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Spectral clustering

Spectral clustering goes back to Donath and Hoffman (1973), who first
suggested to construct graph partitions based on eigenvectors of the
adjacency matrix. In the same year, Fiedler (1973) discovered that
bi-partitions of a graph are closely connected with the second eigenvector
of the graph Laplacian L, and he suggested to use this eigenvector to
partition a graph. Since then, spectral clustering has been discovered,
re-discovered, and extended many times.

In the machine learning community, spectral clustering has been made
popular by the works of Shi and Malik (2000) and Ng et al. (2002).
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Idea of spectral clustering

Observation: we saw that the number of connected components of a
graph corresponds to the multiplicity of the eigenvector λ1 = 0. Moreover,
the eigenvectors corresponding to the zero eigenvalue are piecewise
constant on the connected components.

Main idea: If data points are strongly clustered a corresponding similarity
graph can be almost split in several (lets say k) connected components
and the eigenvectors corresponding to the k smallest eigenvalues are
almost constant on these components. The entries of the k eigenvectors
form therefore clusters in Rk which can be determined, for instance, by the
use of k-means.
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Advantages and drawbacks of spectral clustering

Spectral clustering does not make strong assumptions on the form of
the clusters. This is different in other clustering algorithms as, for
instance, the k-means algorithm. In this case, the clusters form
convex sets.

Can be implemented efficiently for large graphs as long as the
adjacency matrix A is sparse.

Caveat: depends strongly on the similarity graph generated from the
data points.
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Algorithm 1: Unnormalized spectral clustering

Input: Point set V = {v1, . . . , vn}, number k ≥ 1 of clusters to construct.

1: Construct similarity graph G from the given data. For this, use for
instance a kNN or ε-balls strategy. Apply weighting strategy (binary,
Gaussian) to get the adjacency matrix A.

2: Compute the standard graph Laplacian

L = D− A.

3: Calculate the k smallest eigenvectors u1, . . . , uk of L:

Lui = λiui , i ∈ {1, . . . , k}.

Store them in a matrix Uk = [u1, . . . , uk ].
4: Let yi ∈ Rk , i ∈ {1, . . . , n}, denote the i-th row of Uk .
5: Cluster {y1, . . . , yn} ⊂ Rk with k-means into clusters C1, . . . ,Ck .

Output: Clusters A1, . . . ,Ak with Ai = {vj ∈ V : yj ∈ Ci}.
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Algorithm 2: Shi/Malik normalized spectral clustering

Input: Point set V = {v1, . . . , vn}, number k ≥ 1 of clusters to construct.

1: Construct similarity graph G from the given data. For this, use for
instance kNN or ε-balls strategy. Apply weighting strategy (binary,
Gaussian) to get the adjacency matrix A.

2: Compute the standard graph Laplacian

L = D− A.

3: Calculate the k smallest eigenvectors ν1, . . . , νk of the eigenvalue
problem:

Lνi = λiDνi , i ∈ {1, . . . , k},

i.e., the eigenvectors of the random walk Laplacian LRW and store
them in a matrix Vk = [ν1, . . . , νk ].

4: Let yi ∈ Rk , i ∈ {1, . . . , n}, denote i-th row of Vk .
5: Cluster {y1, . . . , yn} ⊂ Rk with k-means into clusters C1, . . . ,Ck .

Output: Clusters A1, . . . ,Ak with Ai = {vj ∈ V : yj ∈ Ci}.
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Algorithm 3: Ng/Jordan/Weiss normalized spectral clustering

Input: Point set V = {v1, . . . , vn}, number k ≥ 1 of clusters to construct.

1: Construct similarity graph G from the given data. For this, use for
instance kNN or ε-balls strategy. Apply weighting strategy (binary,
Gaussian) to get the adjacency matrix A.

2: Compute the normalized graph Laplacian

LN = In −D−1/2AD−1/2.

3: Calculate the k smallest eigenvectors u1, . . . , uk of the Laplacian LN .
and store them in a matrix Uk = [u1, . . . , uk ].

4: Generate Tk by normalizing the rows of Uk :

(Tk)i ,j =
(Uk)i ,j√∑k
j=1 |(Uk)i ,j |2

.

5: Let yi ∈ Rk , i ∈ {1, . . . , n}, denote the i-th row of Tk .
6: Cluster {y1, . . . , yn} ⊂ Rk with k-means into clusters C1, . . . ,Ck .

