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We study concepts of stability associated to a smooth complex curve together with a
linear series on it. In particular we investigate the relation between stability of the asso-
ciated dual span bundle and linear stability. Our results imply that stability of the dual
span holds under a hypothesis related to the Clifford index of the curve. Furthermore,
in some of the cases, we prove that a stronger stability holds: cohomological stability.
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admit theta-divisors.
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1. Introduction

Let C be an irreducible projective smooth complex curve, and let L be a globally
generated line bundle on C (suppose L �= O throughout the article). Consider a
generating subspace V ⊆ H0(L). The Dual Span Bundle (DSB for short) MV,L
associated to this data is the kernel of the evaluation morphism ev:

0 → MV,L → V ⊗OC
ev−→ L → 0.

This is a vector bundle of rank dim V −1 and degree − degL. When V = H0(L) we
denote it by ML. Note that we make here an abuse of notation: properly speaking
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the dual span bundle is the dual bundle of MV,L, which is indeed spanned by V ∗.
This bundle is also called transform [17], or Lazarsfeld bundle [22].a

In this paper we treat various kinds of stability conditions, associated to these
data, namely:

• vector bundle stability, which we simply call stability, or slope stability, of MV,L
(Definition 2.1);

• linear stability of the triple (C, V,L) (Definition 3.1);
• cohomological stability of MV,L (Definition 7.1).

Stability of DSBs has been studied intensively and with many different purposes,
and it has been conjectured by Butler that it should hold under generality condi-
tions. This conjecture has been verified in many cases, and used to prove results on
Brill–Noether theory and moduli spaces of coherent systems (cf. [4, 5, 9, 23]).
These conditions satisfy the following implications:

cohomological stability ⇒ vector bundle stability ⇒ linear stability, (1.1)

which hold for semistability as well; moreover, as we are in characteristic 0, we have
that cohomological semistability is equivalent to vector bundle semistability [13].

The purpose of this paper is twofold. Firstly we are interested in finding condi-
tions under which the last implication in (1.1) can be reversed, i.e. linear stability is
a sufficient condition for the stability of the DSB. The question of DSB’s stability is
considered by Butler in [9], and that work is the starting point of our investigation.
It turns out that the Clifford index of the curve (definition in Sec. 3) plays a central
role. In the last part of the paper we give some counterexamples proving that the
implication does not hold in general, and we state some conjectures.

Secondly, we want to prove some new stability results. We find conditions for
the three stabilities to hold, involving again the Clifford index of the curve C. These
results are achieved both using the arguments of the first part of the paper, and by
different arguments for linear stability and cohomological stability.

Let us go deeper in the description of our results.
As for the first question, the convenience of reducing the stability of a DSB

to the linear stability lies in the fact that linear stability is often less hard to
prove. Moreover, it has a clear geometric meaning in terms of relative degrees of
projections of the given morphism. So, the question can be reformulated this way:
to what extent the knowledge of the geometry of a morphism is sufficient to detect
the stability of the associated DSB?

Another motivation for considering this problem comes from the work of the
second author on fibered surfaces. To a fibered surface with a family of morphisms
on the fibers, one can associate a certain divisorial class on the base curve. There are

aIt is worth noticing that usually a Lazarsfeld or Mukai–Lazarsfeld bundle, named after [16], is a
vector bundle on a K3 surface S, obtained after evaluating global sections of a line bundle on a
curve contained in S.
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two methods that prove the positivity of this class, one assuming linear stability,
the other assuming the stability of the DSB on a general fiber. The comparison
between these methods leads naturally to comparing the two assumptions.

Let us now assume that C has genus g ≥ 2. We obtain the following results.

Theorem 1.1. Let L ∈ Pic(C) be a globally generated line bundle, and V ⊆
H0(C,L) be a generating space of global sections such that

degL − 2(dimV − 1) ≤ Cliff(C). (1.2)

Then linear (semi)stability of (C,L, V ) is equivalent to (semi)stability of MV,L in
the following cases:

(1) V = H0(L) (complete case);
(2) degL ≤ 2g − Cliff(C) + 1;
(3) codimH0(L) V < h1(L) + g/(dimV − 2);
(4) degL ≥ 2g, and codimH0(L) V ≤ (degL − 2g)/2.

This theorem is proved by applying a Castelnuovo-type result, relating evalua-
tion of sections of a line bundle A tensored with the canonical bundle and the image
of the morphism induced by global sections of A, to an exact sequence obtained
from a possible destabilization of the bundle MV,L. The geometrical idea for this
construction is simple and is carried out in Sec. 4, but the computations in order
to make this argument work are quite long (Secs. 5 and 6), and give rise to the
bounds imposed in points (1)–(4) of the theorem.

Let us now describe the stability results that we obtain.
By standard linear series techniques, we can prove in Sec. 3 the following depen-

dence of linear stability on the Clifford index of the curve.

Proposition 1.2. Let C be a curve of genus g ≥ 2. Let L ∈ Pic(C) be a globally
generated line bundle such that degL− 2(h0(L)− 1) ≤ Cliff(C). Then L is linearly
semistable. It is linearly stable unless L ∼= ωC(D) with D an effective divisor of
degree 2, or C is hyperelliptic and degL = 2(h0(L) − 1).

Using this result and Theorem 1.1, we obtain stability of DSB in the following
cases.

Theorem 1.3. Let L ∈ Pic(C) be a globally generated line bundle such that

degL − 2(h0(L) − 1) ≤ Cliff(C). (1.3)

Then ML is semistable, and it is strictly semistable only in one of the following
cases:

(i) L ∼= ωC(D) with D an effective divisor of degree 2;
(ii) C is hyperelliptic and degL = 2(h0(L) − 1).
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In particular, this implies the following results.

Corollary 1.4. Let L be a globally generated line bundle over C with

degL ≥ 2g − Cliff(C).

Then the vector bundle ML is semistable. It is stable unless (i) or (ii) holds.

Corollary 1.5. Let L be any line bundle that computes the Clifford index of C.

Then ML is semistable; it is stable unless C is hyperelliptic.

Moreover, using a result contained in [2], we can prove, applying Theorem 1.1,
the following.

Proposition 1.6. Let C be a curve such that Cliff(C) ≥ 4. Let V ⊂ H0(ωC) be a
general subspace of codimension 1 or 2. Then MV,ωC is stable.

Some of the results above were previously known: Theorem 5.3 is a refinement
of a result contained in Paranjape’s Ph.D. thesis [19], and Corollaries 5.4 and 5.5
follow from [6]. Corollary 5.4 has also been proved in [10].

