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Abstract. In this paper we show that the family of stable vector bundles gives a set of
generators for the Chow ring, the K-theory and the derived category of any smooth
projective variety.
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1. Introduction

Let X be a smooth projective variety over an algebraically closed field k, with a
fixed polarization H .

The main result of this note shows that the ideal sheaf IZ of an effective cycle
Z ⊂ X admits a resolution by polystable vector bundles. In particular, this shows
that the rational Chow ring CH∗

Q(X), the K-theory K(X), and the derived category
D(X) are generated (in a sense that we will specify) by stable vector bundles.

Note that it is easy to see that Chern classes of stable not necessary locally free
sheaves generate CH∗

Q(X) or K(X) (cf. Remark 3.6). Since polystability for vec-
tor bundles on complex varieties is equivalent to the existence of Hermite–Einstein
metrics, it seems desirable to work with the more restrictive class of locally free
stable sheaves.

In the case of a K3-surface our result can be compared with a recent article of
Beauville and Voisin. In [2] they show that all points lying on any rational curve are
rationally equivalent, hence giving rise to the same class cX ∈CH(X), and that c2(X)

and the intersection product of two Picard divisors are multiples of that class.
As the tangent bundle TX and line bundles are stable, one might wonder what

happens if we allow arbitrary stable bundles. Our result shows that second Chern
classes of stable bundles generate (as a group) CH2(X), and that this is true on
every surface.

Related results, using the relation between moduli spaces and Hilbert schemes
(cf. [3]), and between Hilbert schemes and the second Chow group (cf. [7]), had
been obtained before.
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We will first show the main theorem in the case of surfaces, as it already gives
the above description for CH2(X). The higher-dimensional case is a generalization
of this argument.

1.1. notations

Let X be a smooth projective variety of dimension n over an algebraically closed
field k. The Chow ring CH∗(X)=⊕

Cp(X)/∼ is the group of cycles modulo ratio-
nal equivalence graded by codimension. Using intersection product of cycles it
becomes a commutative graded ring.

For any vector bundle (or coherent sheaf) F , Chern classes ci(F)∈CHi (X) and
c(F)=∑

ci(F) define elements in CH∗(X).
If Z is an effective cycle, we will identify it by abuse of notation with any closed

subscheme of X having Z as support, and denote IZ its ideal sheaf. If Z is an
hypersurface IZ is an invertible sheaf and, in particular, stable. Therefore we will
consider only the case where codimX Z �2.

In this paper, stability will always mean slope stability with respect to the fixed
polarization H . Since stability with respect to H or to a multiple mH are equiva-
lent, we can suppose that H is sufficiently positive.

2. Zero-Dimensional Cycles on a Surface

Throughout this section X will be a smooth projective surface, Z a zero-
dimensional subscheme of X, and C ∈|H | a fixed smooth curve such that C ∩Z= ∅.
As H is very positive, we suppose g(C)�1.

We will show the following

PROPOSITION 2.1. If m�0, and if V ⊂H 0(X,IZ(mH)) is a generic subspace of
dimension h0(C,OC(mH)), then the sequnce

0→ker(ev)→V ⊗OX
ev−−−→IZ(mH)→0 (1)

is exact and defines a stable vector bundle MZ,m :=ker(ev).

2.1. proof of the proposition

We remark that if a subspace V ⊂ H 0(X,IZ(mH)) generates IZ(mH), the exact
sequence

0→M →V ⊗OX →IZ(mH)→0 (2)

defines a vector bundle M, for X has cohomological dimension 2.
We remark that a sheaf on an arbitrary projective variety is stable if its restric-

tion to a hypersurface linearly equivalent to H is stable.
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So it is sufficient to show that the restriction of M to the curve C is a stable
vector bundle. As the chosen curve C doesn’t intersect Z, the restriction of (2) to
C yields a short exact sequence:

0→M|C →V ⊗OC →OC(mH)→0. (3)

We want to choose the space V so that the sequence (3) equals

0→MOC(mH) →H 0(C,OC(mH))⊗OC →OC(mH)→0. (4)

In this case, by general results (cf. [1], and Theorem 3.2 in this paper), the vector
bundle M|C =MOC(mH) is stable for m�0.

