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Abstract
We provide a characterization of parallelizable compact complex manifolds and their quo-
tients usingholomorphic symmetric differentials. In particularwe show that compact complex
manifolds of Kodaira dimension 0 having strongly semiample cotangent bundle are par-
allelizable manifolds, while compact complex manifolds of Kodaira dimension 0 having
weakly semiample cotangent bundle are quotients of parallelizable manifolds. The main
constructions used involve considerations about semiampleness of vector bundles, which are
themselves of interest. As a byproduct we prove that compact manifolds having Kodaira
dimension 0 and weakly sermiample cotangent bundle have infinite fundamental group, and
we conjecture that this should be the case for all compact complex manifolds not of general
type with weakly semiample cotangent bundle.

Keywords Complex geometry · Algebraic geometry · Vector bundles · Positivity ·
Parallelizable manifolds

1 Introduction

In a previous work [21] the second named author with Urbinati showed that the semiample-
ness property for a vector bundle can be stated in two non-equivalent ways, both present in
the literature, and they called the two notions weak semiampleness and strong semiample-
ness. Weak semiampleness of a vector bundle means that the tautological line bundle on the
projectivization of the vector bundle is semiample, and is implied by strong semiampleness,
which means that some symmetric power of the vector bundle is globally generated.

A geometrical interpretation of the difference between the two definitions can be found
considering the cotangent bundle of surfaces: Let S be a smooth projective surface of Kodaira
dimension 0, then S has strongly semiample cotangent bundle if and only if S is an abelian
surface, and S has weakly semiample cotangent bundle if and only if S is a hyperelliptic
surface, i.e. a quotient of an abelian surface (see paragraph 4 below for more details on this
construction).
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In the same work [21], abelian varieties where characterized as those smooth projective
varietieswhose cotangent bundle has some symmetric productwhich is trivial, or equivalently
have Kodaira dimension 0 and some symmetric product of the cotangent bundle is globally
generated. Successively, in [19] the second named author proved that complex tori share the
same property that characterizes them among compact Kähler manifolds.

It is worthwhile to note that a renewed interest has been shown recently towards quotients
of parallelizable manifolds, in fact Catanese and Catanese-Corvaja (cf. [8–10]) give many
interesting characterizations of those manifolds, disproving a conjecture by Baldassarri, and
showing many of their geometrical properties, both in the Kähler and non Kähler case.

We prove here that the geometric interpretation stated above for projective surfaces can
be given for all compact complex manifolds: compact complex parallelizable manifolds can
be characterized as those compact complex manifolds of Kodaira dimension 0 with strongly
semiample cotangent bundle, and their quotients as compact complex manifolds of Kodaira
dimension 0 with weakly semiample cotangent bundle.

This leads us to formulate some questions regarding a bimeromorphic characterization
of parallelizable manifolds and of complex tori through generic generation properties of the
symmetric powers of the cotangent bundle.

The characterization given for quotients of parallelizablemanifolds relies on the following
result, which is immediate in the case of smooth projective manifolds, due to intersection
theory, but needs some work to be proven in general on compact complex manifolds:

Theorem 1.1 Let X be a compact complex manifold, and let E be a weakly semiample
holomorphic vector bundle on X. Then the determinant line bundle det(E) is semiample.

Wewill prove this theorem using the construction of the resultant as a global section of some
power of the determinant line bundle:

Lemma 1.2 Let E be a rank r holomorphic vector bundle on a compact complex manifold
X. Consider r sections σ1, . . . , σr , with σ j ∈ H0(P(E),OP(E)(m j )), and m j > 0 positive
integers.

Then there is a section Res(σ1, . . . , σr ) ∈ H0(X , det(E)⊗m1·m2...mr ) vanishing exactly
on the points x ∈ X such that the sections σ1|P(E(x)), . . . , σr |P(E(x)) have a common zero in
P(E(x)).

With the use of the theorem above, we will prove the following two characterization
theorems:

Theorem 1.3 Let X be a compact complex manifold. Then the following are equivalent:

i. X is a complex parallelizable manifold.
ii. X has Kodaira dimension 0, and the holomorphic cotangent bundle �X is strongly

semiample.
iii. There is some positive integer m > 0 such that Symm�X is a trivial holomorphic vector

bundle.

Theorem 1.4 Let X be a compact complex manifold. Then the following are equivalent:

i. X ∼= ˜X/G, where ˜X is a complex parallelizable manifold, and G is a finite group acting
freely on ˜X.

ii. X has Kodaira dimension 0, and the holomorphic cotangent bundle �X is weakly semi-
ample (i.e. there is some positive integer m > 0 such thatOP(�X )(m) is a base point free
line bundle on P(�X )).
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Finally, we apply our constructions to prove the following:

Theorem 1.5 Let X be a compact complex manifold of dimension n and Kodaira dimension
k(X).

i. If k(X) = 0 and �1
X is weakly semiample, then the fundamental group of X is infinite.

ii. If k(X) < n, X is projective, and �1
X is weakly semiample, then the fundamental group

of X is infinite.

The structure of this work is the following: in Sect. 2 we recall the basic definitions and
previous results; in Sect. 3 we prove the main results concerning semiample vector bundles,
which we consider of interest in themselves; in Sect. 4 we prove the main results concerning
parallelizable manifolds and their quotients; in Sect. 5 we obtain some information on the
fundamental groups of manifolds with semiample cotangent bundle, sketch the ideas on a
corresponding bimeromorphic classification, and add further questions on the topics treated
here.

2 Notation and previous results

In order to construct properly the resultants associated to sections of the symmetric product of
a vector bundle, we need to describe in a detailed way the costruction of the projectivization
of a vector bundle.

2.1 Notation for projective spaces and projectivization

Throughout this work we will followGrothendieck’s notation for projective spaces, i.e. P(V )

is the space of one-dimensional quotients of the vector space V . All the following is standard
notation, but needs to be specified in detail to avoid confusionwhen constructing the resultants
(cf. Lemma 3.7 below).

In the case of one-dimensional quotients, P(V ) is defined as

P(V ) := ProjC

⎛

⎝

⊕

m�0

SymmV

⎞

⎠ ,

so OP(V )(1) is the tautological quotient line bundle on P(V ), and we have the Euler exact
sequence which corresponds to evaluation of global sections:

0 → M → V ⊗ OP(V ) → OP(V )(1) → 0.