It is worthwhile remarking that in [17] the first author proves stability of some
bundles MV,L by a similar argument: showing first that if MV,L is unstable then
(C,L, V ) needs to be linearly unstable, and then showing that for general V ⊂
H0(L) these are not linearly unstable.

We hope these methods can be of use in order to verify the DSB’s stability in
more cases, and generalized to investigate the stability of bundles which are dual
spans of higher rank vector bundles.

Moreover, we prove in Sec. 7 that, in some of the cases of Theorem 1.1, a stronger
condition holds: cohomological stability (Definition 7.1).

Theorem 1.7. Let (L, V ) be a gr
d on a smooth curve C, inducing a birational

morphism. Suppose that

• d ≤ 2r + Cliff C;
• codimH0(L) V ≤ h1(L).

Then MV,L is cohomologically semistable. It is cohomologically stable except in the
following cases:

(i) d = 2r and C is hyperelliptic;
(ii) L ∼= ωC(D) with D an effective divisor of degree 2.

This theorem is proved by extending the techniques of [13] (see also [22]). As a
consequence, we have cohomological stability of MωC for C non-hyperelliptic, and
of projections from a general point for Cliff(C) ≥ 2 (Corollary 7.7).

It is natural to wonder whether the implication, linear stability ⇒ stability of
DSB, holds more generally. No examples, to our knowledge, were known where
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the first stability condition holds while the second one does not. The answer to
this question is negative in general, and it turned out to be fairly easy to produce
linearly stable line bundles whose DSB is not semistable: this is the content of
Sec. 8.

Finally (Sec. 9), we show that on a general curve C of even genus g = 2k, there
exist stable, and even cohomologically stable, DSBs of slope −3 (Proposition 9.1).
We show that these bundles admit a generalized theta-divisor in Proposition 9.3,
and we formulate some questions on the behavior of these bundles.

Notation. We will work over the complex numbers, and C will be a smooth pro-
jective curve, unless explicitly specified.

Let D be a divisor on C. As customary, we shall write Hi(D) for Hi(OC(D)),
and if F is a vector bundle we shall use the notation F(D) for F ⊗OC(D).

2. Preliminary Results on Vector Bundle Stability

Given a vector bundle E on C its slope is the rational number µ(E) := deg E/rankE .

Definition 2.1. The vector bundle E is stable (respectively, semistable) if for any
proper subbundle F ⊂ E , we have that µ(F) < µ(E) (respectively, µ(F) ≤ µ(E)).

Throughout the paper we will consider the following setting.
Let MV,L = ker(V ⊗ O � L) be the associated dual span bundle. Let S ⊂

MV,L be a saturated proper subbundle. Then there exist a vector bundle FS and a
subspace W ↪→ V fitting into the commutative diagram

0 �� S ��
� �

��

W ⊗OC
��

� �

��

FS ��

α

��

0

0 �� MV,L �� V ⊗OC
�� L �� 0

Indeed, define W ↪→ V by W ∗ := Im(V ∗ → H0(S∗)); then W ∗ generates S∗. Then
define F ∗

S := ker(W ∗ ⊗O � S∗).

Remark 2.2. Let us summarize some properties of these objects, which is well
known to experts; see for instance [8]. With the notation above, the following prop-
erties hold.

(1) The sheaf FS is globally generated and h0(F ∗
S ) = 0.

(2) The induced map α : FS → L is not the zero map.
(3) If S is a maximal destabilizing subbundle of MV,L, then deg FS ≤ deg I, where

I is Im(α), and equality holds if and only if rankFS = 1.
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The only point worth verifying is the last. We can form the following diagram

0 �� S ��
� �

��

W ⊗OC
���� FS ��

��

0

0 �� MW,I ��
� �

��

W ⊗OC
��

��

I ��
� �

��

0

0 �� MV,L �� V ⊗OC
�� L �� 0.

If we require maximality of the subbundle S, and destabilization, we have

µ(S) =
−deg FS

dimW − rankFS
≥ µ(MW,I) =

−deg I
dimW − 1

.

So, if rankFS > 1, we have

deg FS ≤ dimW − rankFS
dimW − 1

deg I < deg I.

3. Linear Stability and Clifford Index

Here we give a natural generalization of the notion of linear stability of a curve and
a linear series on it, introduced by Mumford in [18] (cf. [24]).

Definition 3.1. Let L be a degree d line bundle on C, and V ⊆ H0(L) be a
generating subspace of dimension r + 1. We say that the triple (C,L, V ) is linearly
semistable (respectively, stable) if any linear series of degree d′ and dimension r′

contained in |V | satisfies d′/r′ ≥ d/r (respectively, d′/r′ > d/r).

In case V = H0(L), we shall talk of the stability of the couple (C,L). It is easy
to see that in this case it is sufficient to verify that the inequality of the definition
holds for any complete linear series in |V |.
Remark 3.2. It is clear that the following conditions are equivalent:

(1) The triple (C,L, V ) is linearly stable;
(2) The bundle MV,L is not destabilized by any bundle MV ′,L′ , with V ′ ⊆ V , and

V ′ ⊗OC −� L′ ⊂ L.

Using the Clifford theorem and Riemann–Roch theorem it is not hard to prove
that (C,L) is linearly stable for any line bundle L of degree ≥ 2g + 1.

Let C be of genus g ≥ 2. We now present a more general result relating linear
stability to the Clifford index of the curve. Let us recall that the Clifford index of
a curve C of genus g ≥ 4 is the integer:

Cliff(C) := min{deg(L) − 2(h0(L) − 1) | L ∈ Pic(C), h0(L) ≥ 2, h1(L) ≥ 2}.
When g = 2, we set Cliff(C) = 0; when g = 3 we set Cliff(C) = 0 or 1 according

to whether C is hyperelliptic or not.
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Let γ(C) be the gonality of the curve C. The following inequalities hold:

γ(C) − 3 ≤ Cliff(C) ≤ γ(C) − 2;

the case Cliff(C) = γ(C) − 2 holding for general γ(C)-gonal curves in the moduli
space of smooth curves Mg. Furthermore Cliff(C) = 0 if and only if C is hyperel-
liptic.

Proposition 3.3. Let C be a curve of genus g ≥ 2. Let L ∈ Pic(C) be a globally
generated line bundle such that degL− 2(h0(L)− 1) ≤ Cliff(C). Then L is linearly
semistable. It is linearly stable unless L ∼= ωC(D) with D an effective divisor of
degree 2, or C is hyperelliptic and degL = 2(h0(L) − 1).

Proof. Recall that it is sufficient to check linear stability for complete linear sub-
systems of |L|. Let P ↪→ L be a line bundle generated by a subspace of H0(L).
Observe that

H1(P)∗ = H0(ω ⊗ P∗) ⊇ H0(ω ⊗ L∗) = H1(L)∗.