We will use the following lemmas:

LEMMA 2.2. For m�0, the restriction map

H 0(X,IZ(mH))→H 0(C,OC(mH))

induces an isomorphism between a generic subspace V ⊂H 0(X,IZ(mH)) of dimen-
sion h0(C,OC(mH)), and H 0(C,OC(mH)).

Proof. This follows immediately from the vanishing of H 1(X,IZ((m−1)H)) for
m� 0, and from the consideration that, in the Grassmanian Gr(h0(C,OC(mH)),

H 0(X,IZ(mH))), the spaces V avoiding the subspace H 0(X,IZ((m − 1)H)) form
an open subset, and project isomorphically on H 0(C,OC(mH)).

So if we show that such a space generates IZ(mH), then the sequence (2)
restricted to the curve will give the sequence (4).

Since the dimension h0(C,OC(mH)) of such V grows linearly in m, this is a con-
sequence of a general lemma which is true for a projective variety of any dimension:

LEMMA 2.3. Let Y be a projective variety of dimension n, E a vector bundle of rank
r globally generated on Y , F a coherent sheaf on Y , and H an ample divisor. Then:

(i) If W ⊂H 0(Y,E) is a generic subspace of dimension at least r +n, then W gen-
erates E;

(ii) There are two integers R,m0 � 0, depending on Y and F , such that for any
m�m0, if V ⊂H 0(Y,F(mH)) is a generic subspace of dimension at least R,
then V generates F(mH).

Proof. (i) Let W ⊂ H 0(Y,E) be a generic subspace of dimension v. Then the
closed subscheme Ys ⊂ Y where the evaluation homomorphism W ⊗ OY → E has
rank less than or equal to s is either empty or of codimension (v− s)(r − s) (cf. [5]
chapter. 5, p. 121)�. Hence, taking v =dim W � r +n, and s = r −1, we see that the
evaluation map must be surjective.

�In [5] is used a transversal version of Kleiman’s theorem which works only in caracteristic 0, but
the dimension count we need is true in any characteristic (see [6]).
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(ii) By Serre’s theorem there exists a m1 �0 such that F(mH) is globally gener-
ated and acyclic for any m�m1. Hence, there exists a (trivial) globally generated
vector bundle E of rank r =h0(Y,F(m1H)) and a surjection E �F(m1H); if we
call K its kernel, then K(mH) is globally generated and acyclic for any m � m2,
and we have for all m�m1 +m2:

0→H 0(Y,K((m−m1)H))→H 0(Y,E((m−m1)H))→H 0(Y,F(mH))→0.

Let now ν be an integer such that r + n � ν � h0(Y,F(mH)). In Gr(ν,H 0(Y,

E((m − m0)H))) there is the open subset of the spaces W avoiding H 0(Y,K((m −
m0)H)), and this open set surjects to Gr(ν,H 0(Y,F(mH))).

So a generic V ⊂H 0(Y,F(mH)) of dimension ν lifts to a generic W ⊂H 0(Y,E

((m−m0)H)) of dimension ν, and since ν � r +n, the first part of this lemma gives
the result.

Lemmas 2.2 and 2.3 immediately yield Proposition 2.1.

2.2. the chow group of a surface

We have shown that any effective 0-cycle Z admits a resolution

0→MZ,m →V ⊗OX →IZ(mH)→0, (5)

where MZ,m is stable and locally free.

COROLLARY 2.4. The Chow group CH2(X) is generated as a group by

{c2(M)|M is a stable vector bundle}.
Proof. The class of Z in CH2(X) is given by [Z]=−c2(OZ), hence,

c2(IZ)= [Z].

Furthermore we know that c1(OZ)= c1(IZ)=0.
Using the sequences

0→OX(−H)→OX →OC →0

and

0→IZ((m−1)H)→IZ(mH)→OC(mH)→0,

we can easily calculate the Chern classes appearing in (5):

c1(IZ(mH))=mH and c2(IZ(mH))= c2(IZ)= [Z].

So by the sequence (5) we obtain

c1(MZ,m)=−c1(IZ(mH))=−mH
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and

[Z]= c2(IZ(mH))=−c2(MZ,m)+m2H 2,

thus second Chern classes of stable vector bundles and the class of H 2 generate
the second Chow group of the surface.

