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Abstract. We provide a characterization of complex tori using holo-
morphic symmetric differentials. With the same method we show that
compact complex manifolds of Kodaira dimension 0 having some sym-
metric power of the cotangent bundle globally generated are quotients of
parallelizable manifolds, therefore have an infinite fundamental group.
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1 - Introduction

The relations between differentials and topology of an algebraic variety were
known since the time of Kähler and Severi (cf. [Kä32], [Sev42], [Sev50]).

In recent years a lot of progress has been made towards understanding
the relationship between the fundamental group π1(X) of a compact Kähler
manifold X and holomporphic symmetric differentials H0(X,SkΩ1

X), with Ω1
X

the holomorphic cotangent bundle of X. In particular it is asked by Hélène
Esnault whether a compact Kähler manifold X with infinite fundamental group
always carries a non vanishing H0(X,SkΩ1

X) for some k > 0, and this has an
affirmative answer, at least in the case where the fundamental group has a finite
dimensional representaion with infinite image (cf. [BKT13]).

On the other hand, one could wonder whether the converse is true, i.e.

whether a variety with some (or many) holomporphic symmetric differentials
always have an infinite fundamental group. Because of Hodge decomposition it
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is immediate to observe that if a compact Käler manifold has a non vanishing
holomorphic 1-form, then it has an infinite fundamental group. Also, the pres-
ence of particular rank-1 holomorphic symmetric differentials on a projective
variety implies that the fundamental group of a projective variety is infinite
(cf. [BDO11]), and on a complact complex manifold the presence of a nowhere
degenerate holomorphic section of S2Ω1

X as well implies that the fundamental
group is infinite (cf. [BiDu18]).

However, this is not the case in general for higher order symmetric differen-
tials: there are varieties X ⊂ P

N , which are general complete intersections of
high degree in P

N and dimension n � N/2, that have ample cotangent bundle
Ω1
X (cf. [BrDa18]) and are simply connected. These varieties in particular

have some symmetric powers of the cotangent bundle with as many holomor-
phic sections as possible. These varieties have semiample (both weakly and
strongly, according to the definitions below) cotangent bundle and maximal
Kodaira dimension k(X) = n, i.e. they are of general type. We will show
that this cannot hold in case of a smooth projective variety of smaller Kodaira
dimension.

If X is a projective variety of Kodaira dimension k(X) = 0, in earlier works
inspired by the definition of base loci (cf. [BKK+15]) and Iitaka fibrations for
vector bundles, we showed that having a globally generated symmetric differ-
ential bundle SkΩ1

X for some k is equivalent to being isomorphic to an abelian
variety, and having a generically generated symmetric differential bundle SkΩ1

X

for some k is equivalent to being birational to an abelian variety (cf. [MU17]
and [Mis18]). In particular in those two cases the fundamental group π1(X)
is infinite.

The purpose of this work is to show the following generalisation of these
results to the cases of a compact complex manifold, a compact Kähler manifold,
and a smooth projective variety:

T h e o r em 1.1. Let X be a compact complex manifold of dimension n and

Kodaira dimension k(X).

i. If k(X) = 0 and Ω1
X is strongly semiample, then the fundamental group

of X is infinite.

ii. If k(X) = 0 and X is Kähler, then Ω1
X is strongly semiample if and only

if X is biholomorphic to a complex torus.

iii. If k(X) = 0 and X is projective, then Ω1
X is weakly semiample if and only

if X is an étale quotient an abelian variety by the action of a finite group.

iv. If k(X) < n, X is projective, and Ω1
X is weakly semiample, then the

fundamental group of X is infinite.
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2 - Notations and basic lemmas

LetX be a compact complex manifold, let E be a holomorphic vector bundle
on X. Let π : P(E) → X be the projective bundle of 1-dimensional quotients
of E. It comes with a tautological quotient π∗E ։ OP(E)(1), where OP(E)(1) is
a line bundle on P(E). Throughout this work we use Grothendieck’s (quotient)
notation for projective spaces: any map Y → P(E) is induced by a quotient
f∗E → L with L a line bundle on Y , and given a vector space V , the projective
space P(V ) will be the space of rank one quotients of V , or hyperplanes in V .
This is the reason for the signs appearing in Chern classes formula (1) below.

