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Abstract
A generically generated vector bundle on a smooth projective variety yields a
rationalmap to aGrassmannian, calledKodairamap.We answer a previous ques-
tion, raised by the asymptotic behaviour of such maps, giving rise to a birational
characterization of abelian varieties. In particular we prove that, under the con-
jectures of the Minimal Model Program, a smooth projective variety is birational
to an abelian variety if and only if it has Kodaira dimension 0 and some symmet-
ric power of its cotangent sheaf is generically generated by its global sections.
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1 INTRODUCTION

The aim of this work is to answer positively a question raised in the framework of the investigation on stable base loci for
vector bundles started in [1].
In the recentwork [17] we extended the construction of the Iitaka fibration to the case of higher rank vector bundles, and

the natural setting to do so is to consider asymptotically generically generated (AGG) vector bundles. A vector bundle𝐸 on
a projective variety 𝑋 is said to be asymptotically generically generated when some symmetric power Sym𝑚𝐸 is generated
over a nonempty open subset 𝑈 ⊆ 𝑋 by its global sections𝐻0

(
𝑋, Sym𝑚𝐸

)
.

In the same work we proved that if the cotangent bundle Ω𝑋 of a smooth projective variety 𝑋 with Kodaira dimen-
sion 0 is strongly semiample, then the variety must be isomorphic to an abelian Variety (we say that a vector bun-
dle 𝐸 on a projective variety 𝑋 is strongly semiample when some symmetric power Sym𝑚𝐸 is globally generated).
That led to consider the question whether the generic condition AGG can give a birational characterisation of abelian
varieties.
In the present work we give a positive answer to this question under the hypothesis that the main conjecture of the

minimal model program be satisfied:

Theorem 1.1. Let 𝑋 be a smooth variety of Kodaira dimension 0. Suppose that 𝑋 admits a minimal model 𝑌 and that the
abundance conjecture holds for 𝑌. If the vector bundle Ω𝑋 is asymptotically generically generated, then 𝑋 is birational to an
abelian variety.
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In particular in dimension at most 3 we obtain:

Corollary 1.2. Let 𝑋 be a smooth projective variety of dimension 𝑛 ⩽ 3. The following conditions are equivalent:

1. The variety 𝑋 is birational to an abelian variety, in particular the Albanese map 𝑎𝑋 ∶ 𝑋 → Alb(𝑋) is surjective and bira-
tional.

2. The variety 𝑋 has Kodaira dimension kod
(
𝑋,𝐾𝑋

)
= 0 and the cotangent bundle Ω𝑋 is asymptotically generically gener-

ated.

In order to prove the theorem we first prove that within the hypotheses we can apply a criterion due to Greb–Kebekus–
Peternell (cf. [8]) to show that the minimal model 𝑌 of 𝑋 is a quotient of an abelian variety, then we show that on such
a quotient the cotangent bundle of a resolution cannot be asymptotically generically generated unless the quotient is an
abelian variety itself.

2 NOTATION, PREVIOUS RESULTS, LEMMATA

Wewill work with projective varieties over the fieldℂ of complex numbers. When the variety𝑋 is smooth, we will denote
Ω𝑋 the cotangent bundle, and identify it with the sheaf of Kähler differentials on𝑋. As usual we will denoteΩ

𝑝
𝑋 =

⋀𝑝
Ω𝑋

the higher exterior powers, identified with the sheaf of holomorphic 𝑝-forms.
We give in this section the main definitions and results for base loci and Kodaira maps for vector bundles, most of the

definitions can be found in [17].

2.1 Stable base locus

Definition 2.1. Let 𝐸 be a vector bundle on a projective variety 𝑋.

1. We call base locus of 𝐸 the closed subset

Bs(𝐸) ∶=
{
𝑥 ∈ 𝑋 | 𝑒𝑣𝑥 ∶ 𝐻0(𝑋, 𝐸) → 𝐸(𝑥) is not surjective

}
⊆ 𝑋

and stable base locus the closed subset

𝔹(𝐸) ∶=
⋂
𝑚>0

Bs
(
Sym𝑚𝐸

)
⊆ 𝑋.

2. We say that a vector bundle 𝐸 on 𝑋 is strongly semiample if 𝔹(𝐸) = ∅, i.e. if some symmetric power of 𝐸 is globally
generated.

3. We say that a vector bundle 𝐸 on 𝑋 is generically generated if 𝐵𝑠(𝐸) ≠ 𝑋, i.e. if 𝐸 is generated over a nonempty open
subset 𝑈 ⊆ 𝑋 by its global sections𝐻0(𝑋, 𝐸).

4. We say that a vector bundle 𝐸 on 𝑋 is asymptotically generically generated if 𝔹(𝐸) ≠ 𝑋.

Remark 2.2. In general the definition of strong semiampleness is not equivalent to the usual definition of semiampleness:
it is stronger and not equivalent to the fact that ℙ(𝐸)(1) is semiample. A simple counterexample to the equivalence can
be found in [17] (Example 3.2).

The following theorems are proved in [17] (Theorems 4.14 and 4.17):

Theorem 2.3. Let 𝑋 be a smooth projective variety. Then 𝑋 is isomorphic to an abelian variety if and only if the cotangent
bundle is strongly semiample and 𝑋 has Kodaira dimension 0.

Theorem 2.4. Let 𝑋 be a smooth projective surface. Then 𝑋 is birational to an abelian variety if and only if the cotangent
bundle of 𝑋 is asymptotically generically generated and 𝑋 has Kodaira dimension 0.
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Those theorems lead to ask whether the following holds:

Question 2.5. Let 𝑋 be a smooth projective variety of Kodaira dimension 0. Suppose that the cotangent bundle Ω𝑋 is
asymptotically globally generated. Is 𝑋 birational to an abelian variety?

Themain result in this work is an affirmative answer to this question, at least in the casewhereMinimalModel Program
and Abundance Conjecture can be applied.
In order to prove these results, we apply our previous results in order to show that the theorem holds in the case a

minimal model of 𝑋 is smooth, then we show that within the hypotheses a singular minimal model cannot occur.