Clearly, H 2 =c2(H ⊕H) is the second Chern class of a polystable vector bundle,
but it can also be obtained as a linear combination of c2(Ei) with Ei stable: since
H 2 = [Z′] is an effective cycle, we deduce from (2) that

[Z′]=−c2(MZ′,m)+m2[Z′]

or, equivalently

(m2 −1)H 2 = (m2 −1)[Z′]= c2(MZ′,m)

for every m � 0. Choosing m1 and m2 such that (m2
1 − 1) and (m2

2 − 1) are rela-
tively prime, we find that H 2 is contained in the subgroup of CH2(X) generated
by second Chern classes of stable vector bundles. �

Remark 2.5. This result can also be proven (when char(k)=0) by using the fact
that, for every r >0, c1, and c2 �0, stable locally free sheaves form an open dense
subset U in the moduli space N =N(r, c1, c2) of semi-stable not necessarily locally
free sheaves with fixed rank and homological Chern classes (see [9]).

For any such N , up to desingularizing compactifying and passing to a finite cov-
ering, we obtain a homomorphism φc2 : CH0(N) → CH0(X), which associates the
class of a point E ∈N to the class c2(E)∈CH0(X). This morphism is given by the
correspondance c2(F ), where F is the universal sheaf on N ×X.

Next we notice that CH0(U) spans CH0(N): in fact if we consider a point x ∈N ,
we can take a curve passing through x and U . In the normalization of this curve,
we see that the class of x is the difference of two very ample divisors, so x is ratio-
nally equivalent to a 0-cycle supported on X ∩U .

Hence the image of the map φc2 : CH0(N) → CH0(X) is spanned by the image
of CH0(U), and letting vary r, c1, and c2 �0, we get the result.

(This remark is due to Claire Voisin).

This corollary is interesting in the case of a K3 surface over C, where CH(X)=
Z⊕Pic(X)⊕CH2(X), Pic(X) is a lattice, and CH2(X) is very big (cf. [8]) and tor-
sion-free (since CH2(X)tor ⊂Alb(X)tor for [10], and Alb(X)=0).

Beauville and Voisin have shown in [2] that every point lying on a rational curve
has the same class cX ∈CH2(X), that the intersection pairing of divisors maps only
to multiples of that class:

Pic(X)⊗Pic(X)→Z · cX ⊂CH2(X),
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and that c2(X)=24cX. It would be interesting to see whether the fact that CH2(X)

is generated by second Chern classes of stable vector bundles can be used to get
a better understanding of this group.

3. The General Case

Let now X be a variety of dimension n>2, with a fixed ample divisor H .
We want to prove the following theorem:

THEOREM 3.1. For every subscheme Z ⊂X, its ideal sheaf IZ admits a resolution

0→E →Pe →·· ·→P1 →P0 →IZ →0, (6)

where E is a stable vector bundle, the Pi are locally free sheaves of the form Vi ⊗
OX(−miH), and e=dim X −2.

By passing to a multiple of H we may assume that a generic intersection of n−1
sections is a smooth curve C such that g(C)� 1. We want to prove Theorem 3.1
by the same method as in the surface case, i.e. finding vector spaces Vi that can
be identified with the spaces of all global sections of a stable vector bundle on a
smooth curve.

3.1. proof of the theorem

We recall Butler’s theorem for vector bundles on curves [1]:

THEOREM 3.2 (Butler). Let C be a smooth projective curve of genus g�1 over an
algebraically closed field k, and E a stable vector bundle over C with slope µ(E)>

2g, then the vector bundle ME :=ker(H 0(C,E)⊗OC �E) is stable.

Let us now consider a closed sub-scheme Z of codimension at least 2. We want
to construct a sequence as in Theorem 3.1, which splits into short exact sequences
in the following way:

0 �� E �� Pe
��

�����
� Pe−1 �� . . . �� P2 ��

����
� P1 ��

����
� P0 �� IZ

�� 0

Ke−1

������
K1

�����
K0

�����

where the Ki are stable sheaves on the variety X which restricted to a curve C (an
intersection of n−1 generic sections of OX(H)) are stable vector bundles Mi , and
the Pi = Vi ⊗ OX(−miH) are obtained by successively lifting the space of global
sections H 0(C,Mi−1(miH)) as in the surface case.
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In other words the Vi ⊂ H 0(X,Ki−1(miH)) are spaces isomorphic to
H 0(C,Mi(miH)) by the restriction of global sections to the curve (for the sake of
clarity we should pose in the former discussion K−1 :=IZ and M−1 :=OC).