Furthermore H0(P(V ),OP(V )(m)) = SymmV , with OP(V )(m) = OP(V )(1)⊗m .
To any element

σ ∈ SymmV = H0(P(V ),OP(V )(m)),

which is a polynomial of degree m, corresponds a zero locus Z(σ ) ⊆ P(V ) which is the
hypersurface of degree m where the section σ vanishes.

Fixing a basis (e1, . . . , er ) for the vector space V , it induces a dual basis (ε1, . . . , εr ),
then a point p ∈ P(V ) is a one dimensional quotient and therefore a non-vanishing linear
combination λ1ε1 + · · · + λrεr (up to multiplication by a scalar). Elements in SymmV ∼=
SymmV ∗∗ are then polynomials to be evaluated on elements of V ∗, i.e. these are polynomials
of degree m in the variables (λ1, . . . , λr ).
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Given a holomorphic vector bundle E , we denote π : P(E) → X the projective bundle of
one-dimensional quotients of E . As above

P(E) := ProjOX

⎛

⎝

⊕

m�0

SymmE

⎞

⎠ ,

and it comes with the Euler exact sequence of vector bundles

0 → M → π∗E → OP(E)(1) → 0,

where OP(E)(1) is a line bundle on P(E), and π∗E � OP(E)(1) is the tautological quotient
map. Here M is the relative cotangent bundle twisted by OP(E)(1).

Over a point x ∈ X we have π−1(x) = P(E(x)), and OP(E)(1)|π−1(x) = OP(E(x))(1) is
the usual tautological line bundle quotient of the projective space described above.

Furthermore, there is a canonical isomorphism π∗OP(E)(m) ∼= SymmE which gives on
global sections:

H0(P(E),OP(E)(m)) ∼= H0(X , SymmE).

As above, to any section σ ∈ H0(X , SymmE) corresponds a section σ ∈ H0(P(E),

OP(E)(m)), whose zero locus Z(σ ) ⊆ P(E) is a hypersurface. This hypersurface, restricted
to a fiber P(E(x)) of π , is a degree m hypersurface.

Fixing a local frame for E over an open subset U ⊆ X , i.e. fixing r sections e1, . . . , er
of E overU that provide a basis {e1(x), . . . , er (x)} of E(x) for each x ∈ U , we get the dual
basis {ε1(x), . . . , εr (x)} of E(x)∗. Any element of P(E(x)) is a rank one quotient of E(x),
so it is a non-vanishing linear combination λ1ε1(x) + · · · + λrεr (x) up to multiplication by
a scalar. Any section

σ ∈ H0(P(E),OP(E)(m)) ∼= H0(X , SymmE),

when restricted to a U can be written as

σ =
∑

|I |=m

αI e
i1
1 . . . eirr

with αI ∈ OX (U ). On each fiberP(E(x)), for x ∈ U , the section σ corresponds to the degree
m polynomial

Px (λ1, . . . , λr ) =
∑

|I |=m

αI (x)λ
i1
1 . . . λirr

in the variables (λ1, . . . , λr ).
Changing local frame f1, . . . , fr of E over the same open subsetU , i.e. changing trivial-

ization for the vector bundle E overU , we have a transition function φ : U → GLr (C) such
that

(e1(x) . . . er (x)) = ( f1(x) . . . fr (x))φ(x)

for all x ∈ U . Then the same section

σ ∈ H0(P(E),OP(E)(m)) ∼= H0(X , SymmE)

will be written locally with respect to the new frame as

σ =
∑

I

βI f
i1
1 . . . f irr
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with βI ∈ OX (U ), corresponding to the polynomial

Qx (μ1, . . . , μr ) =
∑

I

βI (x)μ
i1
1 . . . μir

r

on each P(E(x)).
Now, as

σ =
∑

I

βI f
i1
1 . . . f irr =

∑

I

αI e
i1
1 . . . eirr ,

writing f I = f i11 . . . f irr and f .φ = ( f1 . . . fr )φ, we have:

σ =
∑

I

αI e
I =

∑

I

αI ( f .φ)I =
∑

I

βI f
I .

Then, according to the description above, the two polynomials satisfy:

Qx (μ1, . . . , μr ) = Px (
tφ(x) · (μ1, . . . , μr )) ∀x ∈ U ,

where the coordinates (μ1, . . . , μr ) are meant in a column, multiplied by the matrix tφ(x)
on the left.

Letting x vary in U we have an equality

Qx (μ1, . . . , μr ) = Px (
tφ · (μ1, . . . , μr )) ∈ OX (U )[μ1, . . . , μr ]

with φ ∈ GLr (OX (U )), and tφ the transpose of the matrix.

2.2 Previous results

We recall the following definitions from [21] and [20]:

Definition 2.1 Let X be a compact complex manifold, and let E be a holomorphic vector
bundle.

i. We say that E is weakly semiample ifOP(E)(m) is a base point free line bundle on P(E)

for some m > 0.
ii. We say that E is strongly semiample if SymmE is generated by its global (holomorphic)

sections for some m > 0.
iii. We say that E is asymptotically generically generated if there exists a Zariski open subset

U ⊂ X such that SymmE is generated by its global sections over the points x ∈ U , for
some m > 0.

We want to show that compact parallelizable manifolds and their free quotients are char-
acterised by strong and weak semiampleness of their cotangent bundle.

Remark 2.2 Clearly if E is strongly semiample then E is weakly semiample, in fact if we
have a surjective map V ⊗ OX � SymmE then we have

V ⊗ OP(E) � π∗SymmE � OP(E)(m) ,

so OP(E)(m) is globally generated if SymmE is globally generated.
Surprisingly the converse does hold only in the case m = 1: suppose the evaluation map

ϕ : H0(X , E) ⊗ OX → E is not surjective on x ∈ X . Then its image is contained in a
hyperplane Hx of E(x):

ϕ(x) : H0(X , E) → Hx ⊂ E(x) .
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This means that on the point

ξ ∈ π−1(x) = P(E(x)) ⊂ P(E)

corresponding to the hyperplane Hx ⊂ E(x), the evaluation map

ψ : H0(P(E),OP(E)(1)) = H0(X , E) → π∗E|ξ → OP(E)(1)|ξ
vanishes on ξ , therefore ξ is a base point forOP(E)(1). SoOP(E)(1) is globally generated on
P(E) if and only if E is globally generated on X .