D e f i n i t i o n 2.1. Let E be a holomorphic vector bundle on a compact
complex manifold X.

i. We say that the vector bundle E is strongly semiample if the symmetric
product SkE is a globally generated vector bundle on X, for some k > 0.

ii. We say that the vector bundle E is semiample or weakly semiample if
OP(E)(1)

⊗k = OP(E)(k) is a globally generated line bundle on P(E), for
some k > 0.

iii. We say that the vector bundle E is Asymptotically Generically Generated

or AGG if there exixsts an open dense subset U ⊆ X such that the
map evx : H

0(X,SkE) → SkE(x) is surjective for some k > 0 and for all
x ∈ U .

R ema r k 2.2. If L is a line bundle on a compact complex variety X, then
the Iitaka-Kodaira dimension k(X,L) of L is the growth rate of the dimension
of holomorphic sections H0(X,L⊗k). In particular k(X,L) = 0 if and only if
h0(X,L⊗k) � 1 for all k > 0 and it is equal to 1 for some k > 0.

The main lemmas we will use do follow Fujiwaras constructions in [Fuj92].

L emma 2.3. Let E be a holomorphic vector bundle over a compact complex

manifold X. Suppose that E admits a morphism h : E → L to a line bundle

L such that the induced map Smh : SmE → L⊗m is surjective and splitting for

some m > 0. Then h : E → L is surjective and splitting as well.

P r o o f. First, remark that as Smh is surjective then h must be surjective.
Let us prove that h splits by recursive induction on m. Suppose m � 2.
Decompose Smh as α ◦ β : SmE → Sm−1E ⊗ L → L⊗m, where

α = (Sm−1h)⊗ 1L : S
m−1E ⊗ L → L⊗m ,
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and β(v1 · ... · vm) = 1
m

∑
(v1 · ... · v̌i · ... · vm)⊗ h(vi) ∈ Sm−1E ⊗ L.

As Smh splits, then α splits, and then Sm−1h = α⊗ 1L−1 splits and we can
apply recursive induction. �

3 - Parallelizable manifolds

A complex parallelizable manifold is a complex manifold with trivial cotan-
gent bundle. It is known that a compact complex manifold is parallelizable if
and only if it is a quotient of a complex Lie group by a discrete subgroup, in
particular a compact Kähler manifold is parallelizable if and only if it is a torus
(cf. [Wan54]).

L emma 3.1. Let X be a compact complex manifold admitting a finite étale

cover which is parallelizable, then π1(X) is infinite.

P r o o f. First remark that by Galois closure any finite étale cover X ′ → X
admits a cover X ′′ → X ′ such that X ′′ → X is a finite étale Galois cover,
furthermore if X ′ is parallelizable then X ′′ is parallelizable as well. So we can
suppose that the cover X ′ → X is finite étale Galois, and X ′ parallelizable.
Therefore π1(X

′) ⊆ π1(X) and we need to show that a compact parallelizable
manifold has infinite fundamental group.

Now suppose that X ′ = G/Γ with G a complex Lie group and Γ a discrete
subgroup. If Γ is finite, then G is compact as well, therefore G is a complex
torus and has an infinite fundamental group, and G → X ′ is a finite étale
covering, so π1(X

′) ⊇ π1(G) is infinite. On the other hand if Γ is infinite, then
the covering G → X ′ yields a group extension 1 → π1(G) → π1(X

′) → Γ → 1
therefore π1(X

′) is infinite. �

The o r em 3.2. Let X be a compact complex manifold, let E be a holomor-

phic vector bundle on X. Suppose that E is strongly semiample, and that its

determinant has Iitaka-Kodaira dimension k(X,detE) = 0. Then there exists

a finite Galois cover f : X ′ → X such that f∗E is trivial.

P r o o f. First remark that detE is a torsion line bundle. In fact we recall
that a line bundle that has Iitaka-Kodaira dimension 0 is trivial if globally
generated, as it cannot have more than 1-dimensional space of global sections.