Let us distinguish three cases:

(1) h1(L) ≥ 2. In this case L computes the Clifford index:

degL = 2(h0(L) − 1) − Cliff(C).

Hence h1(P) ≥ h1(L) ≥ 2 and P contributes to the Clifford index Cliff(C), so
degP ≥ 2(h0(P) − 1) + Cliff(C). Then we have the inequalities

degP
h0(P) − 1

≥ 2 +
Cliff(C)

h0(P) − 1
≥ 2 +

Cliff(C)
h0(L) − 1

=
degL

h0(L) − 1
,

where the last inequality is strict unless Cliff(C) = 0 and degL = 2(h0(L)−1),
in which case the curve is hyperelliptic, and L is linearly semistable but not
linearly stable (it can be shown that the dual of the g1

2 maps to ML in this
case).

(2) If h1(L) = 1, then either h1(P) = 1 or h1(P) ≥ 2. In the last case P contributes
to the Clifford index, so

degP/(h0(P) − 1) ≥ 2 + Cliff(C)/(h0(L) − 1) ≥ degL/(h0(L) − 1),

with strict inequality unless C is hyperelliptic and degL = 2(h0(L) − 1).
If h1(P) = h1(L) = 1, then, as degP < degL, we have that degP/(degP +

1 − g) > degL/(degL + 1 − g).
(3) If h1(L) = 0, then h1(P) = 0, or h1(P) = 1, or h1(P) ≥ 2. In the last case

P contributes to the Clifford index, and we can reason as above. If h1(P) =
h1(L) = 0, then, as degP < degL, we have degP/(degP − g) > degL/

(degL − g).
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At last, suppose that h1(P) = 1. Then of course degP ≤ 2g − 2. Consider
the exact sequence

0 → H0(P) → H0(L) → H0(D,OD) → H1(P) → 0,

where D is an effective divisor such that P(D) ∼= L. From this sequence,
remarking that the inclusion H0(P) ⊂ H0(L) must be strict, we deduce that
degL− degP = h0(D,OD) ≥ 2.

We thus have the following chain of inequalities

degP
h0(P) − 1

=
degP

degP + 1 − g
≥ degL

degL − g
=

degP + h0(D,OD)
degP + h0(D,OD) − g

.

In fact degP/(degP + 1 − g) ≤ (degP+h0(D,OD))/(degP + h0(D,OD) − g)
if and only if degP ≤ (h0(D,OD))(g − 1) and as degP ≤ 2g − 2 the inequality
is always verified and is strict unless degP = 2g−2 and h0(D,OD) = 2. In this
last case we have that h0(P∗ ⊗ωC) = 1 so P ∼= ωC and L ∼= ωC(D) as wanted.

Remark 3.4. A similar result on non-complete canonical systems was obtained
in [2]: it states that the triple (C, ωC , V ), where V is a general subspace V ⊂ H0(ωC)
of codimension c ≤ Cliff(C)/2, is linearly semistable. Note that the condition on
codimension is analogous to the condition of Proposition 3.3: deg ωC = 2g − 2 ≤
2(dimV − 1) − Cliff(C).

4. The Slope of Determinant Bundles

Let us state the following well-known fact (see for instance [15, 5.0.1]).

Proposition 4.1. Let F be a globally generated vector bundle of rank r ≥ 2. Let
A = det(F). For a general choice of a subspace T ⊂ H0(F) of dimension r − 1,

evaluation on global sections of F gives the following exact sequence:

0 → T ⊗OC → F → A → 0. (4.1)

The following argument will be a key point in our proof. It is largely inspired
by [9].

Proposition 4.2. Let F be a globally generated vector bundle of rank r ≥ 2 and
h0(F∗) = 0. If the sequence (4.1) is exact on global sections, then degA = degF ≥
γ(h0(A) − 1), where γ is the gonality of the curve C.

Proof. Let us consider the sequence (4.1) tensored with ωC . By taking the
cohomology sequence, as h0(F∗) = 0, we can conclude that the homomorphism
H0(F ⊗ ωC) → H0(A⊗ ωC) is not surjective. From this, we derive that the multi-
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plication homomorphism

H0(A) ⊗ H0(ωC) → H0(A⊗ ωC) (4.2)

fails to be surjective. Indeed, let us consider the commutative diagram:

0

��

0

��
0 ��

��

⊕rankF−1
ωC

��

�� ⊕rankF−1
ωC

��

��

0

0 �� MF ⊗ ωC
��

� �

��

H0(F) ⊗ ωC
��

��

F ⊗ ωC
��

��

0

0 �� MA ⊗ ωC
�� H0(A) ⊗ ωC

��

��

A⊗ ωC
��

��

0

0 0

Remark that the middle column is exact by our assumptions on the exact
sequence (4.1). By taking global sections, we have the commutative diagram

H0(F) ⊗ H0(ωC) ��

��

H0(F ⊗ ωC)

��
H0(A) ⊗ H0(ωC) �� H0(A⊗ ωC)

where the first vertical arrow is surjective, while the second, as it is shown above,
is not. Hence the bottom horizontal arrow cannot be surjective.

From a result of Castelnuovo type due to Green [14, Theorem 4.b2] (see also [11])
we have that, for any base point free line bundle A, the sequence (4.2) fails to be
surjective only if the image of the morphism induced by A is a rational normal
curve in P(H0(A)∗). Hence we have that degA ≥ γ(h0(A) − 1), where γ is the
gonality of C, as wanted.

We now state a consequence on dual span bundles that will be a key point in our
arguments. As usual, let L be a line bundle on C and V ⊆ H0(L) be a generating
subspace. Let S ⊂ MV,L be a saturated subbundle, and FS and A = det FS be as
in Remark 2.2.

Lemma 4.3. With the notation above, suppose that rankFS ≥ 2. If FS fits in an
exact sequence

0 →
rank FS−1⊕

OC → FS → A → 0,

which is also exact on global sections, then the following properties hold.
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(1) If degL ≤ γ(dimV − 1), then µ(S) ≤ µ(MV,L). Furthermore, we have equality
if and only if

• W = H0(FS),
• γ = degA/(h0(A) − 1),
• γ = degL/(dimV − 1).

(2) If degL < γ(dimV − 1), then µ(S) < µ(MV,L).

Proof. Note that, as rankFS ≥ 2,

rankS = dimW − rankFS ≤ h0(FS) − rankFS = h0(A) − 1.

So if we have

µ(S) =
−degA

dimW − rankFS
≥ µ(MV,L) =

−degL
dimV − 1

,

then

γ ≤ degA
h0(A) − 1

≤ degA
dimW − rankFS

≤ degL
dim V − 1

≤ γ.