However the viceversa does not hold for all m: we will see below that the cotangent
bundle of a hyperelliptic (also called bielliptic) surface is a weakly semiample vector bundle
which is not strongly semiample. This is a general property of quotients of compact complex
parallelizable manifolds.

Definition 2.3 Let X be a complex manifold. We say that X is a parallelizable complex
manifold if the holomorphic cotangent bundle �1

X is trivial, i.e. if �1
X

∼= O⊕n
X .

Remark 2.4 It is known (cf. [25]) that a compact complex manifold X is parallelizable if and
only if it is isomorphic to a quotient X = H/
 of a complex Lie group H by a (cocompact)
discrete subgroup 
. If the group H is abelian (therefore X = H/
 is a compact complex
abelian Lie group) then X is a complex torus. Also, Wang shows that a compact complex
parallelizable manifold is Kähler if and only if it is a complex torus. Further investigations
have been carried out by Winkelman (cf. [26]).

Remark 2.5 A compact complex manifold whose tangent (or cotangent) bundle is trivial as
C∞ vector bundle is a called parallelizable differentiable manifold but it is not necessarily a
parallelizable complex manifold: for example a Hopf Surface X has C∞ trivializable tangent
space as it is diffeomorphic to S1 × S3, but it is not a complex parallelizable manifold as
h0(X ,�1

X ) = 1. This is related to the (widely studied in hermitian geometry) subject of nil-
and solvmanifolds (cf. [1, 16, 22], and more recently [11]).

Definition 2.6 We say that a compact Kähler manifold X is hyperelliptic if it is a quotient
of a complex torus by the free action of a finite group. We say that a non-Kähler compact
complex manifold is twisted hyperelliptic if it is a free quotient of a (non-Kähler) compact
complex parallelizable manifold (cf. [10]).

Remark 2.7 As it is proven byCatanese (cf. [9] Prop. 4.1), any (possibly twisted) hyperelliptic
is the free quotient of a compact complex parallelizable manifold by the free action of a group
acting by affine transformations. See Lemma 4.4 below for a detailed description of such an
action.

3 Semiample vector bundles on compact complexmanifolds

We prove here Theorem 1.1, a key ingredient in the characterization of quotients of compact
complex parallelizable manifolds. We state some previous results, which are of interest
themselves.

Proposition 3.1 Let f : X → Y be a surjective map between compact complex manifolds,
and let E be a holomorphic vector bundle on Y . Then E is weakly semiample if and only if
f ∗E is weakly semiample.
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Proof We have the following fibered product:

P( f ∗E)
˜f−→ P(E)

⏐

⏐




⏐

⏐




X
f−→ Y

such thatOP( f ∗E)(1) = ˜f ∗OP(E)(1). Then by [13] (Theorem 1.20) we have thatOP( f ∗E)(1)
is semiample if and only if OP(E)(1) is semiample. �

Remark 3.2 Fujita’s Theorem used above applies both in the algebraic or complex analytic
cases.

Remark 3.3 The statement does not hold if we replace weak semiampleness by strong semi-
ampleness: even for finite surjective étale maps f : X → Y we can have f ∗E strongly
semiample and E just weakly semiample. We show below that the cotangent bundle of a
hyperelliptic surface and its pullback to the abelian surface provide a counterexample.

The following theorem is proven in [19] (cf. Theorem 3.2 and Remark 5.3, ibid.):

Theorem 3.4 Let E be a strongly semiample vector bundle of rank r over a compact complex
manifold X, whose determinant has Iitaka-Kodaira dimension kod(X , det E) = 0. Then
E ∼= L⊕r , where L is a torsion line bundle on X.

As an immediate consequence we have the following

Corollary 3.5 Let E be a strongly semiample vector bundle of rank r over a compact complex
manifold X, whose determinant has Iitaka-Kodaira dimension kod(X , det E) = 0. Then
there exists a finite cyclic étale covering ρ : ˜X → X such that ρ∗E is a trival vector bundle.

Another immediate consequence of strong semiampleness of vector bundles is the fact
of having a semiample determinant bundle, in fact if SymmE is globally generated then
det(SymmE) = (det E)⊗N is globally generated. In the weakly semiample case this needs
to be proven more carefully.

Recall that, given a commutative ring k, and r homogeneous polynomials in r variables
f1, . . . , fr ∈ k[Y1, . . . , Yr ], then the resultant Res( f1, . . . , fr ) is a well defined element of k
and vanishes if and only if the polynomials f1, . . . , fr have a common factor. We need some
lemmas:

Lemma 3.6 ([17] 5.13) Let k be a commutative ring, d1, . . . , dr � 1 positive integers,
f1, . . . , fr ∈ k[Y1, . . . , Yr ] homogeneous polynomials of degrees d1, . . . , dr . For every
matrix φ = (ai j ) ∈ Mr×r (k) and every polynomial f ∈ k[Y1, . . . , Yr ] set

f ◦ φ = f (a11Y1 + a12Y2 + · · · + a1nYN , . . . , an1Y1 + an2Y2 + · · · + annYN ) =
= f (φ(Y1, . . . , Yr )) .

Then the resultant satisfies the following equality:

Res( f1 ◦ φ, . . . , fr ◦ φ) = det(φ)d1d2...drRes( f1, . . . , fr ) .

Lemma 3.7 Let E be a rank r holomorphic vector bundle on a compact complex manifold
X. Consider r sections σ1, . . . , σr , with σ j ∈ H0(P(E),OP(E)(m j )), and m j > 0 positive
integers.
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Then there is a section Res(σ1, . . . , σr ) ∈ H0(X , det(E)⊗m1·m2...mr ) vanishing exactly
on the points x ∈ X such that the sections σ1|P(E(x)), . . . , σr |P(E(x)) have a common zero in
P(E(x)).