2.2 Automorphisms of abelian varieties and complex tori

We will use repeatedly the following lemmas:

Lemma 2.6. Let 𝑉 be a complex vector space and 𝐴 = 𝑉∕Λ a complex torus, let 𝐴𝑢𝑡(𝐴) be the automorphism group of 𝐴
as a complex manifold, let 𝑇𝐴 ⊂ 𝐴𝑢𝑡(𝐴) be the subgroup of translations, ant let 𝐴𝑢𝑡0(𝐴) be the subgroup of automorphisms
fixing 0 ∈ 𝐴.
Then themorphisms in𝐴𝑢𝑡0(𝐴)are also groupautomorphisms of𝐴, they are induced by linearmaps𝑉 → 𝑉 and there is an

exact sequence 0 → 𝑇𝐴 → 𝐴𝑢𝑡(𝐴) → 𝐴𝑢𝑡0(𝐴) → 0making 𝐴𝑢𝑡(𝐴) a semidirect product of the subgroup 𝑇𝐴 with 𝐴𝑢𝑡0(𝐴).

Proof. These are classical properties of complex tori. To prove them, observe that there is a sujective homomorphism:

𝐴𝑢𝑡(𝐴) ↠ 𝐴𝑢𝑡0(𝐴)

𝑔 ↦
(
𝑡−𝑔(0)◦𝑔 ∶ 𝑥 ↦ 𝑔(𝑥) − 𝑔(0)

)
.

This map has a section, and its kernel are exactly translations. To prove that automorphisms in 𝐴𝑢𝑡0(𝐴) are induced by
linearmap on𝑉 lift themaps to the universal cover of𝐴which is𝑉, then use periodicity properties (every partial derivative
is holomorphic and periodic modulo Λ so it is constant), cf. [3, Thm. 2.3] for more details. □

Corollary 2.7. Let 𝑔 ∶ 𝐴 → 𝐴 be an automorphism of a complex torus 𝐴 = 𝑉∕Λ. Then 𝑔 is a translation if and only if it
induces the identity 𝑔∗ ∶ 𝐻0

(
𝐴,Ω𝐴

)
→ 𝐻0

(
𝐴,Ω𝐴

)
on holomorphic 1-forms.

Proof. Recall that the tangent and cotangent bundles of 𝐴 are trivial, therefore there are canonical identifications:

𝑉 ⊗ 𝐴 ≅ 𝑇𝐴 and 𝑉∗ ⊗ 𝐴 ≅ Ω𝐴 .

So a map 𝑔 ∈ 𝐴𝑢𝑡0 is the identity if and only if it is induced by the identity map 𝐺 = 𝑖𝑑𝑉 ∶ 𝑉⟶̃𝑉, if and only if the
map 𝑔∗ = 𝐺𝑡 ∶ 𝑉∗ → 𝑉∗ is the identity. Then apply Lemma 2.6. □

2.3 Birational properties of holomorphic forms

We recall that having a globally generated cotangent bundle, or a globally generated symmetric power of a cotangent
bundle are not birationally invariant properties. To observe this, consider the blowing up 𝐴 of an abelian variety on a
point. Then the cotangent bundle on𝐴 and all its symmetric powers are trivial, then globally generated, but the cotangent
bundle and its symmetric powers on 𝐴 are not generated on the exceptional divisor.
However, we will use some birationally invariant properties of these bundles that we sum up here:

Lemma 2.8. Let 𝑋 and 𝑌 be smooth projective varieties, suppose that there exists a birational map 𝑋 ⤏ 𝑌. Then:

1. dim𝐻0
(
𝑋, Sym𝑚Ω𝑋

)
= dim𝐻0

(
𝑌, Sym𝑚Ω𝑌

)
;

2. A symmetric power Sym𝑚Ω𝑋 is generically generated if and only if Sym𝑚Ω𝑌 is generically generated;
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i.e. the property of having anasymptotically generically generated cotangent bundle is a birational property, and the dimension
of a symmetric𝑚-power of the cotangent bundle is a birational invariant of smooth projective varieties.

Proof. By resolution of the indeterminacy locus we can suppose that there exists a regular, surjective, birational map
𝑓 ∶ 𝑋 → 𝑌, with center 𝑍 ⊂ 𝑌 and exceptional divisor 𝐸 ⊂ 𝑋.
The pull back 𝑓∗ ∶ 𝐻0

(
𝑌, Sym𝑚Ω𝑌

)
→ 𝐻0

(
𝑋, Sym𝑚Ω𝑋

)
is an injective morphism. Its inverse can be constructed as

follows: restrict global sections of Sym𝑚Ω𝑋 to 𝑋 ⧵ 𝐸 ≅ 𝑌 ⧵ 𝑍, then as codim𝑌𝑍 ⩾ 2 these sections can be extended to 𝑌,
and this provides with an inverse of 𝑓∗, therefore the two spaces are isomorphic.
There is an exact sequence

0 → 𝑓∗Ω𝑌 → Ω𝑋 →  → 0

where  is a sheaf supported on the exceptional divisor 𝐸. Therefore out of the loci 𝑍 ⊂ 𝑌 and 𝐸 ⊂ 𝑋 the vector bundles
Sym𝑚Ω𝑌 and Sym𝑚Ω𝑋 are isomorphic, this isomorphism induces isomorphic spaces of global sections over 𝑌 and 𝑋, so
also the second property is statisfied. □

Remark 2.9. The proof above applies as well to show that the space of global sections of the 𝑚-tensor power of Ω𝑋 , and
all of its natural direct summands, are isomorphic.

3 QUOTIENTS OF ABELIAN VARIETIES

In this section we show that a smooth projective variety of Kodaira dimension 0 with asymptotically generically generated
cotangent bundle is birational to a quotient of an abelian variety.
We will use the following theorem to show that a minimal model of the variety we are dealing with is a quotient of an

abelian variety:

Theorem 3.1 (Greb–Kebekus–Peternell, [8]). Let 𝑌 be a normal, complex, projective variety of dimension 𝑛, with at worst
KLT singularities. Assume that 𝑌 is smooth in codimension 2, and assume that the canonical divisor of 𝑌 is numerically
trivial, 𝐾𝑌 ≡ 0. Further, assume that there exist ample divisors 𝐻1,… ,𝐻𝑛−2 on 𝑌 and a desingularization 𝜋 ∶ 𝑌 → 𝑌 such
that 𝑐2

(
Ω𝑌

)
.𝜋∗𝐻1 …𝜋∗𝐻𝑛−2 = 0. Then, there exist an abelian variety𝐴 and a finite, surjective, Galoismorphism𝐴 → 𝑌 that

is étale in codimension 2.

