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On Stability of Tautological Bundles
and their Total Transforms
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Abstract. Through the use of linearized bundles, we prove the stability of tau-
tological bundles over the symmetric product of a curve and of the kernel of the
evaluation map on their global sections.
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1. Introduction

Let C be a smooth projective curve, and E a globally generated vector bundle on
C. The vector bundle ME := ker(H0(C,E) ⊗O → E) is considered in many works
in the literature (cf. [EL92], [But94] [Mis06], [Mis08], [MS12], [BBPN15], and many
others), mostly when E is a line bundle, and its stability or semistability plays a
crucial role. In recent works (cf. [ELM13], [FO12], [Fey16]) the same problem arises
on higher dimensional varieties and with E being a higher rank vector bundle, and
stability of ME is proven with various advanced techniques.

The vector bundle ME is sometimes called Lazarsfeld-Mukai bundle, but other
times this term is used for other similar bundles on K3 surfaces, so we will call this
total transform bundle of the vector bundle E on the variety X.

The purpose of this work is to give some examples of stability of the total
transform bundle of a stable vector bundle on a higher dimensional variety, using
elementary techniques. The examples treated are vector bundles on symmetric prod-
ucts of curves, and can be summarized as the following:

Theorem 1.1. Let C be a smooth projective curve of genus g � 1 over an algebraically
closed field of characteristic 0. Let L be a degree d line bundle on C. Let SnC be the
symmetric product of C, H̃ the natural polarization on SnC, and L[n] the tautological
bundle on SnC. Then:
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1. if d � n the vector bundle L[n] is H̃-stable;
2. if d � n + 2g the total transform ML[n] is H̃-stable.

The article is organized as follows: in section 2 we recall the basic definitions
and properties of group actions and linearizations that we make use of, and we prove
that G-linearized vector bundles have G-linearized destabilizations (when unstable).
In section 3.1 we prove the stability of the tautological vector bundles L[n] on the
symmetric product of a curve. In section 3.2 we prove the stability of the total
transform of those tautological bundles.

The technique we use is basically the observation that stability, or rather poly-
stability, is invariant when passing to a finite covering. We consider the quotient map
from the product to the symmetric product of the curve. Then we obtain linearized
vector bundles, and we show that having a linearization poses remarkable restrictions
on a possible destabilization.

1.1. Notations

By a variety we mean a smooth projective variety X over an algebraically closed
field. A polarization will be an ample divisor on X. We will denote by Z1 ≡ Z2

numerical equivalence between cycles Z1 and Z2.

2. Stability and group actions

Let X be a variety with an action of an algebraic group G. We recall that a G-
linearized sheaf on X is a sheaf E on X with an isomorphism Φg : E−̃→g∗E for all
g ∈ G, satisfying the usual cocycle conditions.

A morphism ψ : E → F of G-linearized sheaves is G-equivariant if the following
diagram

E
ψ−→ F⏐⏐�Φg �

⏐⏐�� Φ′
g

g∗E g∗ψ−→ g∗F
commutes for all g ∈ G.

Definition 2.1. Let H be a divisor on X, we say that H is numerically G-invariant,
if for all g ∈ G we have g∗H ≡ H.

Definition 2.2. Let E be a G-linearized sheaf on X, we say that a subsheaf F ⊂ E
is a G-equivariant subsehaf if we have the equality of subsheaves of g∗E

Φg(F ) = g∗F

for all g ∈ G. That is, the G-linearization of E induces a G-linearization on F such
that the embedding F ⊂ E is G-equivariant.

We recall that the slope of a torsion free sheaf E on X with respect to a
polarization H is

μH(E) =
c1(E).Hn−1

rkE
.
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A sheaf is called semistable (respectively stable) if μH(F ) � μH(E) (respectively
μH(F ) < μH(E)) for every subsheaf F ⊂ E with smaller rank. Furthermore every
torsion free sheaf E admits a unique maximal semistable subsheaf F ⊂ E such that
the slope of F is maximal among the slopes of subsheaves of E and any subsheaf with
same slope as F is contained in F . A sheaf is semistable if and only if it coincides
with its maximal semistable subsheaf.