Proof Let us define the section Res(σ1, . . . , σr ) of H0(X , det(E)⊗m1·m2...mr ) locally using
charts. For this purpose, we fix an open covering {Uα} of the manifold X for which there are
local trivializations

{

ϕα : E|Uα C
r ×Uα

∼=
}

of the vector bundle E and transition functions
{

φαβ : Uαβ GLr (C)
}

,

induced by (ϕβ) ◦ (ϕα)−1.
Let eα

1 , . . . , eα
r be a local frame corresponding to ϕα , and let Y1,α, . . . , Yr ,α be vari-

ables corresponding to dual coordinates in the chart ϕα . The global sections σ1, . . . , σr
correspond in the local chart ϕα to homogeneous polynomials f1,α(Y1,α, . . . , Yr ,α), . . . ,
fr ,α(Y1,α, . . . , Yr ,α) of degrees m1, . . .mr with coefficients inOX (Uα), as seen in Sect. 2.1.
For ϕβ another local chart, and for corresponding local frame eβ

1 , . . . , eβ
r , one has

(eα
1 (x) . . . eα

n (x)) = (eβ
1 (x) . . . eβ

r (x))φαβ(x)

for all x ∈ Uαβ , and the global sections σ1, . . . , σr correspond in the local chart ϕβ to
homogeneous polynomials f1,β(Y1,β , . . . , Yr ,β), . . . , fr ,β(Y1,β , . . . , Yr ,β) with coefficients
in OX (Uβ). Then, according to computation of Sect. 2.1 we have:

fi,β(Y1,β , . . . , Yr ,β) = fi,α(tφαβ(Y1,β , . . . , Yr ,β))

over Uαβ .
Now on each open subset Uα we have functions

Rα = Res( f1,α(Y1,α, . . . , Yr ,α), . . . , fr ,α(Y1,α, . . . , Yr ,α)) ∈ OX (Uα),

and by Lemma 3.6 we have for each α, β:

Rβ = det(φαβ)m1...mr Rα

on Uαβ . Then the functions Rα ∈ OX (Uα) glue to a global section

Res(σ1, . . . , σr ) ∈ H0(X , det(E)m1...mr )

which has the required properties. �

Theorem 3.8 Let E be a weakly semiample vector bundle over a compact complex manifold
X, then det E is a semiample line bundle. More precisely, if OP(E)(m) is base point free on
P(E), then det(E)⊗mr

is base point free on X.

Proof As E is weakly semiample, let us consider the holomorphic map

ϕ : P(E) → P
N = P(H0(P(E),OP(E)(m)))

induced by the complete linear system H0(P(E),OP(E)(m)) which is base point free for a
suitable m > 0.
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Let us fix x ∈ X , as OP(E)(m)|π−1(x) = OP(E(x))(m), and ϕ|P(E(x)) is the map associated
to the base point free linear system

|Wx | = |Im(H0(P(E),OP(E)(m)) → H0(P(E(x)),OP(E(x))(m)))|
on P(E(x)), then ϕ|P(E(x)) is finite, therefore dim ϕ(P(E(x))) = dim P(E(x)) = r − 1,
where r = rkE . So we can find r hyperplanes in P

N whose intersection does not meet
ϕ(P(E(x))). This means that r general sections σ1, . . . , σr ∈ H0(P(E),OP(E)(m)) satisfy
Z ∩ π−1(x) = ∅, where Z = Z(σ1, . . . , σr ) is the locus of their common zeros in P(E).

Now let V = π(Z) be the image of this locus in X , then Lemma 3.7 states that V =
Z(Res(σ1, . . . , σr )) ⊆ X is a divisor in | det(E)⊗mr |, and x /∈ V . Therefore for x ∈ X we
find a divisor in | det(E)⊗mr | whose support does not contain x . As for each x ∈ X we can
find such a divisor in | det(E)⊗mr | not containing x , then det(E)⊗mr

is base point free. �

Remark 3.9 The locus V ⊆ X in the proof above can be empty, this happens if
dim H0(P(E),OP(E)(m)) = rkE , for examplewhen E is trivial, or in the case of the theorem
below. In this case det(E)⊗mr

is trivial.

Remark 3.10 This proof followsFujiwara’s ideas contained in [14], adapting his constructions
to the compact complex case, wherewe cannotmake use of Chern classes computations in the
Chow ring, through the use of the resultant. The following theorem aswell follows Fujiwara’s
constructions.

As a consequence of the semiampleness of the determinant, we can show the following

Theorem 3.11 Let E be a weakly semiample vector bundle of rank r over a compact complex
manifold X, whose determinant has Iitaka-Kodaira dimension kod(X , det E) = 0. Then
there exists a finite Galois étale covering ρ : ˜X → X such that ρ∗E is a trivial vector
bundle.

Proof Let us remark that within these hypotheses the line bundle det E is a torsion line
bundle, in fact it is semiample and of Iitaka dimension 0. Now consider the map

� : P(E) → P
N = P(H0(P(E),OP(E)(m))) ,

thenwe can show that dim�(P(E)) = r−1: if by contradiction the imagewere of dimension
at least r , then itwould have a non-empty intersectionwith r hyperplanes inPN corresponding
to r sections σ1, . . . , σr ∈ H0(P(E),OP(E)(m)). Then the zero locus Z(Res(σ1, . . . , σr )) ⊂
X would be a nonempty divisor in | det(E)⊗mr |, contradicting the fact that det(E) is a torsion
line bundle. We remark that the restriction of � to each fibre π−1(x) = P(E(x)) is given by
the base point free linear system

Wx = Im(H0(P(E),OP(E)(m)) → H0(π−1(x),OP(E(x))(m)))

and is therefore a finite map �|P(E(x)) : P(E(x)) → �(P(E)), which is the composition of
a Veronese embedding and a linear projection. In particular it follows that dim�(P(E)) is
exactly r − 1.

Then a general fiber of the map � will be a disjoint union of compact complex sub-
manifolds of P(E) of dimension n = dim X , dominating X with finite maps. In fact if the
map

π|�−1(y) : �−1(y) → X

123



50 Page 10 of 19 F. Esposito, E. C. Mistretta

were not surjective and finite, we would have a curve C ⊆ P(E) contracted by π and by �,
and this is not possible as �|P(E(x)) is finite.