So the inequality µ(S) ≥ µ(MV,L) cannot hold strict, and it is an equality if
and only if W = H0(FS), and γ = degA/(h0(A) − 1) = degL/(dim V − 1).

5. Stability of DSBs in the Complete Case

The main result of this section is the first part of Theorem 1.1.

Theorem 5.1. Let L ∈ Pic(C) be a globally generated line bundle such that

degL − 2(h0(L) − 1) ≤ Cliff(C).

Then L is linearly (semi)stable if and only if ML is (semi)stable.

Proof. Clearly ML (semi)stable implies L is linearly (semi)stable. Let us prove the
other implication, thus suppose L linearly (semi)stable.

By contradiction let S be a maximal stable destabilizing subbundle of ML, i.e. S
stable, µ(S) ≥ µ(ML) maximal (> for semistability), and rankS < rankML. Note
that

degL ≤ Cliff(C) + 2(h0(L) − 1) ≤ γ − 2 + 2(h0(L) − 1) ≤ γ(h0(L) − 1),

(5.1)

with equality if and only if either γ = 2 and degL = 2(h0(L) − 1), or h0(L) = 2
and degL = γ = Cliff(C) + 2.

By the assumption on linear (semi)stability, we have that rankFS ≥ 2. We prove
the following.
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Claim. The bundle FS admits a determinant sequence (4.1) exact on global sections.
Then, by (5.1) and Remark 2.2(ii), we can apply Lemma 4.3. So for such S and

FS we have that S cannot destabilize ML. It can strictly destabilize (i.e. µ(S) =
µ(ML)) only in the case where degL = γ(h0(L)− 1). By the consequences of (5.1),
this strict destabilization can happen only if either γ = 2 and degL = 2(h0(L) −
1), or h0(L) = 2 and degL = γ = Cliff(C) + 2. In the last case we have that
rankML = 1. In the first one, we have that C is hyperelliptic and degL = 2(h0(L)−
1); it is well known that L is strictly linearly semistable in this case (the dual of the
g1
2 providing a strict destabilization as noted above). In any case we cannot have a

strict destabilization if L is supposed linearly stable.
To prove the claim let us remark that by Proposition 4.1 such a short exact

sequence exists. What we need to show is that it is exact on global sections; this is
equivalent to showing that h0(A) ≤ h0(FS) − rankFS + 1.

Observe that H0(FS) � H0(A) if and only if H1(O⊕rank FS−1) ↪→ H1(FS).
Let us show first that this is numerically possible: we prove that g(rankFS − 1) =
h1(O⊕rank FS−1) < h1(FS) indeed. In fact

h1(FS) = h0(FS) − deg FS + g · rankFS − rankFS .

Hence h1(FS) > g · rankFS − g if and only if h0(FS) − rankFS > deg FS − g.
As h0(FS)− rankFS ≥ rankS, we can show that rankS > deg FS − g, i.e. that

deg FS
rankS < 1 +

g

rankS .

By hypothesis µ(S) = −deg FS/rankS ≥ −degL/(h0(L) − 1), hence

deg FS
rankS ≤ degL

h0(L) − 1
= 1 +

g − h1(L)
rankML

< 1 +
g

rankS .

As the cokernel of ϕ : H1(O⊕rank FS−1) → H1(FS) is exactly H1(A), and the
inequality above is strict, then if h1(A) ≤ 1 the map ϕ is injective as we need, and
H0(FS) � H0(A).

Let us show that if h1(A) ≥ 2, then the map is surjective as well: in this case
we have the inequality

degA− 2(h0(A) − 1) ≥ Cliff(C) ≥ deg(L) − 2(h0(L) − 1).

As deg FS = degA < degL (see Remark 2.2), then 2(h0(L)−h0(A)) ≥ degL−
degA > 0, hence h0(A) < h0(L).

Remark that, by the assumption made on S,

degA
rankS =

−degS
rankS ≤ degL

h0(L) − 1
,

hence rankS ≥ degA · (h0(L) − 1)/ degL.
Now assume that H0(FS) → H0(A) is not surjective, i.e. that h0(A) > h0(FS)−

rankFS + 1.
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Then we have that h0(A) − 1 > h0(FS) − rankFS ≥ rankS ≥ degA · (h0(L) −
1)/degL, hence

degA <
degL

h0(L) − 1
(h0(A) − 1) ≤

(
2 +

Cliff(C)
h0(L) − 1

)
(h0(A) − 1)

= 2(h0(A) − 1) + Cliff(C)
h0(A) − 1
h0(L) − 1

≤ 2(h0(A) − 1) + Cliff(C),

so 2(h0(A)− 1) + Cliff(C) ≤ degA < 2(h0(A)− 1) + Cliff(C) and we get a contra-
diction.

Remark 5.2. It is worth noticing that the claim in the proof of Theorem 5.1 above
is a point where Butler’s argument in [9] fails to be complete.

The consequences of this theorem, as stated in Sec. 1, follow easily.

Theorem 5.3. Let L ∈ Pic(C) be a globally generated line bundle such that

degL − 2(h0(L) − 1) ≤ Cliff(C). (5.2)

Then ML is semistable, and it is strictly semistable only in one of the following
cases:

(i) L ∼= ωC(D) with D an effective divisor of degree 2,

(ii) C is hyperelliptic and degL = 2(h0(L) − 1).

Proof. It follows immediately from Theorem 5.1 and Proposition 3.3.

Corollary 5.4. Let L be a globally generated line bundle over C with

degL ≥ 2g − Cliff(C).

Then the vector bundle ML is semistable. It is stable unless (i) or (ii) holds.

Proof. Observe that if L is a globally generated line bundle over C with degL ≥
2g − Cliff(C), then Cliff(C) ≥ 2g − degL, so

Cliff C + 2(h0(L) − 1) ≥ Cliff C + 2(degL − g) ≥ degL,

then use Theorem 5.3.

Corollary 5.5. Let L be any line bundle that computes the Clifford index of C.

Then ML is semistable; it is stable unless C is hyperelliptic.

Proof. It follows from Theorem 5.3, recalling that any line bundle computing the
Clifford index is globally generated.

6. The Non-Complete Case

The aim of this section is to extend the methods described above, when possible,
to the non-complete case.
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The following conjecture is the most natural direct generalization of Theorem 5.1
to the non-complete case. Note that it is weaker than Conjecture 8.6 below. We
will not prove it in full generality, but it still holds in many cases.

Conjecture 6.1. Let (C,L, V ) be a triple. If degL−2(dimV −1) ≤ Cliff(C), then
linear (semi)stability is equivalent to (semi)stability of MV,L.