Remark 3.2. We remark that by Kawamata [12] the condition that 𝐾𝑌 ≡ 0 is equivalent to the fact that 𝐾𝑌 is torsion
(therefore 𝐾𝑌 is semiample and 𝑌 has Kodaira dimension 0). The abundance conjecture predicts that if 𝐾𝑌 is nef then it
is semiample, which for Kodaira dimension 0 varieties 𝑌 is the same as the equivalence between “𝐾𝑌 nef” and “𝐾𝑌 ≡ 0”.

Remark 3.3. We observed above that for a smooth variety, the property of having an asymptotically generically gener-
ated cotangent bundle is a birationally invariant property (Lemma 2.8), contrarily to having a strongly semiample cotan-
gent bundle.

Let us use the result above in order to prove that the variety 𝑋 of Kodaira dimension 0 with asymptotically generically
generated cotangent bundle is birational to a quotient of an Abelian variety.

Proposition 3.4. Let𝑋 be a smooth projective variety with 𝑘𝑜𝑑(𝑋) = 0. Suppose that the cotangent bundleΩ𝑋 is asymptoti-
cally generically generated, and that𝑋 admits aminimalmodel𝑌 that satisfies the abundance conjecture (i.e.𝑌 has terminal
singularities and 𝐾𝑌 is numerically trivial). Then, there exists an abelian variety 𝐴 and a finite, surjective, Galois morphism
𝐴 → 𝑌 that is étale in codimension 2. In particular 𝑋 is birational to a quotient of an abelian variety by a finite group, and
the quotient map is ètale in codimension 2.

Proof. Consider a minimal model 𝑌 ∼𝑏𝑖𝑟 𝑋 such that 𝐾𝑌 is numerically trivial. Let us choose a resolution of singularities
𝜋 ∶ 𝑌 → 𝑌, and show that, for some 𝐻1,… ,𝐻2𝑛−2 ample divisors on 𝑌, we have 𝑐2

(
Ω𝑌

)
.𝜋∗𝐻1 …𝜋∗𝐻𝑛−2 = 0. As 𝑌 has

terminal singularities, 𝑌𝑠𝑖𝑛𝑔 has codimension at least 3 in 𝑌, so we can suppose that 𝐻1 ∩ ⋯ ∩ 𝐻𝑛−2 ∩ 𝑌𝑠𝑖𝑛𝑔 = ∅. As 𝑌 is
smooth and birational to 𝑋, for some 𝑘 > 0 the symmetric power Sym𝑘Ω𝑌 is generically generated (Lemma 2.8).
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Now let us consider the base locus of Sym𝑘Ω𝑌 : this is contained in a divisor in 𝑌 linearly equivalent to a multiple of
the canonical divisor 𝐾𝑌 . In fact, let 𝑅 be the rank of Sym𝑘Ω𝑌 , choose 𝑅 global sections 𝜎1, … , 𝜎𝑅 that generate Sym𝑘Ω𝑌

at one point 𝑦, then 𝜎1 ∧ ⋯ ∧ 𝜎𝑅 is a global section of det
(
Sym𝑘Ω𝑌

)
, therefore vanishes on a multiple of the canonical

divisor. So the sections 𝜎1, … , 𝜎𝑅 generate Sym𝑘Ω𝑌 outside of that divisor. As the Kodaira dimension of 𝑌 is 0 and 𝑌 is
terminal, any multiple of the canonical divisor does not move and its support is contained in the exceptional locus of 𝜋.
So Bs

(
Sym𝑘Ω𝑌

)
⊂ 𝐸𝑥𝑐(𝜋). In particular

(
Sym𝑘Ω𝑌

)
|𝜋−1(𝐻1∩⋯∩𝐻𝑛−2)

is generated by its global sections, its determinant is
trivial, and therefore it is trivial.
So

(
Ω𝑌

)
|𝜋−1(𝐻1∩⋯∩𝐻𝑛−2)

is a vector bundle on a smooth projective variety, whose symmetric 𝑘-power is trivial. It can
be shown that such a vector bundle is a direct sum of torsion line bundles (cf. [16, Thm. 3.2 and Rem. 5.3]), therefore its
Chern classes are 0.
Then 𝑐2

(
Ω𝑌

)
.𝜋∗𝐻1 …𝜋∗𝐻𝑛−2 = 0, and we can apply Proposition 3.1. □

So we have shown that, for a Kodaira dimension 0 variety 𝑋 (satisfying the MMP conjectures), if the cotangent is
asymptotically generically generated then a model of 𝑋 is a quotient of an abelian variety. Let us distinguish two cases
according to this quotient being smooth or singular.

4 THE SMOOTH CASE

In this section we show that a smooth projective variety 𝑋 with Kodaira dimension 0 and asymptotically generically
generated cotangent bundle is birational to an abelian variety if a minimal model of 𝑋 is smooth.
The results of this section make use of very similar constructions to some of the ones in [17], we will recall anyway the

constructions needed.
We have proven above that a smooth projective variety 𝑋 with Kodaira dimension 0 (satisfying the MMP conjec-

tures) and asymptotically generically generated cotangent bundle Ω𝑋 has a minimal model 𝑌 which is a quotient of an
abelian variety.
Let us show that if the minimal model 𝑌 is smooth then 𝑌 is an abelian variety itself:

Theorem 4.1. Let 𝑋 be a smooth projective variety, suppose that the cotangent bundle Ω𝑋 is asymptotically generated by
global sections, and that 𝑋 is birational to a smooth quotient 𝑌 = 𝐴∕𝐺 of an abelian variety by a finite group. Then 𝑌 is an
abelian variety.

Proof. In order to prove that 𝑌 = 𝐴∕𝐺 is an abelian variety we will prove that 𝐺 acts on 𝐴 by translations, i.e. we will
prove that the action of 𝐺 on𝐻0

(
𝐴,Ω𝐴

)
is trivial (cf. Corollary 2.7).