Let us call Z one of these components dominating X , and let us show that the map
Z → X is a finite étale covering, and that there is further finite étale covering ˜Z → Z such
that g : ˜Z → X satisfies

g∗E = O
˜Z ⊕ E ′ .

First, notice that as Z is a (component of a) general fiber of �, then Z contracted by �

and the normal bundle of Z is trivial, so

OP(E)(m)|Z = OZ ,

and ωZ = ωP(E) ⊗ OZ ,where ωP(E) = OP(E)(−r − 2) ⊗ π∗(ωX ⊗ det E) .

As (det E)⊗K = OX for some K > 0, we obtain that

ω⊗Km
Z

∼= π∗ω⊗Km
X ,

but as π is a finite map there is an injective morphism π∗ωX → ωZ , therefore we get
ωZ ∼= π∗ωX and so π : Z → X is an unramified finite covering where OP(E)(m)|Z ∼= OZ .
Using this last equality we see that we can find another finite étale covering ˜Z → Z , such
that OP(E)(1)|˜Z ∼= O

˜Z .
Furthermore, the universal quotient π∗E � OP(E)(1) pulls back to a quotient h : g∗E �

O
˜Z on ˜Z , and this quotient h is split. In fact from the construction of ˜Z it follows that the

surjective map Symmh : g∗SymmE → O
˜Z splits, and this implies that h splits as well: we

can factor the map h as

g∗SymmE → g∗Symm−1E → O
˜Z ,

the first map being

v1 · v2 . . . vm �→
∑ h(v j )

m
v1 · v2 . . . v̂ j . . . vm ,

and the second Symm−1h, then the splitting of Symmh implies that Symm−1h splits as well
and we proceed by recursive induction on m.

Now we constructed a finite étale covering g : ˜Z → X such that g∗E = O
˜Z ⊕ E ′, so E ′

is again weakly semiample, and by recursive induction on r = rkE we obtain a finite étale

map
≈
Z → X such that E pulls back to a trivial vector bundle.

Finally, by considering the Galois closure of the étale finite covering
≈
Z → X we obtain

a finite étale morphism ˜X → ≈
Z such that ρ : ˜X → ≈

Z → X is a finite Galois étale covering
and that ρ∗E is a trivial bundle (cf. Remark 3.12). �

Remark 3.12 Given a finite étale covering space Z → X , we can always find a further
finite étale covering Z ′ → Z such that Z ′ → X is Galois. In fact if the covering Z → X
corresponds to the finite index subgroup H ≤ π1(X), then we can consider the covering
Z ′ → X corresponding to the maximal normal subgroup H ′ � π1(X) contained in H , with
H ′ = ⋂

g gHg−1, which is a finite intersection of finite index subgroups, having finite index
in π1(X). The map Z ′ → Z → X is called Galois closure of the covering Z → X .

Remark 3.13 With the hypothesis of Theorem 3.11 above, the determinant line bundle det E
is semiample and of Kodaira dimension 0, so it is a torsion line bundle. Therefore there exists
a finite cyclic Galois étale cover that trivializes the line bundle det(E), however in general
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this is not the cover that trivializes E itself, we might need to consider more complicated
covers as it appears in the proof of the theorem. In fact the cover trivializing E needs not to
be cyclic if E is weakly semiample, while it is cyclic in the strongly semiample case.

4 Parallelizable manifolds

In this section we give a characterization of parallelizable manifolds and their quotients.
An immediate consequence of Theorem 3.11 above is the following

Theorem 4.1 Let X be a compact complex manifold. Then X is a (possibly twisted) hyper-
elliptic manifold if and only if it has Kodaira dimension k(X) = 0 and weakly semiample
cotangent bundle.

Proof If X is hyperelliptic then it is the quotient of a parallelizable manifold under the free
action of a finite group, then X has Kodaira dimension 0 and�1

X pulls back to a trivial bundle,
therefore �1

X is weakly semiample.
Viceversa, applying Theorem 3.11 to the holomorphic cotangent bundle�1

X we know that
there exists a finite Galois étale cover f : ˜X → X such that f ∗�1

X is a trivial vector bundle.
As f is étale then f ∗�1

X
∼= �1

˜X
, so ˜X is a compact complex parallelizable manifold and X

is a (possibly twisted) hyperelliptic manifold. �

We obtain almost immediately the following corollaries:

Corollary 4.2 A compact Kähler manifold X is hyperelliptic if and only if it has Kodaira
dimension 0 and weakly semiample cotangent bundle.

Corollary 4.3 A smooth proper algebraic variety X over the complex numbers is isomorphic
to the quotient of an abelian variety by the free action of a finite group if and only if it has
Kodaira dimension 0 and weakly semiample cotangent bundle.

Proof In order to prove the last Corollary, apply Theorem 4.1, so X is the free quotient of
a parallelizable compact complex manifold P . As X is a smooth proper algebraic variety
then P is a smooth proper algebraic variety as well. We need to show that a proper algebraic
variety over the complex numbers is a complex parallelizable manifold if and only if it is an
abelian variety: this follows from [26] Lemma 3.15.3. �


Next we want to prove that in a similar way we can characterize compact complex paral-
lelizable manifolds as those having Kodaira dimension 0 and strongly semiample cotangent
bundle.

First we need a lemma on the structure of the group of automorphisms of a parallelizable
manifold: we remark that a compact complex parallelizable manifold is a quotient P = H/


of a complex Lie group H by a (cocompact) discrete subgroup 
 (cf. [25]). It can be shown
that any holomorphic map of parallelizable manifolds, up to translations, comes from a
homomorphism of complex Lie groups:

Lemma 4.4 Consider two compact complex parallelizable manifolds P = H/
 and Q =
H ′/
′, and let f : P → Q be a holomorphic map. Then there exists a homomorphism of
complex Lie groups F : H → H ′, with F(
) ⊆ 
′, and an element q ∈ H ′, such that for all
h ∈ H:

f (h
) = qF(h)
′ .
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Proof Cf. [9] and [26]. �

Nextwe can show that a group freely acting on a parallelizablemanifold so that the quotient

has strongly semiample cotangent bundle must act trivially on holomorphic differential 1-
forms:

Lemma 4.5 Let P = H/
 be a compact complex parallelizable manifold, and let G be a
finite group acting on P so that X = P/G has strongly semiample cotangent bundle. Then
G acts trivially on H0(P,�1

P ), i.e. for each g ∈ G the map g∗ : H0(P,�1
P ) → H0(P,�1

P )

is the identity map.