Remark 6.2. The inequality degL ≤ Cliff(C) + 2(dimV − 1) holds if and only if

codimH0(L)V ≤ Cliff(C) − (degL − 2(h0(L) − 1))
2

.

The results of this and the previous section can be summarized in the following
(equivalent to Theorem 1.1).

Theorem 6.3. Conjecture 6.1 holds in the following cases :

(1) H0(L) = V (complete case);
(2) degL ≤ 2g − Cliff(C) + 1;
(3) codimH0(L) V < h1(L) + g/(dimV − 2);
(4) degL ≥ 2g, and codimH0(L)V ≤ (degL− 2g)/2.

In all of the following result we make this assumption. Let (C,L, V ) be a triple
verifying degL − 2(dimV − 1) ≤ Cliff(C), let S ⊂ MV,L be a proper subbundle
such that µ(S) ≥ µ(MV,L), let FS and A be as in Lemma 4.3.

In order to prove Theorem 6.3, we proceed as in Theorem 5.1, and show that
within these numerical hypothesis we can apply Lemma 4.3. That is, we show that
for a possible destabilization given by

0 �� S ��
� �

��

W ⊗OC
��

� �

��

FS ��

α

��

0

0 �� MV,L �� V ⊗OC
�� L �� 0

the bundle FS fits into a short exact sequence

0 →
rank FS−1⊕

OC → FS → A → 0

which is exact on global sections.

Lemma 6.4. If h1(A) ≥ 2 then the sequence

0 →
rank FS−1⊕

OC → FS → A → 0

is exact on global sections.
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Proof. If h1(A) ≥ 2 then degA− 2(h0(A)− 1) ≥ Cliff(C) ≥ degL− 2(dimV − 1),
and then we have that 2(dimV − h0(A)) ≥ degL − degA = degL − deg FS > 0.
Furthermore, if

degA
rankS =

−degS
rankS ≤ degL

dim V − 1
,

then rankS ≥ degA(dim V − 1)/ degL.
Then if we had the inequality h0(A) − 1 > h0(FS) − rankFS , we would have

h0(A) − 1 > rankS ≥ degA(dimV − 1)/ degL, and then

2(h0(A) − 1) + Cliff(C) ≤ degA < degLh0(A) − 1
dim V − 1

≤ 2(h0(A) − 1) + Cliff(C)
h0(A) − 1
dim V − 1

< 2(h0(A) − 1)

+ Cliff(C),

which is absurd, so we have h0(A) ≤ h0(FS) − rankFS + 1, hence the sequence

0 →
rank FS−1⊕

OC → FS → A → 0

is exact on global sections.

To complete the proof of Theorem 6.3 we have to treat the case h1(A) ≤ 1 as
well.

Lemma 6.5. Suppose that h1(A) ≤ 1. If we assume that degL ≤ 2g−Cliff(C)+1,

then the sequence

0 →
rank FS−1⊕

OC → FS → A → 0

is exact on global sections.

Proof. We want to prove that h0(FS)− rankFS +1 ≥ h0(A). This is the case if we
prove that h0(FS)− rankFS > degA− g. As h0(FS)− rankFS ≥ rankS, recalling
that deg FS = degA, we are done if we can prove the following.

Claim. deg FS < rankS + g.

In fact we have that

deg FS ≤ rankS
dimV − 1

degL ≤ rankS
dimV − 1

(Cliff(C) + 2(dimV − 1))

= Cliff(C)
rankS

dim V − 1
+ 2 rankS < Cliff(C) + 2 rankS.

So, if rankS ≤ g − Cliff(C) then the claim is verified. Let us show that this is the
case when rankS > g − Cliff(C) as well. In fact if we had deg FS ≥ rankS + g

1250121-14

In
t. 

J.
 M

at
h.

 2
01

2.
23

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

PA
D

U
A

 o
n 

07
/1

0/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

November 23, 2012 10:0 WSPC/S0129-167X 133-IJM 1250121

Linear Series on Curves: Stability and Clifford Index

holding together with rankS > g−Cliff(C), then we would have degL > deg FS >

2g − Cliff(C), contrary to the assumption.

Lemma 6.6. If codimH0(L)V < h1(L) + g/(dimV − 2), then the sequence

0 →
rank FS−1⊕

OC → FS → A → 0

is exact on global sections.

Proof. The case h1(A) ≥ 2 is treated in Lemma 6.4. Let us assume that h1(A) ≤ 1.
We proceed as in the proof of Lemma 6.5, and show the same condition.

Claim. rankS > degA− g.

As shown in Lemma 6.5, this implies that h0(FS) − rankFS + 1 ≥ h0(A).
To prove the claim, set c := codimH0(L) V , and observe that

rankS > degA− g ⇔ degA
rankS < 1 +

g

rankS
and that

degA
rankS ≤ degL

dimV − 1
= 1 +

g + c − h1(L)
dimV − 1

.

Now observe that if c < h1(L) + g/(dimV − 2), we have, noting that rankS ≤
dimV − 2,

c − h1(L) < g

(
dimV − 1

rankS − 1
)

,

and hence that
degA
rankS < 1 +

g

rankS .

As for the last point in Theorem 6.3, it follows directly from [17, Lemma 2.2].

Proposition 6.7. Let C be a curve such that Cliff(C) ≥ 4. Let V ⊂ H0(ωC) be a
general subspace of codimension 1 or 2. Then MV,ωC is stable.

Proof. It has been proved in [2] that a general projection from a subspace of
dimension smaller than or equal to Cliff(C)/2 is linearly stable. Then, the proof is
immediate from Theorem 6.3.

Remark 6.8. In the complete case, the (semi)stability of MωC is well known in the
literature, regardless of the Clifford index [20]. In the next section we shall prove
a stronger result on the vector bundle MωC and on the case of codimension 1; see
Corollary 7.7.

7. Cohomological Stability and the Clifford Index

The following definition was introduced by Ein and Lazarsfeld in [13].
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Definition 7.1. Let E be a vector bundle on a curve C. We say that E is cohomo-
logically stable (respectively, cohomologically semistable) if for any line bundle A of
degree a and for any integer t < rankE we have

h0

(
t∧
E ⊗ A−1

)
= 0 whenever a ≥ tµ(E) (respectively, a > tµ(E)).

Remark 7.2. Cohomological (semi)stability implies bundle (semi)stability;
indeed, given any proper subbundle S ⊂ E of degree a and rank t, we have an
inclusion detS ↪→ ∧t E , hence a non-zero section of (detS)−1 ⊗∧t E .