As some symmetric power SmE is globally generated, for any point x ∈ X
we find sections σ1, . . . , σN ∈ H0(X,SmE) linearly independent and providing
a basis for the fiber SmE(x), with N = rkSmE, therefore we obtain a section
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σ1 ∧ ... ∧ σN ∈ H0(X, (detE)⊗M ) of the line bundle det(SmE) = (detE)⊗M

which does not vanish on x ∈ X. So (detE)⊗M is globally generated and
of Kodaira dimension 0, and therefore it is trivial. This shows that detE is
torsion.

Then also the symmetric power SmE is a trivial vector bundle, in fact if
the sections σ1, . . . , σN ∈ H0(X,SmE) chosen above give a basis of SmE(x) on
a point x ∈ X, as the determinant is trivial, then they provide a basis at all
points y ∈ X, so the induced map O⊕N

X → SmE is an isomorphism.
Now consider π : P(E) → X, the projective bundle of 1-dimensional quo-

tients of E, and its tautological quotient π∗E ։ OP(E)(1). As S
mE is globally

generated, then so is π∗SmE and OP(E)(m). Therefore OP(E)(m) induces a

map Φ: P(E) → P
N−1. Let us show that this map induces many sections of π.

Let x ∈ X be a point, and consider the diagram:

P(E(x)) →֒ P(E)
Φ
→ P

N−1�
�π

{x} →֒ X

Now Φ|P(E(x)) : P(E(x)) → P
N−1 is induced by the linear system on P(E(x))

given by the image of the restriction map

H0(P(E),OP(E)(m)) → H0(P(E(x)),OP(E(x))(m)) .

But as SmE is trivial this map is an isomorphism: in fact we have natural
isomorphisms

H0(P(E),OP(E)(m)) ∼= H0(X,SmE) ∼= SmE(x) , and

H0(P(E(x)),OP(E(x))(m)) ∼= SmH0(P(E(x)),O(1)) ∼= SmE(x) .

Therefore the map Φ, when restricted to the projective space P(E(x)), is a
Veronese embedding, in particular it is injective, and letting x ∈ X vary the
map Φ|P(E(x)) : P(E(x)) → P

N has a fixed image. Therefore for every piont

w ∈ P
N , a fiber Φ−1(w) meets a fiber π−1(x) = P(E(x)) exactly in one point,

and actually π is trivial as projective bundle. Therefore W = Φ−1(w) provides
a section of π : P(E) → X, with π inducing an isomorphism W ∼= X.

Such a section yields a quotient E → L, where L = OP(E)(1)|W , and so
L⊗m = OP(E)(m)|W ∼= OW is trivial on W , as W is a fiber of Φ.

By Lemma 2.3 the vector bundle E splits as F ⊕ L, and considering the
cyclic étale covering h : W ′ → W induced by L⊗m ∼= OW , then we obtain on
W ′ a splitting h∗E = h∗F ⊕ h∗L = h∗F ⊕ OW ′ . Repeating recursively the
argument for the vector bundle h∗F on W ′, we obtain a finite covering where
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E becomes trivial. Then by Galois closure we obtain a finite Galois covering
where E becomes trivial. �

4 - Fundamental groups

From Theorem 3.2 we obtain the first part of Theorem 1.1:

C o r o l l a r y 4.1. Let X be a compact complex manifold of Kodaira dimen-

sion k(X) = 0 such that Ω1
X is a strongly semiample vector bundle. Then X

admits a finite étale Galois covering which is parallelizable. In particular π1(X)
is infinite.

P r o o f. This follows directly applying Theorem 3.2 to the cotangent bundle
Ω1
X , and Lemma 3.1. �

In the compact Kähler case we can prove the second part of Theorem 1.1.
The proof is actually very similar to the projective case, which is treated in
[MU17] and does generalise easily in this case:

T h e o r em 4.2. Let X be a compact Kähler manifold of Kodaira dimension

k(X) = 0 such that Ω1
X is a strongly semiample vector bundle. Then X is

biholomorphic to a complex torus.