Output: Clusters A1, . . . ,Ak with Ai = {vj ∈ V : yj ∈ Ci}.
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Spectral clustering algorithms - some details

All three algorithms look rather similar, apart from the fact that they
use the three different graph Laplacians L, LRW and LN .

In all three algorithms, the vectors yi ∈ Rk form representations of
the data points vi . Due to the properties of the graph Laplacians this
representation turns out to be useful for the detection of the clusters.

In particular, the k-means clustering algorithm has no difficulties to
detect the clusters in this new representation.

In the third Algorithm 3 an additional row normalization step is
introduced which is not needed in the other algorithms. We’ll clearify
this normalization later.

Wolfgang Erb Spectral clustering 8 / 32



The starting point: how to we get graphs from data?

In practice, we are often just given a set of vertices V (point cloud).

Question: how to set up edges between these vertices in order to get a
similarity graph?

The following questions are relevant for setting up the edges:

1 Should each vertex be connected to every other vertex in order to get
a complete graph (increasing the accuracy of our model)?

2 Should the graph have a sparse edge structure (increasing
computational performance)?

3 What are the weights Ai ,j assigned to each edge?
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Strategy I: complete graphs

Idea: construct a complete graph Kn by mutually connecting all vertices.

Gaussian similarities Ai ,j = e− dist(vi ,vj)
2
/ϵ2 are often used as edge

weights, where dist(·, ·) is a metric distance, and ϵ a scale parameter.

A drawback of this strategy is the large number of resulting edges,
i.e., |E (Kn)| = n(n − 1)/2, which leads to a dense graph Laplacian
and possibly to cost-expensive matrix-vector operations.
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Strategy II: k-nearest neighbor graph (kNN graph)
Directed kNN graph: connect vi with vj if vj is among the k-nearest
neighbors of vi .
Undirected kNN graph: create an edge e = (vi , vj) if vi is among the
k-nearest neighbors of vj or if vj is among the k-nearest neighbors of vi .

kNN graphs are usually sparse. Relevant parameters are the distance
metric between the vertices and the number k . The edge weights Ai ,j are
usually chosen as Ai ,j ∈ {0, 1} (unweighted graph) or Gaussian weights.
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Strategy III: ε-ball graph

Idea: connect all vertices whose pairwise distances are smaller than ε > 0.

For ε-ball graphs, the edge weights Ai ,j are usually chosen to be
Ai ,j ∈ {0, 1} (unweighted graph). The important parameters are the
distance metric between the vertices and the value of ε.
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Spectral clustering - 1D toy example

We draw 300 points {v1, . . . , v300} in R randomly according to a
mixture of three Gaussians.

As similarity graphs, we consider a complete graph as well as the
kNN-graph with k = 10.

As edge weights we choose the Gaussian similarity Ai ,j = e−|vi−vj |2 .

We consider the Laplacian L and the random-walk Laplacian LRW .

In the following two figures:

We plot a histogram of the sampled values

In Fig. 1, we plot the eigenpairs of L and LRW for the kNN-graph.
For the eigenvalues, we plot the index i vs. λi/λmax. For the
eigenvectors uk , we plot vi against the i-th. component of uk .

In Fig. 2, we plot the eigenpairs of L and LRW for the complete graph.
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Figure 1: Eigenpairs of L and LRW based on a kNN graph with k = 10.
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Figure 2: Eigenpairs of L and LRW based on a complete graph.
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Relation between spectral clustering and graph cuts

Intuition of clustering for graphs: find a partition such that the edges
between different parts have a very low weight (points in different clusters
are dissimilar from each other) and the edges within the same part have
high weight (points within the same cluster are similar to each other).

Simple idea for clustering: For k ∈ N, find clusters A1, . . . ,Ak that
minimize the graph cut

cut(A1,A2, . . . ,Ak) =
1

2

k∑
i=1

|E (Ai ,A
c
i )|,

where
|E (Ai ,A

c
i )| =

∑
vj∈Ai ,vk∈Ac

i

Aj ,k ,

and Ac
i = V \ Ai denotes the complement of Ai in V .
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Spectral clustering and graph cuts

Problem with graph cut: in many cases the solution separates just one
individual vertex from the rest of the graph.