Since the quotient 𝑓 ∶ 𝐴 → 𝐴∕𝐺 = 𝑌 is smooth and 𝑌 has Kodaira dimension 0, then 𝑓 is an étale map: if there were
ramification, there would be an effective divisor 𝑅 such that 0 = 𝐾𝐴 = 𝑓∗𝐾𝑌 + 𝑅, therefore𝐾𝑌 would not be pseudoeffec-
tive, and 𝑌 would be uniruled by Theorem 2.6 in [2].
Therefore 𝑓∗Ω𝑌 ≅ Ω𝐴, and𝐻0

(
𝑌, Sym𝑚Ω𝑌

)
≅ 𝐻0

(
𝐴, Sym𝑚Ω𝐴

)𝐺
for all𝑚 > 0. As 𝑌 is a smooth variety birational to

𝑋, thenΩ𝑌 is asymptotically generically generated (by Lemma 2.8 above), therefore dim𝐻0
(
𝑌, Sym𝑘Ω𝑌

)
⩾ rk

(
Sym𝑘Ω𝑌

)
,

for some 𝑘 > 0. So the inclusion

𝐻0
(
𝑌, Sym𝑘Ω𝑌

)
≅ 𝐻0

(
𝐴, Sym𝑘Ω𝐴

)𝐺
⊆ 𝐻0

(
𝐴, Sym𝑘Ω𝐴

)

must be an equality, as dim𝐻0
(
𝐴, Sym𝑘Ω𝐴

)
= rk

(
Sym𝑘Ω𝐴

)
for all 𝑘 > 0.

So the action of 𝐺 on 𝐻0
(
𝐴, Sym𝑘Ω𝐴

)
is trivial, and this can happen if and only if 𝐺 acts on 𝐻0

(
𝐴,Ω𝐴

)
through

homothethies (i.e. multiplication by roots of 1): in fact as 𝐺 is a finite group, then the action of an element 𝑔 ∈ 𝐺 on
𝐻0

(
𝐴,Ω

)
is diagonalizable. Given two eigenvectors 𝑣, 𝑤 ∈ 𝐻0

(
𝐴,Ω𝐴

)
, with eigenvalues 𝜆 and 𝜇, choosing 𝑘 > 0 such

that 𝜆𝑘 = 𝜇𝑘 = 1 and such that 𝐺 acts trivially on𝐻0
(
𝐴, Sym𝑘Ω𝐴

)
= Sym𝑘𝐻0

(
𝐴,Ω𝐴

)
, we have

𝑔 ⋅
(
𝑣𝑘−1.𝑤

)
= 𝜆𝑘−1𝑣𝑘−1.𝜇𝑤 =

(𝜇

𝜆

)
𝑣𝑘−1.𝑤 = 𝑣𝑘−1.𝑤

so 𝜆 = 𝜇.
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But in this case the action of 𝐺 is trivial on𝐻0
(
𝐴,Ω𝐴

)
, otherwise there would be points with non-trivial stabilizer, and

this cannot occur as we showed that the quotient is étale: if the action of an element 𝑔 ∈ 𝐺 on 𝐻0
(
𝑋,Ω𝐴

)
is given by

multiplication by 𝜆𝑔 ≠ 1, then 𝑔 acts on 𝐴 by 𝑥 ↦ 𝜆𝑔.𝑥 + 𝜏𝑔 for some 𝜏𝑔 ∈ 𝐴 (cf. Lemma 2.6), therefore there is a point

𝑦 =
(
1 − 𝜆𝑔

)−1
𝜏𝑔 ∈ 𝐴 fixed by 𝑔.

Hence, by Corollary 2.7, 𝐺 acts by translations on the variety 𝐴, so the quotient 𝑌 is an abelian variety. □

Remark 4.2. The proof of the last theorem is very similar to the proof that a Kodaira dimension 0 variety with strongly
semiample cotangent bundle is isomorphic to an abelian variety given in [17], we just observe that strong semiampleness
is not needed here, and that the characterisation of abelian varieties appearing in [17] is a corollary of Theorem 4.1.

5 THE SINGULAR CASE

In this section we show that the cotangent bundle of a resolution of singularities of a singular quotient 𝑌 = 𝐴∕𝐺 cannot
be asymptotically generically generated.
We will use the following result on extensions of symmetric differentials:

Theorem5.1 (Greb–Kebekus–Kovacs, [6, Cor. 3.2]). Let Y be a normal variety. Fix an integer 𝑘 > 0. Suppose that there exists
a normal variety 𝑊 and a finite surjective morphism 𝛾 ∶ 𝑊 → 𝑌, such that for any resolution of singularities 𝑝 ∶ 𝑊 → 𝑊

with simple normal crossing (snc) exceptional locus 𝐹 = 𝐸𝑥𝑐(𝑝) the sheaf

𝑝∗Sym𝑘Ω1

𝑊
(𝑙𝑜𝑔𝐹)

is reflexive. Then for any resolution of singularities 𝜋 ∶ 𝑌 → 𝑌 with snc exceptional locus 𝐸 = 𝐸𝑥𝑐(𝜋) the sheaf
𝜋∗Sym𝑘Ω1

𝑌
(𝑙𝑜𝑔 𝐸) is reflexive.

Remark 5.2. In [6] the property of the sheaf 𝜋∗Sym𝑘Ω1
𝑌
(𝑙𝑜𝑔 𝐸) being reflexive for any such resolution of singularities of

𝑌 is stated by saying that “Extension theorem holds for Sym𝑘-forms on 𝑌”, and is considered in greater generality for
reflexive tensor operations on differential 1-forms on logarithmic pairs (𝑌, Δ).

Theorem 5.3. Let 𝑋 be a smooth projective variety, and suppose that 𝑋 is birational to a quotient of an abelian variety 𝐴 by
a finite group 𝐺, such that the quotient map is étale in codimension 1. If 𝑌 = 𝐴∕𝐺 is singular, then the cotangent bundleΩ𝑋

is not asymptotically generically generated.

Proof. We apply Theorem 5.1 to 𝑌 and the finite map

𝛾 ∶ 𝐴 → 𝑌 = 𝐴∕𝐺 .