P r o o f. Let us apply Theorem 3.2 to the cotangent bundle ΩX and obtain
γ : X ′ → X which is an étale Galois cover. Now X ′ is a compact Kähler
parallelizable manifold, so it is a torus T , and carries a finite group action
such that γ : T → T/G = X. Now as the covering is étale γ∗Ω1

X = Ω1
T and

γ∗SmΩ1
X = SmΩ1

T . Therefore

γ∗H0(X,SmΩ1
X) = H0(T, SmΩ1

T )
G ⊆ H0(T, SmΩ1

T ) = SmH0(T,Ω1
T ) .

For some m > 0, the vector bundle SmΩ1
X is globally generated, so

dimH0(X,SmΩ1
X) � rkSmΩ1

X = rkSmΩ1
T = dimSmH0(T,Ω1

T ) .

This implies that G acts trivially on SmH0(T,Ω1
T ), and it can be shown that

the action of G on H0(T,Ω1
T ) must be then through homotheties. Actually the

action of G must be trivial on H0(T,Ω1
T ) otherwise the action of G on T could

not be free (cf. [Mis18], proof of Theorem 4.1). Therefore, as G acts trivially
on H0(T,Ω1

T ), it acts on T by translations, so the quotient is a torus. �
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The third and fourth points in Theorem 1.1 are consequence respectively of
the work of Fujiwara [Fuj92] and a recent theorem by Andreas Höring [Hö13]:

T h e o r em 4.3 (Höring). Let X be a projective manifold with strongly semi-

ample cotangent bundle, i.e. for some positive integer m ∈ N the symmetric

product SmΩ1
X is globally generated. Then there exists a finite cover X ′ → X

such that X ′ ∼= Y ×A, where Y has ample canonical bundle and A is an abelian

variety.

Now, Theorem 4.3 is stated only for projective varieties X with strongly
semiample cotangent bundle Ω1

X , however the result still holds for varieties
with weakly semiample cotangent bundle, provided that one shows that the
canonical bundle ωX = detΩ1

X is semiample in this case. This holds in general
for weakly semiample vector bundle on projective varieties, and is the object
of the following theorem, which is proved in [Fuj92]:

T h e o r em 4.4 (Fujiwara). Let X be a projective variety, and let E be

a weakly semiample vector bundle on X. Then the determinant detE is a

semiample line bundle.

The proof is contained in the work of Fujiwara [Fuj92], however, we give a
detailed proof here, as it is related to Theorem 3.2 :

P r o o f. Let π : P(E) → X be the projectivisation of the vector bundle
E, and OP(E)(1) the tautological bundle. Fix x ∈ X, we will prove that some
power of detE has a section which does not vanish on x. We have the fiber
π−1(x) = P(E(x)), and the restriction OP(E)(1)|π−1(x) is the usual very ample
line bundle OP(E(x))(1). Let us recall that CH1(X) ∼= Pic(X), and the same
for P(E), cf. Remark 4.5 below. Let ξ ∈ Pic(P(E)) = CH1(P(E)) be the class
of the line bundle OP(E)(1), and r = rkE. The Chern classes in the Chow ring
of X are determined by the relation:

(1)

r∑

i=0

(−1)iπ∗ci(E)ξr−i = 0 , with c0(E) = 1 ∈ CH0(P(E)) .

For dimensional reasons we have π∗ξ
k = 0 if k � r − 2, and π∗ξ

r−1 = 1 ∈
CHn(X) as ξ restricts to O(1) on the fibers of π. Therefore the equation (1)
above gives (using projection formula):

c0(E).π∗ξ
r − c1(E).π∗ξ

r−1 = 0 ∈ CH1(X) ,

so π∗ξ
r = c1(E) ∈ CH1(X).
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Now suppose that OP(E)(m) is globally generated, and consider Φ: P(E) →

P(H0(P(E),O(m))) = P
N . Notice that Φ|P(E(x)) : P(E(x)) → P

N is induced by
the linear system

Im(H0(P(E),OP(E)(m)) → H0(P(E(x)),OP(E(x))(m))) ,

this is a base point free subsystem of the very ample linear system given by
H0(P(E(x)),OP(E(x))(m)) on P(E(x)), therefore Φ|P(E(x)) : P(E(x)) → P