Moreover, observe that cohomological (semi)stability of E is implied by
∧t E

being (semi)stable for any integer t; hence cohomological semistability is equivalent
to semistability, while cohomological stability can be a stronger condition than
stability.

In [13] the two authors prove the cohomological stability of the DSB ML asso-
ciated to any line bundle L on a curve of positive genus g, under the assumption
that degL ≥ 2g + 1.

The main result of this section is Theorem 7.3 stated in Sec. 1, which is a
generalization of the result of Ein and Lazarsfeld.

Theorem 7.3. Let (L, V ) be a gr
d on a smooth curve C, inducing a birational

morphism. Suppose that

• d ≤ 2r + Cliff C;
• codimH0(L) V ≤ h1(L).

Then MV,L is cohomologically semistable. It is cohomologically stable except in the
following cases :

(i) d = 2r and C is hyperelliptic.
(ii) L ∼= ωC(D) with D an effective divisor of degree 2.

In order to prove Theorem 7.3, let us first establish this simple generalization
of a result used in the proof of [13, Proposition 3.2], and a lemma.

Proposition 7.4. Let (L, V ) be a gr
d on a smooth curve C, inducing a birational

morphism; let Dk = p1+ · · ·+pk be a general effective divisor on C, with k < r. The
DSB associated to the linear series lies in the following exact sequence of sheaves:

0 → MV (−Dk),L(−Dk) → MV,L →
k⊕

i=1

OC(−pi) → 0.

Proof. As Dk is general effective, we have that dimV (−Dk) = dimV − k = r +
1 − k. Moreover, as the morphism induced by |V | is generically injective, L(−Dk)
is generated by V (−Dk). Let W be the cokernel of the injection V (−Dk) ⊆ V .
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Using the snake lemma, we can form the top exact row in the diagram below,
and the proof is concluded.

0

��

0

��

0

��
0 �� MV (−Dk),L(−Dk) ��

��

MV,L ��

��

⊕k
i=1 OC(−pi) ��

��

0

0 �� V (−Dk) ⊗OC
��

��

V ⊗OC
��

��

W ⊗OC
��

��

0

0 �� L(−Dk) ��

��

L ��

��

LDk
��

��
0 0 0

Remark 7.5. With the notation and conditions of the above proposition, if we
consider a general effective divisor D of maximal degree r − 1, we have that
MV (−D),L(−D) is a line bundle which is dual to OC(pr + · · · + pd), so

MV (−D),L(−D)
∼= OC(−pr − · · · − pd).

Lemma 7.6. Let A be a line bundle on the curve C such that degA ≤ td/r, with
t, d, and r integers satisfying 0 < t < r < d ≤ 2r + Cliff(C) and r ≥ d− g. Suppose
that the first inequality degA ≤ td/r is strict if Cliff(C) = 0.

Then h0(A) ≤ t, except for the case where A = ωC , and t = g − 1, r = g,

d = 2g.

Proof. Let us distinguish three cases according to the values of h1(A):

(A) Suppose that h1(A) ≥ 2. Then we can suppose that A contributes to the
Clifford index of C (i.e. that h0(A) ≥ 2), and so

2(h0(A) − 1) ≤ degA− Cliff C ≤ t
d

r
− Cliff C

≤ t

(
2 +

Cliff C

r

)
− Cliff C = 2t + Cliff C

(
t

r
− 1
)

.

The last quantity is strictly smaller than 2t if and only if Cliff C > 0. So, if C

is non-hyperelliptic we are done. If C is hyperelliptic we still have the claim
if d/r < 2, while if d/r = 2, the claim is true supposing the strict inequality
degA < td/r.
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(B) Suppose that A is non-special: h1(A) = 0. Then by Riemann–Roch theorem
h0(A) = degA− g + 1. This quantity is smaller than or equal to t if and only
if degA− g < t. Hence, it is sufficient to prove that td/r − g < t; equivalently,
we need to prove that

t < r
g

d − r
.

By assumption, we have that r ≥ d − g, so the above inequality is true, since
t < r ≤ rg/(d − r).

(C) Finally, let us suppose that h1(A) = 1. Remember that we are assuming that
d ≤ 2r + Cliff C. Let us distinguish three cases again.

(C.1) If d < 2r (for instance this is the case if d > 2g as in [13]). Then degA ≤
td/r < 2t. So, as A is special, we have that 2(h0(A) − 1) ≤ degA < 2t

and we are done.
(C.2) Suppose that d > 2r. Observe that

r

(
g − 1
d − r

)
≥ r − r

d − r
> r − 1 ≥ t.

As in point (B), this is the inequality we need.
(C.3) Let us now suppose that d = 2r. In this case, we obtain r(g−1)/(d−r) ≥

t, so t ≤ g − 1, and

h0(A) = 1 + deg A + 1 − g ≤ t + 1,

with equality holding if and only if t = g−1, deg A = 2t = 2g−2, which
implies that A = ωC and d = 2r = 2g.

Proof of Theorem 7.3. By Proposition 7.4 and Remark 7.5, we have that the
bundle MV,L sits in the exact sequence

0 → OC(−pr − · · · − pd) → MV,L →
r−1⊕
i=1

OC(−pi) → 0.

Let t be an integer strictly smaller than r. Applying the t-th exterior power, we get
the sequence

0 →
⊕

1≤i1<···<it−1≤r−1

OC(−pi1 − pi2 − · · · − pit−1 − pr − · · · − pd)

→
t∧

MV,L →
⊕

1≤j1<j2<···<jt≤r−1

OC(−pj1 − pj2 − · · · − pjt) → 0. (7.1)

Let us now tensor the above sequence with a line bundle A−1 of degree −a.
We shall now suppose that −a ≤ td/r, in order to prove cohomological stability.

We will see in the course of the proof that in case d/r = 2 and C hyperelliptic we
will need to assume strict inequality, thus proving semistability.
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We want to prove that H0(
∧t

MV,L ⊗A−1) = {0}. To this aim, let us consider
the global sections of sequence (7.1) tensorized by A−1 and prove that both left
and right-hand side are trivial.

The left-hand side is a sum of global sections of line bundles each of degree
−t− d+ r− a ≤ −t− d+ r +(td)/r = (r− t)(1− d/r). As r− t > 0 by assumption,
and d > r, this degree is negative and we are done.

Let us now study the right-hand side. Remark that the hypothesis on h1(L) is
equivalent to r ≥ d− g. Applying Lemma 7.6 to A−1, we have h0(A−1) ≤ t, except
for the case where A−1 = ωC , t = g − 1, r = g, and d = 2g.

In this last case a strict cohomological destabilization is given by

H0

(
r−1∧

MV,L ⊗ ωC

)
= H0(M∗

V,L ⊗ L∗ ⊗ ωC) �= 0,

and it can be shown that this can only happen in case (ii) of the hypothesis:
L ∼= ωC(D) with D an effective divisor of degree 2.