As𝐴 is smooth, the hypothesis trivially apply. Let us call𝜋 ∶ 𝑌 → 𝑌 a resolution of singularities of𝑌, with snc exceptional
divisor 𝐸, then for any𝑚 > 0 the sheaf 𝜋∗Sym𝑚Ω1

𝑌
(𝑙𝑜𝑔 𝐸) is reflexive. Let 𝐹 ⊂ 𝑌 be the locus where themap 𝛾 is not étale,

this locus having codimension at least 2. So

𝐻0
(
𝑌, 𝜋∗Sym𝑚Ω1

𝑌
(𝑙𝑜𝑔 𝐸)

)
= 𝐻0

(
𝑌 ⧵ (𝑌𝑠𝑖𝑛𝑔 ∪ 𝐹), 𝜋∗Sym𝑚Ω1

𝑌
(𝑙𝑜𝑔 𝐸)

)

and we have the following inclusions for all𝑚 > 0:

𝐻0
(
𝑌, Sym𝑚Ω𝑌

)
⊆ 𝐻0

(
𝑌, Sym𝑚Ω𝑌(𝑙𝑜𝑔 𝐸)

)
= 𝐻0

(
𝑌, 𝜋∗Sym𝑚Ω1

𝑌
(𝑙𝑜𝑔 𝐸)

)

= 𝐻0
(
𝑌 ⧵

(
𝑌𝑠𝑖𝑛𝑔 ∪ 𝐹

)
, 𝜋∗Sym𝑚Ω1

𝑌
(𝑙𝑜𝑔 𝐸)

)
⊆ 𝐻0

(
𝐴, Sym𝑚Ω𝐴

)𝐺
⊆ 𝐻0

(
𝐴, Sym𝑚Ω𝐴

)

(the inclusion 𝐻0
(
𝑌 ⧵ (𝑌𝑠𝑖𝑛𝑔 ∪ 𝐹), 𝜋∗Sym𝑚Ω1

𝑌
(𝑙𝑜𝑔 𝐸)

)
⊆ 𝐻0

(
𝐴, Sym𝑚Ω𝐴

)𝐺
holding by pulling back symmetric forms

on 𝑌 ⧵ (𝑌𝑠𝑖𝑛𝑔 ∪ 𝐹) to 𝐺-invariant symmetric forms on 𝐴 ⧵ 𝛾−1(𝑌𝑠𝑖𝑛𝑔 ∪ 𝐹) and extending them to 𝐴).
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Now, suppose by contradiction that 𝑋 has asymptotically generically generated cotangent bundle Ω𝑋 , then the same
holds for the cotangent bundle Ω𝑌 as 𝑌 is smooth and birational to 𝑋, so for some 𝑘 > 0:

rk
(
Sym𝑘Ω𝑌

)
⩽ dim𝐻0

(
𝑌, Sym𝑘Ω𝑌

)
⩽ dim𝐻0

(
𝐴, Sym𝑘Ω𝐴

)
= rk

(
Sym𝑘Ω𝐴

)
,

but the two vector bundles have the same rank, so all the inclusions above are equalities, in particular

𝐻0
(
𝐴, Sym𝑘Ω𝐴

)𝐺
= 𝐻0

(
𝐴, Sym𝑘Ω𝐴

)
(5.1)

and

𝐻0
(
𝐴, Sym𝑘Ω𝐴

)
≅ 𝐻0

(
𝑌, Sym𝑘Ω𝑌

)
= 𝐻0

(
𝑌, Sym𝑘Ω𝑌(𝑙𝑜𝑔 𝐸)

)
. (5.2)

Let us remark that by Theorem 4.1 above (and its proof), we know that if 𝑌 = 𝐴∕𝐺 is smooth then𝐺 acts by translations
on 𝐴 and indeed the inclusions above are equalities in this case.
Let us show that if 𝑌 = 𝐴∕𝐺 is singular the equalities above cannot hold.
First, notice that we can apply the same arguments as in the proof of Theorem 4.1 and show that

𝐻0
(
𝐴, Sym𝑘Ω𝐴

)𝐺
= 𝐻0

(
𝐴, Sym𝑘Ω𝐴

)
implies that 𝐺 acts on 𝐻0

(
𝐴,Ω𝐴

)
by homothethies, i.e. the action

𝐺 →𝐺𝐿
(
𝐻0

(
𝐴,Ω𝐴

))
is given by 𝑔 ↦ 𝜒𝑔𝐼𝑑𝐻0(𝐴,Ω𝐴) for some character 𝜒 ∶ 𝐺 → ℂ∗.

Therefore we can study in detail the local structure of the singularities and their resolutions. Let us observe that the
singular points of 𝑌 = 𝐴∕𝐺 are isolated, and can be resolved by one blowing-up each singular point.
In fact if a point 𝑎 ∈ 𝐴 has a non trivial stabilizer Stab𝑎 ⊆ 𝐺, the action Stab𝑎 → 𝐺𝐿

(
𝐻0

(
𝐴,Ω𝐴

))
is faithful, as we can

assume that the action of 𝐺 on 𝐴 is faithful, and a non-trivial element 𝑔 ∈ 𝐺 that acts trivially on 𝐺𝐿
(
𝐻0

(
𝐴,Ω𝐴

))
would

be a translation and could not be in Stab𝑎. Then the stabilizer Stab𝑎 is a cyclic group, as it injects in ℂ∗ ⋅ 𝐼𝑑𝐻0(𝐴,Ω𝐴).
So the stabilizer is a cyclic group that acts on a sufficiently small coordinate neighborhood of 𝑎 as mutiplication on the

coordinates by roots of unity,

𝑔 ∶
(
𝑢1, … , 𝑢𝑛

)
↦

(
𝜒𝑔𝑢1, … , 𝜒𝑔𝑢𝑛

)

therefore the point 𝑎 is the only point in the neighborhood that is stabilized by an element of 𝐺, and the image of 𝑎 in 𝑌

is an isolated cyclic quotient singularity of type 1

𝑟
(1, … , 1), with 𝑟 being the order of the stabilizer (cf. [18, 4.2]).