We remark that the stability condition is invariant under tensoring by a line
bundle.

Proof (Theorem 3.1). As a first step we want to choose m0 and V0 ⊂ H 0

(X,IZ(m0H)).
Choosing n − 1 generic� sections s1, . . . , sn−1 ∈ |OX(H)|, gives us a filtration of

X by smooth sub-varieties:

X0 :=X ⊃X1 =V (s1)⊃X2 =V (s1, s2)⊃· · ·⊃Xn−1 =C =V (s1, . . . , sn−1).

Let V ⊂ H 0(X,IZ(mH)) be a subspace generating IZ(mH). The restriction of
the exact sequence

0→K →V ⊗OX →IZ(mH)→0

to the hypersurface X1 yields an exact sequence

0→K|X1 →V ⊗OX1 →IZ ⊗OX1(mH)→0,

due to the generality of the sections.
Restricting further we eventually obtain an exact sequence

0→K|C →V ⊗OC →OC(mH)→0

of vector bundles on the curve C. In other words we are supposing the sequence
(s1, . . . , sn−1) to be regular for IZ, and such that C ∩ Z = ∅, both of which are
open conditions. Furthermore, (s1, . . . , sn−1) being generic, we can suppose that all
the T or

q

OXi
(IZ|Xi

,OXi+1) vanish, for q >0 and i =0, . . . , n−2:
To see this, let us fix an arbitrary locally free resolution

0→Fs →·· ·→F0 →IZ →0

of IZ, which splits into short exact sequences 0 → Pi → Fi → Pi−1 → 0. The
sequence (s1, . . . , sn−1) being generic, we can suppose that it is regular for the
shaves IZ,P0, . . . , Ps−1. Hence, from the short exact sequences above, we deduce
that T or

q

OXi
(IZ|Xi

,OXi+1)
∼=T or1

OXi
(Pq−2|Xi

,OXi+1)=0.

For m� 0, we have H 1(Xi,IZ ⊗OXi
((m− 1)H))= 0 for every i. As in Lemma

2.2, a generic V ⊂H 0(X,IZ(mH)) of dimension h0(C,OC(m)) will map injectively
to the global sections on the Xi :

�By generic we mean that the element (s1, . . . , sn−1)∈ |OX(H)|n−1 is generic.
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0

��
H 0(Xi,IZ ⊗OXi

((m−1)H))

·si+1

��
V

� � ��



��

H 0(Xi,IZ ⊗OXi
(mH))

��
V

� � �� H 0(Xi+1,IZ ⊗OXi+1(mH))

��
0

until we have an isomorphism V →̃H 0(C,OC(m)).
So we can choose m0 �0 and V generating IZ(m0H) such that the kernel K0 of

V ⊗OX(−m0)→IZ is stable (since it’s stable on the curve C which is a complete
intersection of n−1 sections of H ), but K0 is, in general, not locally free.

As we have chosen (s1, . . . , sn−1) such that T or
q

OXi
(IZ|Xi

,OXi+1) = 0 for q > 0
and i =0, . . . , n−2, we deduce from the sequence

0→K0 →V ⊗OX(−m0)→IZ →0

that also the T or
q

OXi
(K0|Xi

,OXi+1) vanish, for q >0 and i =0, . . . , n−2. In partic-
ular, the sequence (s1, . . . , sn−1) is K0-regular.

Repeating the argument, we obtain, tensoring K0 by H enough times, exact
sequences:

o→K1(m1H)|Xi
→V1 ⊗OXi

→K0(m1H)|Xi
→0.

Again, we can suppose that H 1(Xi,K0 ⊗OXi
(m1H))=0 and lift the vector space

H 0(C,K0(m1H)|C) on a generic generating space V1 ⊂ H 0(X,K0(m1H)). Butler’s
theorem tells us that the vector bundle K1|C , satisfying

0→K1(m1H)|C →H 0(C,K0(m1H)|C)⊗OC →K0(m1H)|C →0,

is a stable vector bundle (for m1 �0), because K0|C is stable and locally free.
So we can continue and find the resolution (6), where we remark that if

e�n−2, E is a vector bundle because X is smooth and so has cohomological
dimension n=dim X, and it is stable because it is so on the curve C.