We have the following property

Proposition 2.3. Let F ↪→ E be the maximal semistable subsheaf with respect to the
polarization H, where E is a G-linearized torsion free sheaf, and H is a numerically
G-invariant ample divisor. Then F ↪→ E is a G-equivariant subsheaf.

Proof. Consider the following diagram

F ↪→ E
� ↓ � ↓ �
ϕ(F ) ↪→ g∗E

g∗F ↪→
where the isomorphism ϕ = Φg : E→̃g∗E is given by the G-linearizaion of E. We
want to show that ϕ(F ) and g∗F are the same subbundle of g∗E, i.e., the linearization
of E induces a linearization of F .

We will show that they both are semistable subsheaves of maximal slope of
g∗E. First notice that g∗F is a subbundle of g∗E, and its degree is given by

c1(g∗F ).Hn−1 = g∗c1(F ).g∗Hn−1 = g∗(c1(F ).Hn−1) = c1(F ).Hn−1 .

By the same computation we see that the slope of a sheaf is invariant by the action
of G, hence also g∗F is semistable, and it is the semistable maximal subsheaf of g∗E.

As ϕ is an isomorphism of sheaves, then c1(ϕ(A)) = c1(A) and μH(ϕ(A)) =
μH(A) for all subsheaves A ⊂ E. Therefore ϕ(F ) is the maximal semiastable subsheaf
of g∗E. Then ϕ(F ) = g∗F , as we have proven that g∗F is the maximal subsheaf of
g∗E. Hence, the linearization on E induces a linearization on F , and clearly the
inclusion morphism is G-equivariant. �

We see from this proposition that having a group action poses strict conditions
on linearized sheaves for being destabilized, and this is what we use to investigate the
stability of tautological sheaves. Next lemma will be useful in the following sections:

Lemma 2.4. Let I be a finite set together with a transitive G action. Let Ei be
coherent sheaves on X, and let E = ⊕i∈IEi carry a G-linearization Φ such that
Φg(Ei) = g∗Eg(i) for every i ∈ I and g ∈ G. Let πi : E → Ei be the i-th projection.
Then for every G-equivariant subsheaf F ⊂ E such that πi(F ) = 0 for some i, we
already have F = 0.

Proof. To prove that F = 0 we need to prove that πj(F ) = 0 for all j ∈ I. Let
g ∈ G be an element of the group G, and call j = g(i). Then we have the following
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commutative diagram:

F ↪→ E
πi−−→ Ei

� ↓ Φg � ↓ Φg � ↓ Φg

g∗F ↪→ g∗E
g∗πj−−−→ g∗Ej

where the left square commutes because the subsheaf F ⊂ E is G-equivariant, and
the right square commutes because of the assumption of the compatibility between
Φ and the G-action on I. Now, as πi(F ) = 0, the composition of the top row is 0, so
the composition of the bottom row is 0 as well. Then g∗πj(g∗F ) = 0, so πj(F ) = 0.
Applying this to all g, we have that πj(F ) = 0 for all j ∈ I. �

3. Symmetric product of a curve

In this section we define tautological sheaves and their total transforms.
Let C be a smooth projective curve, X = Cn the cartesian product of C, and

G = Sn the symmetric group acting on X permutating the factors.
As C is a smooth curve, the symmetric product X/G := SnC is a smooth

variety. In fact it coincides with the Hilbert scheme of length-n 0-dimensional sub-
schemes of C.

We will denote the elements of SnC, wich are n-tuples of points of C order free,
by x1 + · · · + xn.

We can consider the universal family associated to the Hilbert scheme: the
universal subscheme Z ⊂ SnC × C consists of all the couples (ξ, x) where ξ is a
0-dimensional subscheme, and x is a point of X lying in ξ. There are two natural
projections π1 and π2 of SnC × C to SnC and C, respectively.

On the product SnC × C we have the following exact sequence:

0 → IZ → OSnC×C → OZ → 0 .

As C is a curve, then Z is a divisor in SnC×C, and IZ = OSnC×C(−Z). Given
a vector bundle E on C, a tautological bundle E[n] on SnC is defined as follows:

E[n] := π1∗(π∗
2E ⊗OZ) ,

so, on a point ξ ∈ SnC the vector bundle E[n] has fiber

E[n](ξ) = H0(ξ, E|ξ) .