Figure 3: Possible problems when minimizing the graph cut (Shi & Malik, 2000).
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Spectral clustering and graph cuts

Alternative approach: enforce the sets A1, . . . ,Ak to be reasonably large.
The two most common objective functions to encode this are RatioCut
(Hagen, Kahng, 1992) and the normalized cut Ncut (Shi, Malik, 2000).

RatioCut(A1,A2, . . . ,Ak) =
1

2

k∑
i=1

|E (Ai ,A
c
i )|

|Ai |
=

k∑
i=1

cut(Ai ,A
c
i )

|Ai |
,

Ncut(A1,A2, . . . ,Ak) =
1

2

k∑
i=1

|E (Ai ,A
c
i )|

vol(Ai )
=

k∑
i=1

cut(Ai ,A
c
i )

vol(Ai )
,

where vol(Ai ) corresponds to the sum of the weights of the edges in Ai

(i.e. of the edges of the reduced graph with node set Ai ).
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Spectral clustering and graph cuts

Note: both objective functions take a small value if the clusters Ai are not
too small. In particular, the minima of the functions

k∑
i=1

1

|Ai |
,

k∑
i=1

1

vol(Ai )

are achieved if all |Ai | and all vol(Ai ) coincide, respectively. So what both
objective functions try to achieve is that the clusters are balanced, as
measured by the number of vertices or edge weights, respectively.
Unfortunately, introducing balancing conditions turn the previously simple
graph cut problem into NP hard problems (Wagner, Wagner, 1993).
Spectral clustering is a way to solve relaxed versions of those problems.
We will see that relaxing Ncut leads to normalized spectral clustering,
while relaxing RatioCut leads to unnormalized spectral clustering.
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Approximating ratio cut with k = 2

For k = 2, minimizing the ratio cut can be written as

min
A⊂V

RatioCut(A,AC ).

We rewrite the problem in a more convenient form. Given a subset A ⊂ V
we define the vector f = (f1, . . . , fn)

∗ ∈ Rn with the entries

fi =


√

|Ac |
n|A| if vi ∈ A

−
√

|A|
n|Ac | if vi ∈ Ac

.
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Approximating ratio cut with k = 2
We can now rewrite the ratio cut using the standard graph Laplacian:

f ∗Lf =
1

2

n∑
i ,j=1

Ai ,j (fi − fj)
2

=
1

2n

∑
vi∈A,vj∈Ac

Ai ,j

(√
|Ac |
|A|

+

√
|A|
|Ac |

)2

+
1

2n

∑
vi∈Ac ,vj∈A

Ai ,j

(
−

√
|Ac |
|A|

−

√
|A|
|Ac |

)2

=
1

n
cut(A,Ac)

(
|Ac |
|A|

+
|A|
|Ac |

+ 2

)
=

1

n
cut(A,Ac)

(
|A|+ |Ac |

|A|
+

|A|+ |Ac |
|Ac |

)
= RatioCut(A,Ac).
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Approximating ratio cut with k = 2

Additionally, we have

n
n∑

i=1

fi =
∑
vi∈A

√
|Ac |
|A|

−
∑
vi∈Ac

√
|A|
|Ac |

= |A|

√
|Ac |
|A|

− |Ac |

√
|A|
|Ac |

= 0.

and

∥f ∥22 =
n∑

i=1

f 2i =
|A|
n

|Ac |
|A|

+
|Ac |
n

|A|
|Ac |

=
|Ac |+ |A|

n
= 1,

i.e., the vector f is normalized and orthogonal to the constant vector e.
Altogether, we can see that the problem of minimizing the ratio cut can be
equivalently rewritten as

min
A⊂V

f ∗Lf subject to f ∗e = 0, f piecew. const. on A and Ac , ∥f ∥2 = 1.

This is a discrete optimization problem (the entries of the solution f are
only allowed to take two values), and it is still NP hard.
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Approximating ratio cut with k = 2
To relax this minimization problem, we can drop the condition that f is
piecewise constant and allow arbitrary values fi ∈ R. Then, we get

min
f ∈Rn

f ∗Lf subject to f ∗e = 0, ∥f ∥2 = 1.

We know that the solution of this relaxed minimization problem is given
by the eigenvector u2 of L with respect to the second largest eigenvalue λ2

of L. To obtain a partition of the graph we need to turn u2 into a discrete
indicator vector. The simplest way is to use the sign of u2 as indicator
function, i.e., {

vi ∈ A if fi ≥ 0

vi ∈ Ac if fi < 0
.