Proof Let g ∈ G act on P = H/
, let us show that if �1
X is strongly semiample then g∗ is

the identity homomorphism on H0(P,�1
P ).

As the quotient ρ : P → X ∼= P/G is étale, then ρ∗�1
X = �1

P , and we have a natural
isomorphism for each m > 0:

H0(X ,Symm�1
X ) ∼= H0(P,Symm�1

P )G .

However �1
P (hence Symm�1

P ) is a trivial vector bundle, and the action of G on

H0(P,Symm�1
P ) = SymmH0(P,�1

P )

is the symmetric power of the action of G in H0(P,�1
P ).

Now, let K > 0 be an integer such that SymK�1
X is globally generated, then

dim H0(X ,SymK�1
X ) = dim H0(P,SymK�1

P )G � rk SymK�1
X =

= rk SymK�1
P = dim H0(P,SymK�1

P ) ,

so all elements in SymK H0(P,�1
P ) are invariant by the action of G.

As G is a finite group, any g ∈ G acts on H0(P,�1
P ) in a diagonalizable way, then

it is easily seen that triviality of the action on SymK H0(P,�1
P ) implies that G acts by

homotheties on H0(P,�1
P ) (cf. [21], proof of Theorem 4.14). So there exists a character

χ : G → C
∗ such that each g ∈ G acts on H0(P,�1

P ) as χg I d . Let us show that this
character is trivial.

Let us call h = TeH the Lie algebra of the complex Lie group H , then we have h ∼=
H0(P, TP ), where TP is the (trivial) tangent bundle on P , so

h∗ = H0(P, TP )∗ ∼= H0(P,�1
P )

and

g∗ = t (g∗) = χg I dh : h → h

is a Lie algebra homomorphism.
So we must have, for each x, y ∈ h:

χg[x, y] = g∗([x, y]) = [g∗x, g∗y] = [χgx, χg y] = χ2
g [x, y] .

This can happen only if either χg = 1, or if [x, y] = 0 for all x, y ∈ h. The first case means
that g∗ = χg I d : H0(P,�1

P ) → H0(P,�1
P ) is the identity map, while the second case

means that the Lie algebra h is abelian. But as P = H/
 if h is abelian then H is an abelian
complex Lie group, and therefore P is a complex torus (P is compact). If P is a complex
torus we can show that χg = 1 as well. In fact, writing g : P → P as

g(x) = (χg)x + v ,
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if χg �= 1 then the point x = (1− χg)
−1v is a fixed point of g, which we cannot have as the

action is free. �

Remark 4.6 (Catanese, personal communication) A more general argument of Fabrizio
Catanese can be applied to show that G acts trivially on H0(P,�1

P ) in Lemma 4.5 above:
a holomorphic automorphism g : P → P of a compact complex parallelizable manifold
P = H/
 such that all eigenvalues of g∗ : H0(P,�1

P ) → H0(P,�1
P ) are different from

1 must have a fixed point. In fact for each q ∈ H the map g is homotopic to the translated
map qg. Then the intersection number ν in P × P of the diagonal and the graph of g, is
the same for the map g and for the map qg, and is equal to 0 if g has no fixed point. As
one can find q ∈ H such that qg has a fixed point, and as this is an isolated fixed point
because all eigenvalues are different from 1, then ν > 0, so g must have a fixed point as
well. In the proof of Lemma 4.5 above, as g has no fixed point we deduce that the map
g∗ = χg I d : H0(P,�1

P ) → H0(P,�1
P ) has all eigenvalues equal to 1, so χg = 1.

We can use these constructions to characterize parallelizable manifolds through strong
semiampleness:

Theorem 4.7 Let X be a compact complex manifold. Then X is parallelizable if and only if
it has Kodaira dimension k(X) = 0 and strongly semiample cotangent bundle.

Proof Clearly a compact complex parallelizable manifold has Kodaira dimension zero and
strongly semiample cotangent bundle.

Conversely, let us suppose that X has Kodaira dimension 0 and strongly semiample cotan-
gent bundle. Thenweknow that X = P/G is the quotient of a compact complex parallelizable
manifold P by the free action of a finite group G.

So according to Lemma 4.5 each element of G acts trivially on H0(P,�1
P ), i.e. we have

H0(P,�1
P )G = H0(P,�1

P ) .

As X has Kodaira dimension 0, in order to show that X is parallelizable we have to show
that �1

X is globally genereated.
Now fix a point x ∈ P and its image π(x) = x̄ ∈ X . As π is an étale map, we can consider

the following commutative diagram:

H0(X ,�1
X )

evx̄−→ �1
X ,x̄

⏐

⏐


π∗
⏐

⏐




t (dxπ)

H0(P,�1
P )

evx−→ �1
P,x

where the verticalmap on the left is an isomorphism because H0(P,�1
P )G = H0(P,�1

P )

and the vertical map on the left is an isomorphism as π : P → X = P/G is étale, while the
map evx : H0(P,�1

P ) → �1
P,x is an isomorphism as P is compact parallelizable. So the

map evx̄ : H0(X ,�1
X ) → �1

X ,x̄ is an isomorphism, hence X is parallelizable. �

Remark 4.8 As it is shown in [19], a vector bundle E on a compact complex manifold X is
strongly semiample and has determinant det E with Kodaira-Iitaka dimension 0 if and only
if it is a direct sum of isomorphic torsion line bundles E = L ⊕ L ⊕ · · · ⊕ L . Now when
E is the cotangent bundle it cannot happen that �1

X is the direct sum of n copies of a non
trivial torsion line bundle: in that case �1

X is strongly semiample and has determinant ωX

with Kodaira-Iitaka dimension 0, so it is trivial because of Theorem 4.7.
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Remark 4.9 Here we want to describe explicitly how it can happen that a free quotient X =
P/G of a compact complex parallelizable manifold P = H/
 by a finite cyclic group
G is again a compact complex parallelizable manifold, i.e. X = H/
′, and we illustrate
the lattice 
′ involved. First we describe “translations by multiplication on the right” on a
compact complex parallelizable manifold as the only maps inducing the identity on the Lie
algebra, then we apply this to compute the lattice 
′.

