Slepian in the 60's for signals on R.
@ General theory for projection operators in Hilbert spaces (Havin & Joricke).

@ Studied for graphs by Tsitsivero, Barbarossa, Di Lorenzo.
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Example 2, distance-projection filters
Consider the graph geodesic distance d(v,w) on G. We set

dw(v) :=d(v,w), dy:= zfnea&(d(v,w).

Then, as spatial filter f and frequency filter g, we define

f(v)zl—dgg), and g = x5, (4)

W

i.e., the spatial filter f incorporates the distance dy, to a reference node w.
For this distance filter f we have

x*My,, x

1 -
MfX:X*@MdWX, mf(X):].*W

References:

@ Similar distance-projection filters have been used also in a continuous setting
on the real line and on the sphere (Erb, Mathias).
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Example 3, Distance-Laplace filter
Another spectral filter & = (8, --- &,) on G can be defined as
g =1-X/2, (5)

where ); denotes the j-th. smallest eigenvalue of the graph Laplacian L.
In this case, we get

Cex = U(l, — SM)U"x = (1, — LL)x.
Using a (modified) distance filter as a spatial filter, we get

_ x*M ;5 x _ L
W () =1-@epe S0 =1- g

References:
@ Agaskar, Lu used such filters to obtain uncertainties on graphs based on

spatial and spectral spreads.
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Examples of spatial filters

From left to right the following spatial filters:
A(v) = xa(v) (Example 1), p) =1 2 (Example 2).

W

f(v)=1— (dw(v))é , fi(v) =1— (dw—("))2 (Example 3).

A ds
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Uncertainty principle related to the operator S¢ 4

Theorem 2
The range W(Mg, Cg) is contained in the domain W,(yf’g) given by

s < yrg(t) if ts > agf’g),

1—5 < yrg(t ift(l—s) > olf€)
W (t,5)epo,1p| LSS we () Fel-9) 2o F

s<rg(l—t) if(l-t)s>op &,

1—s<ypg(1—t) if(L—t)(1—5) >0\ &)

where agf’g) is the largest eigenvalue of S¢ 4,

Trg  [of L S R yrg(e) = (£ + (L - )1 - of"))2)

and f*=1—f,g"=1—g.
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Uncertainty principle related to the operator S¢ 4
Graphical version of Theorem 2.

[E

(f*.g)
o1 9

1— O_:Ef*’g*) q

Note: If M¢ and C; are projectors, we have W(M¢, Cg) = ng’g).
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(9)

Uncertainty principle related to the operator Rf’g

Theorem 3

For every 0 < 6 < 2w, we have the inclusion
W(Mg, C,) C [0,112 N HO,
with the half-plane
HO) .= {(t,s) | cos() t +sin(0)s < p{”}

having a supporting line £(?) that intersects the boundary of W(Mg, Cy).
On the other hand, for every point p on the boundary of W(M¢, C,) we
have an angle 0 < 0 < 2 such that p € L) For this angle, we get an
eigenvector qﬁgo) (not necessarily unique) corresponding to the largest

eigenvalue pg@) of Rff; such that

0)% [ 0)* 0
= 6" Mrd0. A0y,
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Uncertainty principle related to the operator Rf7g

Graphical version of Theorem 3.

Cg(x)
A N

HON[0,1)?

>Myr(x
. £(x)

Note: for n > 3, the numerical range W(My, C,) is convex.
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Numerical calculation of W(My, C,)

Using a set © = {61,...0x} C [0,27) of K > 3 different angles, we
approximate the numerical range W(Mg¢, Cz) with the two K-gons

K

K
P (Mr, C ﬂ = () {(t:5) | cos(Bx) ¢ +sin(6x) s < o™},
k=1 k=1

7)i(ne)(va C) = COnV{p(91 (92)7 L p(GK)}'

The convexity of the numerical range W(My, C;) (for n > 3) combined
with the statements of Theorem 3 imply the following result.

Theorem 4

Let © = {61,...0x} C [0,27) be a set of K > 3 different angles and
n > 3. Then,

PO(M, C,) € WMy, Cp) € PO My, C,).

ut
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Algorithm 1: Calculation of polygonal approximation to W(M¢, C,)

Input: My, Cg, angles
0<Oi1<br< <Ok < 2m,
with K > 3. Set 6y = 0.
for k€ {1,2,...,K} do
Create
R(%)

Calculate norm. eigenvector

gb&ek) for max. eigenvalue p(lek)

Create boundary point p(®x) =

Generate interior polygon
Pi(ne)( My, Cg)
conv{p®) .. pl to
approximate WW(Mgy, C,).

for k € {1,2,...,K} do
| Create the outer vertex q(%).

rg = cos(0x)M¢+sin(0y)Cg;

0, )% 0 01 )* 0
< gk) qub(lk), :(lk) C, :(lk)).
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Generate Pé?t) (My,C,) =

conv{q®) ... q(®%)} as a polygon
exterior to W(My, C,).

0.5 ¢

Fig.: Interior and exterior
approximation of the numerical
range W(Mg¢, C,) based on
Algorithm 1 with K = 7 vertices.
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Shapes of uncertainty - illustrations
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The numerical range W(My¢, C,) for four filter pairs on the sensor

network. The first, second and fourth plot correspond to the filters
described in Example 1, 2 and 3.

The dots represent the position (M¢(1)x), Cg(10k)) of the eigenvectors of
the operator S¢ ;. The color (from black to white) of the dots indicates
the corresponding eigenvalue oy (in the range from 1 to 0).
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Shapes of uncertainty - illustrations
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The numerical range W(My, C,) for four filter pairs on the bunny
network. The first, second and fourth plot correspond to the filters
described in Example 1, 2 and 3.

The dots represent the position (M¢(t)x), Cg(1)k)) of the eigenvectors of
the operator R(fg with @ = 97/20. The color (from black to white) of the

dots indicates the corresponding eigenvalue pf(e) (in the range from 1 to 0).
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Space-frequency localization of eigenvectors of S¢ g, Ri -

Top row: the eigenvector 1)1 of the operator S, for the sensor graph and
four different filter pairs.

Bottom row: the eigenvector ¢(10) of the operator R(fegr with 6 = 2%7r for
the bunny graph and four filter pairs. ’
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Space-frequency localization of eigenvectors of S¢ ;.

The eigenvectors 91 110, Y50 and 1200 of S¢ g on the bunny graph for the
distance-projection filter (Example 2).
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Conclusion

Uncertainty relations are useful tool for the development of basis
systems/dictionaries on graphs with prescribed space-frequency properties.

@ S¢, and R(e) provide explicit uncertainty principles for graphs;

@ The operator R! ; can be used to calculate the shapes of the
uncertainties (aka the numerical range W(M¢, Cy));

@ The eigendecompositions of the operators S¢ ; and Rffz help to

construct orthogonal basis systems with a space-frequency behavior
determined by the operators M and Cg;

@ The shapes of the uncertainties provide useful information on the
joint range of the localization operators M¢ and C; and on how
complementary the two filters f and g are.
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Thanks a lot for your attention!

General introduction to Graph Signal Processing:

[1] ORTEGA, A. Introduction to Graph Signal Processing, Cambridge University Press (2022)

Article related to this talk:

[2] ErB, W. Shapes of Uncertainty in Spectral Graph Theory, IEEE Trans. Inform. Theory
67:2 (2021), 1291-1307

Software to create the uncertainty shapes

https://github.com/WolfgangErb/GUPPY
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