From the exact sequence above we get an exact sequence

0 → π1∗(π∗
2E ⊗O(−Z)) → H0(C,E) ⊗OSnC → E[n] → R1π1∗(π∗

2E ⊗O(−Z)) .

By projection formula (cf. [Sca05] pages 34 for generalised projection formulas,
and 43 for the computation below)

H∗(SnC,E[n]) = H∗(C,E) ⊗ Sn−1H∗(C,OC) ,

hence, H0(SnC,E[n]) = H0(C,E), and in the sequence above the map
H0(C,E) ⊗OS2C → E[n] is the evaluation map.
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When E[n] is globally generated, we call NE the total transform of E[n], i.e.,

NE := π1∗(π∗
2E ⊗O(−Z)) .

In the following we want to investigate about the stability of the tautological sheaf
L[n] of a line bundle L on the curve C, and of its total transform NL.

Remark 3.1. We recall that, in characteristic 0, if ϕ : X → Y is a finite morphism,
and M is a torsion free coherent sheaf on Y , then M is polystable if and only if ϕ∗M
is polystable. More precisely, if M is (poly)stable, then ϕ∗M is polystable. And, in
any characteristic, if ϕ∗M is (semi)stable, then M is (semi)stable (cf. [HL97], chapter
3).

3.1. Tautological sheaf of a line bundle on SnC

We apply in this section the methods described above to show stability results on
SnC. In order to apply the 2 lemmas stated below, we restrict to characteristic 0
throughout this and the following section. However, we expect that stability of the
tautological sheaf hold in any characteristic.

We will consider the ample divisor H = Σn
i=1p

−1
i (p) in Cn, for some point p ∈ C,

which is the pull-back of the divisor H̃ = p + Sn−1C in SnC. Let us call

fi := p−1
i (p)

the hypersurface in Cn. Then

H = Σn
i=1fi , Hn−1 = Σn

i=1(n− 1)!f1 . . . f̂j . . . fn , and Hn = n! ,

furthermore the numerical class of f1 . . . f̂j . . . fn is represented by the curve x1 ×
· · · × xj−1 × C × xj+1 × · · · × xn, for any (x1, . . . , x̂j , . . . , xn) ∈ Cn−1.

We call as usual Δ = {x1 + · · ·+ xn ∈ SnC | ∃i �= j with xi = xj} the diagonal
in SnC, it is a divisor divisible by 2, as it is the branch locus of the quotient map
σ : Cn → SnC.

We will the use the following computations:

Lemma 3.2. c1(L[n]) ≡ (degL)H̃ − Δ
2 .

Proof. From Göttsche’s appendix in [BS91], we know that

c1(L[n]) = L̃�n − Δ
2

,

where L̃�n is the unique line bundle on SnC such that its pull-back via σ : Cn → SnC
is equal to L�n = p∗1L ⊗ . . . p∗nL. And we can verify easily that L�n ≡ degL(f1 +
· · · + fn) = (degL)H and L̃�n ≡ (degL)H̃. �

Lemma 3.3. c1(σ∗L[n]).Hn−1 = n!(degL− n + 1).

Proof. This follows from the equalities H̃n = 1 and Δ
2 .H̃

n−1 = n− 1.
In fact a we can choose a representative in the numerical class of H̃ as the

divisor pj + Sn−1C, with pj a point of C, then choosing n distinct points p1, . . . , pn
and n corrensponding divisors H̃j = pj + Sn−1C numerically equivalent to H̃, then
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the divisors H̃j intersect properly and H̃1 ∩ · · · ∩ H̃n = {p1 + · · · + pn} is a point in
SnC.

In the same way the numerical class of the cycle H̃n−1 is represented by p1 +
. . . pn−1+C, and the divisor Δ is the divisor with support {x1+· · ·+xn ∈ SnC | ∃i �=
j with xi = xj}, so it intersects the cycle p1 + · · ·+ pn−1 +C exactly in n− 1 points
(each of which with multiplicity 2).

Therefore c1(L[n]).H̃n−1 = ((degL)H̃ − Δ
2 ).H̃n−1 = (degL − n + 1), and the

statement of the lemma follows, as σ is a degree n! cover. �

We can now prove the first part of Theorem 1.1 stated in the introduction:

Theorem 3.4. Let L be a line bundle of degree d � n on C, then L[n] is an H̃-stable
vector bundle on SnC.