Let P = H/
 be a compact complex parallelizable manifold, we know that for each
biholomorphicmap g : P → P there exist an element q ∈ H and an automorphism F : H →
H of complex Lie groups, such that

g(h
) = (qF(h))
 .

Also, for each automorphism F : H → H of complex Lie groups such that F(
) ⊆ 
 and
for each q ∈ H the map defined as above

g(h
) = (qF(h))


is a biholomorphic map P → P .
Now let q ∈ H be an element such that q−1
q = 
, and let F : H → H be the map

F(h) = q−1hq . Then the translation by q on the right is well defined as a biholomorphic
map g : P → P , and can be described as above by

g : h
 �→ (qF(h))
 = (hq)
 .

In this case the map F : H → H is not necessarily the identity map on H , however the map
of Lie algebras (the spaces of holomorphic vector field on P , which is naturally isomorphic
to the Lie Algebra h of the Lie group H )

g∗ : H0(P, TP ) = h → H0(P, TP ) = h

is the identity map, therefore the map

g∗ : H0(P,�1
P ) → H0(P,�1

P )

is the identity map as well. In fact if we call �q : P → P multiplication by q on the left, we
have that g = �q ◦ F : P → P . Then we have (�q)∗ = Adq and F∗ = Adq−1 , so g∗ and g∗
are the identity maps.

Conversely, suppose we have an isomorphism g : P → P such that

g∗ = id : H0(P,�1
P ) → H0(P,�1

P ) .

Then if we write g(h
) = qF(h)
 with F : H → H an isomorphism of complex Lie groups
and q ∈ H we see that �∗

q = (F∗)−1, so

F∗ = (�∗
q)

−1 = t (Adq−1)

therefore if we suppose that H is a simply connected complex Lie group we have that the Lie
group homomorphism F is the conjugation map F(h) = q−1hq , and q ∈ H is an element
such that q−1
q = 
 because the map F induces a map g : P → P .

Now suppose thet we have P = H/
 and X = P/G with G a finite cyclic group of
order m, generated by g, as in Theorem 4.7 above. In particular we know that g∗ = id on
H0(P,�1

P ), so the biholomorphic map g must be �q ◦ Adq−1. So we have that

g(h
) = q(q−1hq)
 = (hq)
 ,
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and so

X = P/G = (H/
)/G = H/
′ ,

with 
′ =< q, 
 >.
Furthermore we must have that q ∈ H is an element such that q−1
q = 
, such that

qm ∈
⋂

h∈H
h
h−1

(where m is the order of the cyclic group G =< g >) and such that

qk /∈ h
h−1 for any h ∈ H and any k = 1, . . . ,m − 1 .

As any compact complex parallelizable manifold which is Kähler is a complex torus, and
as any smooth proper algebraic variety over the complex numbers which is parallelizable is
an abelian variety we have the following corollaries:

Corollary 4.10 A compact Kähler manifold X is biholomorphic to a complex torus if and
only if it has Kodaira dimension 0 and strongly semiample cotangent bundle.

Corollary 4.11 A smooth proper algebraic variety X over the complex numbers is isomorphic
to an abelian variety if and only if it has Kodaira dimension 0 and strongly semiample
cotangent bundle.

5 Final remarks and questions

Since the times of Kähler (cf. [18]) and Severi (cf. [23] and [24]), a lot of interesting geomet-
rical and topological properties were discovered relating differential forms and geometry.We
address first some questions concerning the fundamental group of varieties with semiample
cotangent bundle.

5.1 Manifolds with infinite fundamental group

We mention in particular some results and conjectures on the relationship between the exis-
tence of holomorphic symmetric differentials and the topology of a complex manifold:

Conjecture 5.1 (Mumford) Let X be a compact Kähler manifold. Then X is rationally con-
nected if and only if H0(X ,Symm�

p
X ) = 0 for all m > 0 and all p > 0.

Related to this conjecture, a characterization for rationally connected varieties has been
proven recently, under some stronger conditions implying in particular that for all p the
vector bundles �

p
X are not pseudoeffective (cf. [7]):

Theorem 5.2 (Campana–Demailly–Peternell) Let X be a complex projective manifold. Then
X is rationally connected if and only if for any ample line bundle A on X, for all p > 0 and
for all k > 0 there exists a constant CA > 0 such that

H0(X ,Symm�
p
X ⊗ A⊗k) = 0

for all m > CAk.
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We remark that rationally connected manifolds are simply connected. We have the fol-
lowing result (cf. [5]) relating simple connection and symmetric tensors, in the direction of
Mumford’s conjecture above:

Theorem 5.3 (Brunebarbe–Campana) Let X be a compact Kähler manifold. Suppose that
H0(X ,Symm�

p
X ) = 0 for allm > 0 andall p > 0. Then X is simply connected. Furthermore

under the conditions above X is projective.

Restricting the conditions above to the case p = 1, we have the following conjecture
attributed to Esnault:

Conjecture 5.4 Let X be a compact Kähler manifold. If

H0(X ,Symm�1
X ) = 0 for all m > 0

then the fundamental group of X is finite.

The (slightly) weaker statement that in this case the fundamental group of X admits no
linear representation with infinite image (cf. [6]) holds true:

Theorem 5.5 (Brunebarbe–Klinger–Totaro) Let X be a compact Kähler manifold. Suppose
that there is a finite dimensional representation of π1(X), over some field, with infinite image.
Then X has a nonzero holomorphic symmetric differential.

Conversely, one could wonder whether the presence of one (or many) non vanishing
symmetric differential implies that the fundamental group is infinite.

Question 5.6 Let X be a compact complex manifold, suppose that there exists m > 0 such
that H0(X ,Symm�1

X ) �= 0 . Is the fundamental group of X infinite?