In all the other cases, the pieces of the right-hand side are of the form
H0(A−1(−D)) where D is a general effective divisor of degree t, so they vanish.

As a consequence, we have immediately the following result.

Corollary 7.7. If C is non-hyperelliptic, then MωC is cohomologically stable.
Moreover, if Cliff C ≥ 2, a projection from a general point in Pg−1 is cohomo-
logically stable.

Remark 7.8. What can we say if we drop the assumption of the linear series to
induce a birational morphism? Let (L, V ) be a base point free linear series on a
curve C. Let ϕ : C → Pr be the induced morphism, and ν : C → ϕ(C) ⊆ Pr be the
normalization of the image curve. Then the morphism ϕ decomposes as

C
β �� C

ν �� ϕ(C) � � ι �� Pr,

where β is a finite morphism (of degree b). Let (L, V ) be the linear series induced
on C by ι ◦ ν. Clearly V = β∗(V ), and L = β∗L, and degL = (degL)/b.

Proposition 7.4 still holds if we substitute Dk with β∗(β(Dk)), and the points of
this divisor fail to impose independent conditions on H0(L), so that the argument
of Theorem 7.3 cannot be pushed through.

Observe that β∗MV ,L = MV,L. If (L, V ) satisfies the numerical conditions of
Theorem 7.3, then MV ,L is cohomologically stable by Theorem 7.3, so its pullback
MV,L is semistable, but we cannot say anything about its cohomological stability,
nor vector bundle stability.

On the other hand, it is worth noticing that linear stability is preserved by finite
morphisms: it is easy to verify that (C,L, V ) is linearly (semi)stable if and only if
(C,L, V ) is linearly (semi)stable.
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8. Linear Series of Dimension 2 and Counterexamples

In this section we discuss linear stability for curves with a g2
d, then exhibit some

examples and counterexamples to the implication (linear stability of the triple
(C,L, V ) ⇒ stability of MV,L).

The first result shows that linear stability is in this case related to the singularity
of the image, which is very natural when compared with the results in [18].

Proposition 8.1. Let ν : C → P2 be a birational morphism. Denote by C ⊂ P2

its image, and by d the degree of C in P2. The morphism ν is induced by a linearly
(semi)stable linear system if and only if all points p ∈ C have multiplicity mp < d/2
(or mp ≤ d/2 for semistability).

Proof. Linear stability (respectively, semistability) is equivalent to the fact that
any projection from a point p ∈ P2 has degree > d/2 (respectively, ≥ d/2). This
degree is precisely d − mp.

From this result we can easily derive linear stability for any general g2
d contained

in a very ample linear series L: such a linear series induces a birational morphism
whose image in P2 is an integral plane curve with at most nodes as singularities
(cf. [1, Exercises B-5 and B-6]). Hence this series is linearly stable (respectively,
semistable) as soon as d > 4 (respectively, d ≥ 4). Summing up we have proven the
following.

Proposition 8.2. Let C be a smooth curve with an embedding in Pn of degree d > 4
(respectively, d ≥ 4). The general projection on P2 is linearly stable (respectively,
semistable).

Clearly this result goes in the direction of Butler’s conjecture. It is not hard to
prove the stability of DSB for smooth plane curves, and anytime the degree d is
greater than or equal to 4g. However we do not know in the general case whether
or not linear stability implies the stability of the associated DSB.

We now describe an example showing that linear stability is not always equiva-
lent to stability of DSB. Let us start with the following easy lemma.

Lemma 8.3. Let |V | be a base point free linear series of dimension r contained in
H0(P1,OP1(d)). Then if r� |d, the dual span bundle MV,O

P1(d) is unstable.

Proof. The bundle MV,O
P1(d) = ker(V ⊗OC → OP1(d)) is a rank r vector bundle

on P1 that splits as the direct sum of r line bundles. If r does not divide d, this
bundle cannot be (semi)stable.

Combining the above lemma with Proposition 8.1, we easily get counterexam-
ples, as follows.

Proposition 8.4. On any curve C there exist non-complete linear systems V ⊂
H0(L) such that (C,L, V ) is linearly stable and MV,L is unstable.
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Proof. Consider any finite morphism β : C → P1, and choose a map η : P1 →
P2 associated to a general base point free W ⊂ H0(P1,OP1(d)) with odd degree
d > 4. By Lemma 8.3 the bundle MW,O

P1 (d) is unstable. Let L = β∗OP1(d) and
V := β∗(W ) ⊂ H0(L) be the linear series associated to the composition η ◦ β.
Clearly also MV,L = β∗MW,O

P1 (d) is unstable. On the other hand, (P1,OP1(d), W )
is linearly stable, and, as linear stability respects finite morphisms (Remark 7.8),
so is (C,L, V ).

Remark 8.5. Note that the linear systems produced satisfy the inequality

degL ≥ γd > γ(dimV − 1),

where γ is the gonality of C, so there is no contradiction with our conjectures.
Furthermore, the subspace V ⊂ H0(L) is not general.

Therefore it seems reasonable to formulate some conjectures respectively on the
non-complete and complete case.

Conjecture 8.6. Let (C,L, V ) be a triple as usual. If degL ≤ γ(dimV −1), where
γ is the gonality of C, then linear (semi)stability is equivalent to (semi)stability of
MV,L.

Conjecture 8.7. For any curve C, and any line bundle L on C, linear (semi)-
stability of (C,L) is equivalent to (semi)stability of ML.

These conjectures arise implicitly from Butler’s article [9] (cf. Remark 5.2).

9. Stable DSB’s with Slope 3, and Their Theta-Divisors

In this section we construct explicitly some stable bundles of integral slope on a
general curve, and we prove that they admit theta-divisors.

Let us consider a curve C of even genus g = 2k, k ≥ 2, having general gonality
γ = k + 1 and Clifford Index Cliff(C) = k− 1. Let D be a gonal divisor: h0(D) = 2
and deg D = k + 1, and hence h1(D) = k from the Riemann–Roch formula.

Let L = ωC(−D). We have that degL = 2g − 2 − k − 1 = 3k − 3, h0(L) =
h1(D) = k, h1(L) = h0(D) = 2, so degL−2(h0(L)−1) = Cliff(C) and L computes
the Clifford Index of C. So the DSB ML is stable by Corollary 5.5, and has integral
slope

µ(ML) = −3k − 3
k − 1

= −3.

Moreover, we can state the following result, which was suggested to us by the
referee.

Proposition 9.1. With the above notation, if C is general, then ML is cohomo-
logically stable.