This kind of singularities are are known to be isomorphic to cones on a Veronese variety and to be resolved by a single
blowing up, furthermore if we write this quotient singularity as ℂ𝑛 → ℂ𝑛∕ℤ𝑟, then the quotient map lifts to a map from
the blowing up of ℂ𝑛 in 0 to the resolution of the singularity of ℂ𝑛∕ℤ𝑟. We carry out the proof of these facts, which are
well known to experts, in Remark 5.4 below.
Now we can study the differentials on the resolution of singularities by considering a commutative diagram of the

following form:

(5.3)

where𝜋 is the resolution of𝑌 by blowing up the finite number of points in𝑌𝑠𝑖𝑛𝑔, 𝛾 is the quotientmap,𝐴 is the blowing-up
of 𝐴 in the points 𝛾−1(𝑌𝑠𝑖𝑛𝑔), and 𝑓 a lift of the quotient map 𝛾 to a map 𝐴 → 𝑌. Furthermore 𝑓 is a covering of degree
|𝐺| ramified along the exceptional locus of 𝑝, and the action of 𝐺 on 𝐴 extends to an action of 𝐺 on 𝐴, whose quotient is
𝑓 ∶ 𝐴 → 𝑌.
To construct the diagram and prove the statements above, we can provide first a local description and then check that

the action of 𝐺 extends globally to 𝐴 and that its quotient is 𝑌.
First notice that since a lift of the map 𝛾 exists locally around the points in 𝛾−1(𝑌𝑠𝑖𝑛𝑔) (according to Remark 5.4 below),

then it exists globally such a map 𝑓 ∶ 𝐴 → 𝑌.
Then observe that, by the slice theorem (cf. [4, paragraph 2], for the use we make of Luna’s étale slice theorem proven

in [15]), we can choose a local neighborhood𝑈 of a point 𝑥 ∈ 𝐴 such that the quotient𝑈∕Stab𝑥 is a neighborhood of 𝛾(𝑥).
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Let us construct this explicitly for a point 𝑎 ∈ 𝐴 with non-trivial stabilizer: we can choose a sufficiently small coordinate
neighborhood 𝑈𝑎 ⊂ 𝐴 around a point 𝑎 ∈ 𝐴 with nontrivial stabilizer Stab𝑎 ⊆ 𝐺, in such a way that 𝑈𝑎 is stable for the
action of Stab𝑎, and that all of its translates by other elements of𝐺 are pairwise disjoint. Then for an element 𝑔 ∈ 𝐺 ⧵ Stab𝑎,
the other point 𝑔 ⋅ 𝑎 ∈ 𝐴 has the conjugated of Stab𝑎 as stabilizer, the quotient of the neighborhood 𝑈𝑎∕Stab𝑎 is isomor-
phic to the quotient

(
𝑔 ⋅ 𝑈𝑎

)
∕𝑔 ⋅ Stab𝑎 ⋅ 𝑔−1, and these quotients are identified to neighborhoods of the point 𝛾(𝑎) ∈ 𝑌.

Now an element in the stabilizer acts on 𝑈𝑎 by multiplying all coordinates by the same root of the unity, so we can lift
the action of Stab𝑎 on 𝑈𝑎 to the blowing-up 𝑈𝑎 of the point 𝑎, and remark that the exceptional divisor is fixed by this
action, so the quotient𝑈𝑎∕Stab𝑎 is isomorphic to the resolution of the singularity of the neighborhood 𝛾(𝑈𝑎) obtained by
blowing up the singular point. If an element 𝑔 is not in the stabilizer Stab𝑎, it will give an isomorphism between 𝑈𝑎 and
𝑔 ⋅ 𝑈𝑎. Repeating this argument with all points having a non-trivial stabilizer and shrinking the open neighborhoods if
needed, we can see that the action of𝐺 on𝐴 extends to an action on𝐴 (in fact, we are lifting the action of𝐺 to the blowing
up of a 𝐺-invariant subset).
The quotient𝐴∕𝐺 is normal, themap𝑓 ∶ 𝐴 → 𝑌 is clearly𝐺-invariant so it factors through𝐴∕𝐺, and themap𝐴∕𝐺 → 𝑌

is a bijectivemap between normal varieties (locally it is described above and in Remark 5.4) therefore it is an isomorphism.
So quotient map for the action of 𝐺 on 𝐴 is 𝑓 ∶ 𝐴 → 𝑌.
In order to describe the map 𝑓, let us observe that we can choose local coordinates

(
𝑢1, … , 𝑢𝑛

)
∈ 𝐴 around a point

𝑎 ∈ 𝐴 with non trivial stabilizer, in such a way that the action of Stab𝑎 on 𝐴 is given by

𝑔 ⋅
(
𝑢1, … , 𝑢𝑛

)
=
(
𝜒𝑔𝑢1, … , 𝜒𝑔𝑢𝑛

)
.

And we can choose local coordinates in the blowing-up
(
𝑥1, 𝑤2 … ,𝑤𝑛

)
∈ 𝐴 around a point 𝑥 ∈ 𝐴 in the exceptional

divisor, with 𝑝(𝑥) = 𝑎 ∈ 𝐴, in such a way that the blowing-up map 𝑝 ∶ 𝐴 → 𝐴 is given in local coordinates by

(
𝑥1, 𝑤2 … ,𝑤𝑛

)
↦

(
𝑥1, 𝑥1𝑤2 … , 𝑥1𝑤𝑛

)
,

i.e. the exceptional divisor 𝐸𝑥𝑐(𝑝) is given locally by the equation 𝑥1 = 0, and the blowing up is defined locally by
𝑤𝑖 = 𝑢𝑖∕𝑢1.
Then the action of 𝑔 ∈ Stab𝑎 on 𝐴 lifts to an action on 𝐴 which is given in local coordinates by:

𝑔 ⋅
(
𝑥1, 𝑤2 … ,𝑤𝑛

)
=
(
𝜒𝑔𝑥1, 𝑤2 … ,𝑤𝑛

)
,

with fixed divisor 𝑥1 = 0. Therefore we have a covering 𝑓 ∶ 𝐴 → 𝑌 ramified along the divisor 𝑥1 = 0, that in those local
on 𝐴 and local coordinates (𝑦1, … , 𝑦𝑛) on 𝑌 is given by:

(
𝑥1, 𝑤2 … ,𝑤𝑛

)
↦

(
𝑥𝑚

1
, 𝑤2 … ,𝑤𝑛

)
.