3.2. stable vector bundles as generators

We can apply then this result to calculate the Chern class and character of IZ; we
know that in general for any sheaf F and any resolution P • →F by vector bun-
dles, its Chern character is ch(F)=∑

(−1)ich(P i).
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COROLLARY 3.3. A set of generators of CH∗
Q(X), as a group, is

{ch(E)|E stable vector bundle}.
Proof. From the resolution (6) we have:

ch(IZ)= (−1)e+1ch(E)+
e∑

i=0

(−1)i dim Vi · ch(OX(−miH)).

From the theorem of Grothendieck–Riemann–Roch (cf. [4]) we know that

ch(IZ)=1− ch(OZ)=1− [Z]+higher order terms

so applying our result to the higher order terms, we see that we can express [Z] as
a sum of Chern characters of stable vector bundles.

In order to have the same results in the K-theory and the derived category we
will use the following

LEMMA 3.4. Any coherent sheaf Fon X admits a filtration 0 = F0 ⊂ F1 ⊂ · · ·
⊂F� =F where each quotient Fi/Fi−1 admits a polystable resolution.

Proof. Consider at first a torsion sheaf T : it has then a filtration 0=T0 ⊂T1 ⊂
. . .⊂T� =T , where every quotient Ti/Ti−1 is of the form OZi

(−mH), for cycles Zi .
Hence T admits such a filtration.

A torsion free sheaf F admits an extension

0→V ⊗OX(−m)→F → F
V ⊗OX(−m)

→0,

where m � 0, V ⊆ H 0(X,F(m)) is the subspace generated by R generically inde-
pendent sections of F(m), R is the generic rank of F , and F/(V ⊗OX(−m)) is a
torsion sheaf. Hence, taking the pull-back to F of the torsion sheaf filtration, we
get the requested filtration.

Finally, any coherent sheaf fits into an extension with its torsion and torsion free
parts:

0→T (F)→F →F/T (F)→0,

so we can take the filtration for T (F) and the pull-back to F of the filtration for
F/T (F).

The following result is an immediate consequence:

COROLLARY 3.5. The Grothendieck ring K(X) is generated, as a group, by the
classes of stable vector bundles.
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Remark 3.6. Every torsion free sheaf admits a (unique) Harder–Narashiman fil-
tration, whose quotients are semistable sheaves (not necessarely locally free). And
every semistable sheaf admits a (non unique) filtration with stable quotients. Mix-
ing those two kinds of filtrations we obtain a filtration with stable quotients of any
torsion free sheaf.

Hence, it can be easily proven that the class in K(X) of any coherent sheaf F is
obtained as a sum of classes of stable not necessarily locally free sheaves. In fact
we can construct an exact sequence 0 → K → V ⊗ OX(−mH) → F → 0, and take
the filtration of the torsion free sheaf K, whose quotients are stable not necessar-
ily locally free sheaves. (The same argument holds for the Chow group.)

For what concerns the derived category, let Db(X) be the bounded derived cat-
egory of coherent sheaves on X. We will identify, as usual, any coherent sheaf F
to the object (0→F →0)∈Db(X) concentrated in degree 0.

DEFINITION 3.7. We say that a triangulated subcategory D⊆Db(X), is generated
by a family of objects E ⊆Db(X), if it is the smallest triangulated full subcategory
of Db(X), stable under isomorphisms, which contains E . We will denote it by 〈E〉.

It is easy to prove the following lemmas:

LEMMA 3.8. Let E be a family of objects of Db(X). If 〈E〉 contains two coherent
sheaves F1 and F2, then it contains all their extensions.

LEMMA 3.9. Let E be a family of objects of Db(X). If 〈E〉 contains every coherent
sheaf, then 〈E〉=Db(X).

As in the case of the Grothendieck group, we get immediately the following
corollary:

COROLLARY 3.10. The bounded derived category Db(X) is generated by the fam-
ily of stable vector bundles.
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