Proof. Let us suppose that there exists a destabilization of L[n], i.e., an injection of
sheaves F̃ ↪→ L[n], such that μH̃(F̃ ) � μH̃(L[n]), with F̃ torsion free of rank r < n.
As we remark at the end of the proof, we can assume that F̃ is locally free.

Let us set F := σ∗F̃ . Pulling the injection F̃ ↪→ L[n] back to Cn by the quotient
map σ : Cn → SnC we have an injection F ↪→ σ∗L[n].

Let us consider the vector bundle L�n =
⊕n

i=1 p
∗
iL and remark that it carries a

Sn-linearization given by the direct sum of the natural isomorphisms p∗iL→̃g∗p∗g(i)L,
for g ∈ Sn.

We have a natural Sn-equivariant injection σ∗L[n] ↪→ ⊕n
i=1 p

∗
iL. In fact L[n] ∼=

(σ∗L�n)Sn (cf. [BL11] Proposition 1.1), then by adjunction we get a map

σ∗L[n] → L�n

which is injective on the generic point on SnC (choose n distinct points in C)
and therefore it is an injective map of sheaves. Furthermore, it makes σ∗L[n] an
equivariant subsheaf of L�n as the linearization induces a linearization on σ∗L[n].

Hence we have a Sn-equivariant injective morphism

F ↪→
n⊕

i=1

p∗iL .

As A :=
∧r F = detF and

∧r ⊕n
i=1 p

∗
iL carry linearizations induced by those of F

and
⊕n

i=1 p
∗
iL, we have a Sn-equivariant morphism

ψ : A →
r∧ n⊕

i=1

p∗iL .

We claim that this morphism must be zero, hence the maps F → σ∗L[n] and
F̃ → L[n] cannot be injective.

Decomposing
∧r ⊕n

i=1 p
∗
iL as

⊕
|J |=r LJ , where LJ = p∗j1L ⊗ · · · ⊗ p∗jrL, we

decompose the map ψ =
⊕

ψJ : A → ⊕
LJ as well.

Using the notations at the beginning of the section: fi := p−1
i (p) ⊂ Cn,

H = Σn
i=1fi, H

n−1 = Σn
i=1(n − 1)!f1 . . . f̂j . . . fn, and Hn = n!, the numerical class
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f1 . . . f̂j . . . fn being represented by the curve x1 × · · · × xj−1 ×C × xj+1 × · · · × xn,
for any (x1, . . . , x̂j , . . . , xn) ∈ Cn−1, we have that

c1(F ).Hn−1 = c1(detF ).Hn−1 � r

n
c1(σ∗L[n]).Hn−1 =

r

n
(n!)(d− n + 1) > 0 ,

where the last equality is given by Lemma 3.3.
We can suppose that c1(F ).(f2.f3 . . . fn) > 0. Hence

deg(A|C×x2×···×xn
) > 0 , for all (x2 . . . , xn) ∈ Cn−1 .

For all J such that 1 /∈ J , LJ |C×x2×···×xn
= O. Hence, for all such J , ψJ : A →

LJ is the zero map, as we can see by restriction to the curve C × x2 × · · · × xn.
Then we can apply Lemma 2.4: if the map ψJ vanishes for a J , then the whole

map ψ vanishes, and the morphism F → ⊕n
i=1 p

∗
iL cannot be injective.

The assumption that F is locally free is not limiting, as for any F torsion free of
rank r, we have a line bundle A, such that c1(A) = c1(F ), with A =

∧r F on the locus
where F is locally free, and such that F → ⊕n

i=1 p
∗
iL induces A → ∧r ⊕n

i=1 p
∗
iL.

This last map being zero, the map F → ⊕n
i=1 p

∗
iL cannot be injective. �

We recall that in characteristic 0, if we show that the vector bundle L[n] is stable
with respect to the polarization H̃, then the vector bundle σ∗L[n] is polystable with
respect to H (cf. Remark 3.1). Thus, we have the following

Corollary 3.5. The vector bundle σ∗L[n] on Cn is poly-stable with respect to the
polarization H.