Proof. The statement follows from Theorem 7.3, as soon as it is proved that L
induces a birational morphism.
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In fact, since L is generated, the morphism is an immersion if h0(ωC(−p−q)) =
h0(ωC) − 2 for all p, q ∈ C. This is equivalent to h0(D + p + q) = 2.

As C is general of genus g = 2k, there exists a gr
d on C if and only if the Brill–

Noether number ρ(d, r, 2k) = r(d− r + 1)− 2k(r − 1) is greater or equal to 0. This
implies that the minimal degree of a line bundle with space of global sections of
dimension greater or equal to 3 is 2k + 2 − [2k

3 ]. We therefore have the required
result for k ≥ 4, i.e. g ≥ 8.

In case k = 3, the line bundle L induces a morphism in P2. If this morphism
would not be birational, then the curve would be either trigonal (having a degree 3
morphism on a conic in P2) or bielliptic (having a degree 2 morphism on a cubic
in P2); in any case C would not be general. In fact, for a general C, the image of
the morphism induced by L is a plane sextic curve with four nodes. If k = 2, Then
ML is a line bundle and the proof is thus concluded.

Question 9.2. Does ML admit a theta-divisor?

We recall that the vector bundle E with integral slope is said to admit a theta-
divisor if

ΘE = {P ∈ Picg−1−µ(E)(C) |h0(P ⊗ E) �= 0} � Picg−1−µ(E)(C).

If this is the case, then ΘE has a natural structure of (possibly non reduced) divisor
in Picg−1−µ(E)(C), whose cohomology class is rankE · ϑ where ϑ is the class of the
canonical theta-divisor in Picg−1−µ(E)(C).

A vector bundle admitting a theta-divisor is semistable, and if the vector bundle
admits a theta-divisor and is strictly semistable then the theta-divisor is not integral
(cf. [3, 12]).

Proposition 9.3. If C is general, the vector bundle ML constructed above admits
a theta-divisor.
Proof. Recall that the genus of the curve is g = 2k, degL = 3k− 3, and µ(ML) =
−3. So ML admits a theta-divisor if there exists a line bundle P of degree degP =
g + 2 such that h0(P ⊗ ML) = 0. Looking at the exact sequence

0 → ML ⊗ P → H0(L) ⊗ P → L⊗ P → 0

and passing to global sections, we have that h0(ML ⊗ P) = 0 if and only if the
multiplication map H0(P) ⊗ H0(L) → H0(P ⊗ L) is injective.

Let us write (ωC) − Cg−3 + C for the subset of Picg+2(C) consisting of line
bundles of the form ωC(−x1−x2−· · ·−xg−3 +y) for some points x1, . . . , xg−3, y ∈
C. This is a two-codimensional subset of Picg+2(C), and its cohomology class is
Wg−2 = ϑ2/2.

The elements P ∈ (ωC) − Cg−3 + C are exactly those satisfying one of the
following properties:

(1) h0(P) > 3;
(2) h0(P) = 3 and P has base points.
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It can be shown that all elements satisfying one of these properties lie in ΘML . The
remaining elements of Picg+2(C) are line bundles P ∈ Picg+2(C) which are base
point free and satisfy h0(P) = 3.

Let us show that there exists a line bundle P /∈ (ωC)−Cg−3 + C such that the
map H0(P) ⊗ H0(L) → H0(P ⊗ L) is injective.

Let us start by considering the multiplication map

µ : H0(D) ⊗ H0(ωC(−D)) → H0(ωC),

and suppose that it is injective (then in fact it is an isomorphism): this assumption
is true for a general curve, for instance it is true if we suppose that C is a Petri
curve.

Let G be a general effective divisor of degree k + 1. Then observe that, as G

imposes general conditions on H0(ωC(−D)),

h1(D + G) = h0(ωC(−D − G)) = 0,

and hence h0(D + G) = 3. Moreover, the divisor D + G is free from base points.
Indeed, as G is general of degree k + 1 we also have that h0(ωC(−D −G + p)) = 0
for any p ∈ C, and so h0(D + G − p) = 2 as wanted.

Hence OC(D +G) ∈ Picg+2(C) belongs to the complement of (ωC)−Cg−3 +C.
Let us now prove that the map ν : H0(D + G) ⊗ H0(ωC(−D)) → H0(ωC(G))

is injective. Let σ1, σ2, σ3 be a basis for H0(D + G) such that σ1 and σ2 generate
H0(D) ⊂ H0(D+G). Then of course the restriction of ν to 〈σ1, σ2〉⊗H0(ωC(−D))
is the map µ, and so it is injective by our assumption.

Let t = 
1 ⊗ σ1 + 
2 ⊗ σ2 + 
3 ⊗ σ3 be an element of ker ν, where the 
is
belong to H0(ωC(−D)). Note that G is the base locus of σ1 and σ2, and clearly

1σ1 + 
2σ2 ∈ H0(ωC) ⊂ H0(ωC(G)). As −
3σ3 = 
1σ1 + 
2σ2 in H0(ωC(G)), and
σ3 does not vanish on any of the points of G, we have that 
3 has to vanish on G,
but, as observed above, H0(ωC(−D−G)) = {0}. So t = 
1 ⊗ σ1 + 
2 ⊗ σ2 but then
t is in kerµ = {0}, as wanted.

Remark 9.4. Using the same notations as in the proof of the theorem above, let
us make some remarks.

All line bundles P ∈ Picg+2(C)\((ωC)−Cg−3+C) induce a semistable dual span
MP of rank 2: in fact MP is clearly a rank 2 bundle, and any possible destabilization
Q ⊂ MP would be a line bundle of negative degree −q > µ(MP) = −(g + 2)/2 =
−(k + 1) = −γ(C), and dualizing we would have a globally generated line bundle
Q∗ of degree q < γ(C), which is impossible. By a similar argument it can be shown
that MP is actually stable for a general P ∈ Picg+2(C).

Furthermore for all such P , the bundle MP admits a theta-divisor, because all
rank 2 stable bundles do (very ample, cf. [7]).

Then we have a map

Picg+2(C)\((ωC) − Cg−3 + C) → Hilb(Pic3k(C), 2ϑ)

P �→ ΘMP ⊂ Pic3k(C).
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Remark 9.5. As it was shown in some cases that there exist DSBs MQ such that
some exterior power

∧t MQ has integral slope and does not admit a theta-divisor
(cf. [21]), it seems natural to ask the following question.

Question 9.6. Do exterior powers
∧t ML admit a theta-divisor? If this is the case,

are all theta-divisors integral?

The fact that ML is cohomologically stable (Proposition 9.1) provides an evi-
dence towards a positive answer to this question.
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