For k > 2, this heuristic is however too simple. We can then use the
k-means clustering algorithm to split the values fi into two clusters C and
C c . This leads to the following clustering of V :{

vi ∈ A if fi ∈ C

vi ∈ Ac if fi ∈ C c
.

This is exactly unnormalized spectral clustering for the case k = 2.Wolfgang Erb Spectral clustering 23 / 32



Approximating Ncut for k = 2
Similar to RatioCut, normalized spectral clustering (Shi/Malik) can be
seen as a relaxed Ncut problem. Let,

fi =


√

vol(Ac )
vol(A) vol(V ) if vi ∈ A

−
√

vol(A)
vol(Ac ) vol(V ) if vi ∈ Ac

.

Then, as before one can see that (Df )∗e = 0, f ∗Df = 1, and
f ∗Lf = Ncut(A,Ac). Thus, Ncut can be rewritten as

min
A

f ∗Lf subject to f piecew. const. on A and Ac ,Df ∗e = 0, f ∗Df = 1.

Again, by dropping the condition that f is piecewise constant, we get

min
f ∈Rn

f ∗Lf subject to Df ∗e = 0, f ∗Df = 1.

The solution f to this minimization problem is given by the eigenvector ν2
w.r.t. the second largest eigenvalue λ2 of LRW .
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Some comments

If the graph consists of two connected components, the solutions of
the relaxed problems correspond to the solutions of the original
minimization problems.

In general, there is no guarantee on the quality of the relaxed solutions
compared to the exact solutions of Ncut and RatioCut. For instance,
the minimal value of the relaxed problem can differ arbitrarily from
the minimal value of RatioCut (cf. tutorial of von Luxburg).

There are other relaxation possibilities for Ncut and RatioCut. The
popularity of the spectral relaxation is due to the fact that
eigenvalues/eigenvectors are well-understood objects in numerical
linear algebra.
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Practical details

Which similarity graph should be chosen?

The outcome of the 3 spectral clustering algorithms depends strongly
on the chosen similarity graph.

There is no theory how an “optimal” similarity graph looks like.

In principle, all strategies seen before can be used to create the
similarity graph. The selection of proper parameters is typically a
critical issue. It is recommendable to use a sparse graph structure.

A simple and relatively stable strategy is to generate a kNN-graph.
For clusters with different point densities one can additionally use
Gaussian weights for the edges.
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Practical details

Figure 4: Different strategies to generate a similarity graph when the clusters have
varying density. Not all strategies are equally useful.
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Practical details

Computation of the eigenvectors

Krylov subspace methods are particularly useful to calculate the first
k eigenvectors of the graph Laplacian L, as L might be large but
sparse (if we choose the kNN strategy). The speed of convergence
depends on the size of the eigengap |λk+1 − λk |.
It is in general not a problem if the graph is disconnected. The
computed eigenvectors to the multiple root λ1 of L might not be
unique and depend on the implementation. However, as they are
orthogonal to each other and piecewise constant on the clusters, the
k-means algorithm will be able to separate them and to detect the
clusters.

Wolfgang Erb Spectral clustering 28 / 32



Practical details - the number k of clusters
There are several statistical methods to guess the parameter k, for
instance, the log-likelihood of the data.
We can also use a heuristic for the eigengap |λk+1 − λk |.

Figure 5: Behavior of first eigenvalues of LRW for 3 different point distributions.
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Practical details - which Laplacian should we choose?

The first eigenvectors of L are relaxed solutions of RatioCut, while the
first eigenvectors of LRW are relaxed solutions of Ncut.

For a large within-cluster similarity, the volume term vol(Ai ) is more
suited than the size |Ai |. Therefore, minimizing Ncut has an
advantage compared to RatioCut. Using the Laplacian LRW has
therefore also an advantage compared to L.

If a graph has k connected components Ai , the first eigenvectors of
the normalized Laplacian LN are given by D1/2χAi

. If the degrees of
the graph are varying a lot, this can result in problems for the
clustering with k-means. The additional row-normalization in
Algorithm 3 is therefore necessary.

Also with additional row-normalization, LRW (i.e. Shi/Malik
clustering) has a slight advantage compared to LN .
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Spectral clustering vs k-means++

Figure 6: k = 4 calculated clusters with Shi/Malik spectral clustering (left) and
k-means++ algorithm (right) for a 2-moon data set.
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Thanks a lot for your attention!
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