3.2. Transform of the tautological sheaf of a line bundle

In this paragraph we show that when degL > 2g + n the total transform

NL = ML[n] = ker(H0(C,L) ⊗OSnC � L[n])

is stable. The proof is inspired by Ein and Lazarsfeld’s proof of the stability of ML

for line bundles (cf. [EL92]), in this work the stability of the Picard bundle is shown
proving the stability of a total transform:

Theorem 3.6 (Ein-Lazarsfeld). Let L be a line bundle of degree d > 2g (respectively
d � 2g) on a smooth projective curve of genus g, then the total transform ML is
stable (respectively semistable).

Using a similar argument we show the following:

Lemma 3.7. Let x1, . . . , xn−1 ∈ C be fixed distinct points, and let i : C → SnC
mapping i(x) = x1+ · · ·+xn−1+x be the embedding with image x1+ · · ·+xn−1+C ⊂
SnC. Then i∗(NL) = ML(−x1···−xn).

Proof. Let us remark that, for every P ∈ PicC, we have an isomorphism

MP
∼= pr1∗(pr∗2P ⊗OC×C(−δ))

where δ ⊂ C × C is the diagonal. As we remarked at the beginning of this section,
the total transform of the tautological bundle NL, is given by the formula:

NL := π1∗(π∗
2L⊗O(−Z)) ,
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where Z ⊂ SnC × C is the universal family and is a divisor, and π1, π2 are the
projections. Furthermore, the pull-back of the universal family Z through i is the
closed subset:

Y := i∗Z = (i× idC)−1(Z) = {(x, y) | y ∈ {x1, . . . , xn−1, x}} ⊂ C × C .

This is a divisor in C × C with n irreducible components:

δ , pr−1
2 (x1), . . . , pr−1

2 (xn−1) ,

therefore OC×C(−Y ) = OC×C(−δ) ⊗ pr∗2OC(−x1 − · · · − xn−1).
Now by flat base change,

i∗NL = i∗(π1∗(π∗
2L⊗O(−Z))) = pr1∗(pr∗2L⊗ (i× idC)∗O(−Z))

= pr1∗(pr∗2L⊗ (i× idC)∗O(−Z)) = pr1∗(pr∗2L(−x1 − · · · − xn−1) ⊗O(−δ)) =

= ML(−x1−···−xn−1) . �

Finally, we can prove a stability result for the total transforms of tautological
sheaves on the symmetric product of a curve, i.e., the second part of Theorem 1.1:

Theorem 3.8. Let C be a smooth curve of genus g � 1, and let L be a line bundle
on C of degree d � 2g + n. Then NL is a stable bundle on SnC with respect to the
polarization H̃.

Proof. We just need to remark that the class of x1 + . . . xn−1 + C is numerically
equivalent to H̃n−1, and that we know stability when restricting to that curve. In
greater detail: suppose by contradiction that there is a destabilizing subsheaf F ⊂ NL

on SnC (where F can be supposed to be a reflexive sheaf without loss of generality),
with

μH̃ =
F.H̃n−1

rkF
� μH̃(NL) (3.1)

then by choosing sufficiently general points x1, . . . , xn−1 ∈ C and considering the
injection i defined above, we can suppose that we have an injection i∗F ⊂ i∗NL of
vector bundles. However as i∗(NL) = ML(−x1···−xn) by Lemma 3.7, this vector bundle

on C being stable by Ein and Lazarsfeld result, and μ(i∗NL) = NL.H̃
n−1

rkNL
= μH̃(NL),

then equality (3.1) cannot hold. �

Remark 3.9. As according to Proposition 2.3 G-linearized vector bundles are desta-
bilized by G-linearized subbundles, it would be interesting to apply this in a more
general setting of a (finite) group action, or for tautological bundles of higher rank:
in fact an earlier (unpublished) version of this work has been recently extended by
Andreas Krug in [Kru18].

Question 3.10. In the recent works (cf [BKK+15], [MU19], [Mis18], [Mis19]) we con-
sider globally generated vector bundles and their base loci, in order to get positivity
properties, and construct Iitaka fibrations. It would be interesting to understand
whether these loci can be used in order to understand positivity properties of tau-
tological bundles and their Iitaka fibrations.
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