Now, by Lemma 2.8, as 𝑝 is birational and𝐴 and𝐴 are smooth, 𝑝∗ is an isomorphism. Finally, the equalities (5.2) above
show that in the following diagram the other vertical map and 𝛾∗ are isomorphisms:

However we see that

𝑓∗ ∶ 𝐻0
(
𝑌, Sym𝑘Ω𝑌

)
→ 𝐻0

(
𝐴, Sym𝑘Ω𝐴

)

cannot be an isomorphism: in fact, given the local coordinates above, we can choose a base 𝑑𝑢1, … , 𝑑𝑢𝑛 of𝐻0
(
𝐴,Ω𝐴

)
. Now

the holomorphic symmetric differential
(
𝑑𝑢1

)𝑘
is pulled back to

(
𝑑𝑥1

)𝑘
∈ 𝐻0

(
𝐴, Sym𝑘Ω𝐴

)
, and this cannot be the pull-

back of a holomorphic symmetric differential in 𝐻0
(
𝑌, Sym𝑘Ω𝑌

)
, in fact 𝑓∗𝑑𝑦1 = 𝑚𝑥𝑚−1

1
𝑑𝑥1 vanishes along the divisor

𝑥1 = 0, and 𝑓∗𝑑𝑦𝑗 = 𝑑𝑤𝑗 for 𝑗 = 2,… , 𝑛 so no holomorphic symmetric differential on 𝑌 can pull back to
(
𝑑𝑥1

)𝑘
. □
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Remark 5.4. Let us show here the properties of the singularity of type 1

𝑟
(1, … , 1) stated in the proof of the theorem above.

A general reference for these matters is Reid’s Young Person’s Guide [18].
First let us remark that the singularity is a cone on aVeronese variety: the action is that of the group𝐺 of 𝑟th roots of unity

on ℂ𝑛 where the generator 𝜇 = exp(2𝜋𝑖∕𝑟) acts diagonally by 𝜇.
(
𝑥1, … , 𝑥𝑛

)
=
(
𝜇𝑥1, … , 𝜇𝑥𝑛

)
. The invariant polynomials

for this action are generated by all monomials 𝑋𝐼 of degree 𝑟 in 𝑋1,… , 𝑋𝑛. Therefore, the quotientℂ𝑛 → ℂ𝑛∕𝐺 is given by
the ring injection

ℂ
[
𝑋1,… , 𝑋𝑛

]𝐺
= ℂ

[
𝑋𝐼 | 𝐼 =

(
𝑖1, … , 𝑖𝑛

)
, 𝑖1 + ⋯ + 𝑖𝑛 = 𝑟

]
⊂ ℂ

[
𝑋1,… , 𝑋𝑛

]
.

Now the affine variety corresponding to the algebra generated by all degree 𝑟 monomials is a cone on the degree 𝑟

Veronese image of ℙ𝑛−1 in ℙ𝑁−1, in other words it is the affine cone in ℂ𝑁 corresponding to the homogeneous ideal of
the image of ℙ𝑛−1 in ℙ𝑁−1, where 𝑁 is the number of monomials of degree 𝑟 in 𝑛 variables. Therefore, to resolve the
singularity it is enough to blow up the vertex (0, … , 0) ∈ ℂ𝑁 .
Let us consider the blowing up of the point (0, … , 0) ∈ ℂ𝑁 , the blowing up of the point (0, … , 0) ∈ ℂ𝑛, and the following

diagram:

The maximal ideal corresponding to the point (0, … , 0) ∈ ℂ𝑁 has inverse image ideal by 𝛾 the power
(
𝑋1,… , 𝑋𝑛

)𝑟
⊂

ℂ
[
𝑋1,… , 𝑋𝑛

]
, and inverse ideal sheaf by 𝛾◦𝑝 the invertible sheafℂ(−𝑟𝐸), where 𝐸 is the exceptional divisor of 𝑝: in fact

in local coordinates
(
𝑥1, 𝑤2, … ,𝑤𝑛

)
around a point in 𝐸, where 𝐸 is given by the equation 𝑥1 = 0, the map 𝑝 is given by(

𝑥1, 𝑤2 … ,𝑤𝑛

)
↦

(
𝑥1, 𝑥1𝑤2 … , 𝑥1𝑤𝑛

)
, the quotient map 𝛾 is given by

(
𝑥1, … 𝑥𝑛

)
↦

(
𝑥𝐼

)
, so the inverse ideal sheaf is given

locally by 𝑥𝑟
1

= 0.
Therefore by the universal property of blowing up (cf. [9, Prop. 7.14, Ch. II]) the map 𝛾◦𝑝 factors through the blowing

up 𝜋, and in particular gives a map ℂ̃𝑛 → ℂ̃𝑛∕𝐺, which is a cyclic 𝑟-cover ramified over 𝐸. This local construction can be
extended globally to construct the commutative diagram (5.3) above, as detailed in the proof of Theorem 5.3.

This completes the proof of Theorem 1.1. Corollary 1.2 follows as the Minimal Model Program holds in dimension 3,
together with abundance conjecture (cf. [13]).

6 REMARKS AND EXAMPLES

6.1 Compact Kähler case

We remark that most of the techniques used hold in the projective case, in particular Theorem 3.1, and this is the reason
for stating the main results for smooth projective varieties.
However the theorem proved in [17], characterizing abelian varieties as those varieties of Kodaira dimension 0 hav-

ing some symmetric power of the cotangent bundle globally generated, works as well to characterize complex tori
(biholomorphically) among compact Kähler manifolds. This construction has been carried out explicitely in the recent
work [16] together with some considerations on compact complex manifolds, so the main question of having a bimero-
morphic characterisation through symmetric differentials makes sense also for compact Kähler or compact complex
manifolds.
According to [11] the MMP should work for Kähler manifolds, and does work in dimension 3, with a suitable charac-

terization of torus quotients, so in dimension 3 the same characterization for compact Kähler manifolds bimeromorphic
to complex tori should hold. Furthermore a characterisation of 3-dimensional compact complex manifolds which arise
as quotients of complex tori by finite groups has been given in [5], and it would be interesting to prove a bimeromorphic
characterisation in dimension 3 using these results.
In any case it is worth askingwhether a similar bimeromorphic characterisation of complex tori holds in any dimension.