If X is Kähler and m = 1 then the answer is positive beacause of Hodge decomposition,
but in general it fails for higher m, even restricting to projective manifolds. In fact there
are varieties with ample cotangent bundle (hence a lot of symmetric differential forms) that
are simply connected: a recent result of Brotbek and Darondeau (cf. [4]) shows that the
cotangent bundle of a general complete intersection in P

N of high degree and dimension
n � N/2 is ample. If n � 2 Lefschetz theorem implies that such a complete intersection
is simply connected. Therefore we cannot hope to have a converse of Conjecture 5.4 and
a positive answer in general to Question 5.6. The counterexamples however is a projective
variety of general type (as in particular ωX is ample). Therefore we can state the following

Conjecture 5.7 Let X be a compact complex manifold. Suppose that dim X < k(X) and �1
X

is weakly semiample. Then the fundamental group of X is infinite.

A weakly semiample vector bundle is nef. In the Kähler case the conjecture above is a
consequence (cf. Remark 5.9) of the following conjecture by Wu and Zheng (cf. [27]):

Conjecture 5.8 (Wu–Zheng) Let X be a compact Kähler manifold, such that �1
X is nef.

Then a finite étale cover X ′ of X admits a smooth fibration in complex tori X ′ → Y onto a
manifold Y of dimension dim Y = k(X) and such that the canonical bundle ωY is ample.

Remark 5.9 A result of Claudon (cf. [12]) shows that if X is a compact Kähler manifold, and
f : X → Y is a smooth fibration in complex tori onto a compact Kähler manifold Y , then
the fundamental group of a fiber F injects into the fundamental group of the total space X .
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Therefore we get that for a fibration in tori X ′ → Y as above, the fundamental group of X ′
is infinite as soon as the dimension of Y is smaller than that of X (complex tori have infinite
fundamental groups), therefore Conjecture 5.8 implies Conjecture 5.7 in the Kähler case.
Claudon’s result does not hold for compact complex manifolds in general: Hopf surfaces
give an example where the map from the fundamental groups of the elliptic fiber to the
surface is not injective, however the cotangent bundle of a Hopf surface is not semiample,
and the Hopf surface has an infinite fundamental group in any case.

A recent theorem of Höring confirms Conjecture 5.8 in the projective case, assuming the
canonical line bundle ωX is semiample:

Theorem 5.10 (Höring, cf. [15]) Let X be a smooth projective variety. Suppose that �1
X is

nef and that ωX is semiample. Then Conjecture 5.8 holds for X.

Other interesting results in the compact complex case, considering the relations between
the existence of particular holomorphic symmetric differentials and infiniteness of the fun-
damental group, are the following theorems:

Theorem 5.11 (Bogomolov–De Oliveira, cf. [3]) Let X be a compact complex manifold. If
there exists a nontrivial locally exact holomorphic symmetric differential of rank 1 on X,
then the fundamental group of X is infinite.

Theorem 5.12 (Biswas–Dumitrescu, cf. [2]) Let X be a compact complex manifold. If there
exists a nowhere degenerate holomorphic symmetric differential of degree 2 on X, i.e. a form
ω ∈ H0(X ,Sym2�1

X ) such that ω(x) is a non-degenerate quadratic form on TX ,x , then the
fundamental group of X is infinite.

We can confirm some cases of Conjecture 5.7 with the following theorem, which gener-
alizes a result in [19]:

Theorem 5.13 Let X be a compact complex manifold of dimension n and Kodaira dimension
k(X).

i. If k(X) = 0 and �1
X is weakly semiample, then the fundamental group of X is infinite.

ii. If k(X) < n, X is projective, and �1
X is weakly semiample, then the fundamental group

of X is infinite.

Proof If P is a compact complex parallelizable manifold then the fundamental group π1(X)

is infinite. In fact suppose P = H/
 with H a complex Lie group and
 a discrete subgroup.
If 
 is finite then H is a compact complex Lie group, so it is a complex torus, which has
an infinite fundamental group contained in the fundamental group of P . If 
 is infinite then
π1(P) is infinite as well, as it contains 
.

Then case (i) follows from Theorem 4.1, as parallelizable manifolds have infinite funda-
mental group and so do their free quotients.

Case (ii) follows from Höring’s Theorem 5.10 as explained above, and it can be proven
explicitly as follows: it is proven in [15] that a smooth projective variety X with weakly
semiample cotangent bundle admits a finite étale cover X ′ → X which is a product X ′ =
A × Y of an abelian variety A of dimension n − k(X) and a smooth projective manifold
Y of dimension dim Y = k(X) with ample canonical line bundle ωY . Then as soon as
k(X) = dim(Y ) < dim X the fundamental group of X ′ (so the one of X ) is infinite. �
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5.2 Bimeromorphic characterization

We can wonder whether similar arguments can be used to characterize bimeromorphically
abelian varieties, or complex tori, or compact complex parallelizable manifolds.

In fact a birational characterization of abelian varieties was obtained under supposing that
the variety admits a good minimal model.

Definition 5.14 Let X be a smooth projective variety over C. We say that X admits a good
minimal model if there exists a normal projective variety Y with terminal singularities such
that X is birational to Y and that mKY is a base point free divisor for some integer m > 0.

In the work [20] the second named author obtains the following result:

Theorem 5.15 Let X be a smooth projective complex variety of Kodaira dimension k(X)

that admits a good minimal model. Then X is birational to an Abelian Variety if and only if
k(X) = 0 and �1

X is Asymptotically Generically Generated.

As under the usual conjecture ofMinimalModel Program every smooth projective variety
admits a good minimal model, it would be interesting to obtain the result above without mak-
ing use of that hypothesis. In particular we could try to obtain a more general bimeromorphic
characterization for compact complex parallelizable manifolds among all compact complex
manifolds, or for complex tori among Kähler manifolds.

Question 5.16 Let X be a compact complex manifold of Kodaira dimension k(X) = 0 such
that�1

X is Asymptotically Generically Generated. Is X bimeromorphic to a compact complex
parallelizable manifold?

Remark 5.17 If X is a compact Kähler manifold of dimension at most 3 then the Minimal
Model Program can be applied to X , i.e. a good minimal model for X exists. Therefore it
should be possible to answer the question above in that case.

In any case it would be interesting to obtain a bimeromorphic characterization without
making use of the Minimal Model Program, at least in the Kähler case.
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