We leave this to future investigations.
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6.2 Higher Kodaira dimension

In [10], Höring gives a classification of varieties 𝑋 of any Kodaira dimension 𝑘(𝑋) having (strongly) semiample cotangent
bundle Ω𝑋 , in particular he proves that these varieties are finite étale quotients of a product of an abelian variety and a
variety 𝑌 with ample canonical bundle and same Kodaira dimension as 𝑋.
In case of Kodaira dimension 0 we proved in [17] that we do not need to look at étale quotients, and here we prove that

we have a birational characterization as well. It would be interesting to look at varieties with higher Kodaira dimension
and AGG cotangent bundle as well.

6.3 Kummer varieties

The Kummer surface, being a 𝐾3-surface, in known not to have any holomorphic symmetric differentials (cf. [14]). In
fact Kummer surfaces are defined as resolution of singular quotients of abelian surfaces by the group 𝐺 = {±1}, therefore
Theorem 5.3 applies: the cotangent bundle and its symmetric powers are not generically generated. In this case there
is the advantage that the action of the finite group 𝐺 = {±1} is very easy to describe, in particular it is trivial on the
holomorphic sections of all even symmetric powers Sym2𝑘Ω𝐴, therefore many of the equalities appearing in the proof of
Theorem 5.3 hold. We think it may be useful to follow explicitly the constructions studied above, and observe how the
various spaces of holomorphic differentials behave in this case. In particular we can understand clearly the reason why
there is an isomorphism of the spaces of logarithmic symmetric differentials (of even degree) on the Kummer surface and
holomorphic symmetric differentials on the abelian surface, while there are no holomorphic symmetric differentials on
the Kummer surface.
Furthermore this example can be studied in the higher dimensional case as well, considering quotients of abelian vari-

eties of any dimension by the group 𝐺 = {±1}.

Example 6.1. Let 𝐴 be an abelian surface, 𝑌 = 𝐴∕{±1}, and 𝜋 ∶ 𝑋 → 𝑌 the resolution of singularities, where 𝑋 is a K3
surface. The singular surface 𝑌 is not terminal, however it does have klt singularities. Then we can apply Theorem 5.1 to
the map 𝜋 ∶ 𝑋 → 𝑌. We have a diagram as in the proof of Theorem 5.3:

with 𝑝 ∶ 𝐴 → 𝐴 the blowing up of𝐴 in the 16 points of order 2, 𝑓 covering of degree 2, ramified over the exceptional locus
of 𝑝. For𝑚 = 2 we have:

𝐻0
(
𝑋, Sym2Ω𝑋(𝑙𝑜𝑔 𝐸)

)
= 𝐻0

(
𝑌 ⧵ 𝑌𝑠𝑖𝑛𝑔, Sym2Ω𝑌

)

= 𝐻0
(
𝐴, Sym2Ω𝐴

)±1
= 𝐻0

(
𝐴, Sym2Ω𝐴

)
= 𝐻0

(
𝐴, Sym2Ω𝐴

)
.

Now, following the same notations notations as in the proof Theorem 5.3, we see that a basis 𝑑𝑢1, 𝑑𝑢2 of 𝐻0
(
𝐴,Ω𝐴

)
pulls back to the basis of𝐻0

(
𝐴,Ω𝐴

)
that locally looks like 𝑑𝑥1, 𝑤2𝑑𝑥1 + 𝑥1𝑑𝑤2.

The basis 𝑑𝑢2
1
, 𝑑𝑢1𝑑𝑢2, 𝑑𝑢2

2
of 𝐻0

(
𝐴, Sym2Ω𝐴

)
is invariant for the action of {±1}, and pulls back to a basis of

𝐻0
(
𝐴, Sym2Ω𝐴

)
.

Now clearly 𝑑𝑥2
1
is not coming from a symmetric differential in 𝐻0

(
𝑋, Sym2Ω𝑋

)
as 𝑓∗𝑑𝑦1 = 2𝑥1𝑑𝑥1. However

𝑓∗
(

1

𝑦1

𝑑𝑦2
1

)
= 4𝑑𝑥2

1
, so we can see the reason why

𝑝∗𝐻0
(
𝐴, Sym2Ω𝐴

)
≅ 𝑓∗𝐻0

(
𝑋, Sym2Ω𝑋(𝑙𝑜𝑔 𝐸)

)

Example 6.2. In the same way, given an abelian variety 𝐴 of dimension at least 3, a Kummer variety 𝑌 = 𝐴∕{±1} has
isolated singularities, and is terminal, so we can follow the same constructions as above. In that case the second symmetric
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power of the cotangent bundle cannot be generically generated, however we have that

𝑝∗𝐻0
(
𝐴, Sym2Ω𝐴

)
≅ 𝑓∗𝐻0

(
𝑋, Sym2Ω𝑋(𝑙𝑜𝑔 𝐸)

)

as in the 2-dimensional case.

Remark 6.3. If we consider exterior powers instead of symmetric differentials, then we do not need to look at the logarith-
mic complex: in [7] it is proven that for any KLT variety 𝑋 with log resolution 𝜋 ∶ 𝑋 → 𝑋 and for any 1 ⩽ 𝑝 ⩽ dim𝑋 the
sheaf 𝜋∗Ω

𝑝

𝑋
is reflexive, therefore:

𝐻0
(
𝑋 ⧵ 𝑋𝑠𝑖𝑛𝑔, Ω

𝑝
𝑋

)
≅ 𝐻0

(
𝑋,Ω

𝑝

𝑋

)
.

This is not the case for symmetric powers, as it is shown in Examples 6.1 and 6.2 above: given an abelian surface 𝐴 and
the corresponding Kummer surface 𝑋, resolution of the quotient 𝑌 = 𝐴∕{±1}, we have:

𝐻0
(
𝐴,Ω2

𝐴

)
≅ 𝐻0

(
𝐴,Ω2

𝐴

){±1}
≅ 𝐻0

(
𝑌 ⧵ 𝑌𝑠𝑖𝑛𝑔, Ω2

𝑌

)
≅ ℂ ≅ 𝐻0

(
𝑋,Ω2

𝑋

)
,

however

ℂ3 ≅ 𝐻0
(
𝑌 ⧵ 𝑌𝑠𝑖𝑛𝑔, Sym2Ω1

𝑌

)
≅ 𝐻0

(
𝐴, Sym2Ω1

𝐴

)
≠ 𝐻0

(
𝑋, Sym2Ω1

𝑋

)
= 0,

and similarly in the higher dimensional case.
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