N is
a finite map obtained as the composition of a projection after the embed-
ding defined by the very ample linear system (cf. Example 1.1.12 page 14
in [Laz04]). So N � r − 1 and we can choose r generic sections σ1, ..., σr ∈
H0(P(E),OP(E)(m)), such that V (σ1)∩· · ·∩V (σr)∩P(E(x)) = ∅. Now the inter-
section V (σ1)∩· · ·∩V (σr) is an effective cycle whose class ismrξr ∈ CHr(P(E)).
Therefore the image of V (σ1)∩ · · · ∩V (σr) in X is the divisor of a holomorphic
section of (detE)⊗mr

. So the line bundle (detE)⊗mr

= π∗(m
rξr) has a section

which is non zero out of π(V (σ1)∩ · · · ∩V (σr)), in particular it does not vanish
on x ∈ X. �

Rema r k 4.5. It is important to notice that we are working with Chow
groups, and Chern classes taking values in the Chow groups. In singular co-
homology, we could get a divisor, or a current, which is Poincaré dual to the
cohomology class mr.c1(detE), but from this we would not get a holomorphic
section of (detE)⊗mr

. This is the reason why we cannot extend directly this
result to the compact Kähler case, which would be interesting to investigate in
a future work.

In particular the third point of Theorem 1.1 follows directly from Fujiwara’s
characterization of quotients of abelian varieties appearing in [Fuj92], and the
fourth point follows applying Höring’s theorem above: suppose X is a smooth
projective variety with k(X) < n and Ω1

X weakly semiample. Then it admits
an étale finite cover X ′ → X with X ′ ∼= A × Y , the variety Y having ample
canonical bundle and A an abelian variety of dimension n − k(X), therefore
π(X) ⊇ π(A)× π(Y ) and it is infinite.

5 - Examples, questions, and remarks

Ex amp l e 5.1. Given a surjective morphism f : Y ′ → Y and a vector bun-
dle E on Y , then E is weakly semiample if and only if f∗E is weakly semiample
(cf. [Fuj83]). However the same cannot be said for strongly semiample bun-
dles, even in the case that f is finite étale and Galois: for example consider
a non-trivial 2-torsion line bundle L on a curve C, therefore L determines an
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étale Z/2Z-cover f : C ′ → C such that f∗L = OC′ . Therefore the vector bundle
E = OC ⊕ L is weakly semiample on C, as its pull back f∗E is trivial and so
it is weakly (and strongly as well) semiample.

However E is not strongly semiample, as any symmetric power SmE con-
tains a copy of L as direct factor, and cannot be globally generated. As stated
above, the vector bundle f∗E being trivial, it is strongly semiample.

E x amp l e 5.2. According to Theorem 4.2 the only compact Kähler man-
ifolds X with strongly semiample cotangent bundle and Kodaira dimension
k(X) = 0 are compact tori.

Therefore any étale finite quotient of a torus has Kodaira dimension 0 and
weakly semiample cotangent bundle, if this quotient is not again a torus, it
gives an example of a variety with weakly semiample cotangent bundle but not
strongly semiample.

Such an example is any bielliptic surface, which is covered by an abelian
surface.

R ema r k 5.3. In the proof of Theorem 3.2 we see that a vector bundle
E on a compact complex variety X such that SmE is trivial splits as a direct
sum F ⊕ L with L an m-torsion line bundle. As E = (F ⊗ L−1 ⊕O)⊗ L then
SmE = Sm(F ⊗ L−1 ⊕O) has a direct factor F ⊗ L−1 which is trivial as well.
Therefore E = L⊕rkE is a direct sum of the same torsion line bundle.

Q u e s t i o n 5.4. Is there a compact complex manifold X of Kodaira di-
mension k(X) = 0 with cotangent bundle Ω1

X which is not trivial but strongly
semiample? According to Corollary 4.1 and Remark 5.3 it must be a cyclic
quotient of a parallelizable compact manifold, and cannot be Kähler. Futher-
more its tangent bundle shoud decompose as a direct sum of isomorphic torsion
line bundles.

Q u e s t i o n 5.5. Let X be a compact complex manifold, and let E be a
weakly semiample vector bundle on X. Is det(E) a semiample line bundle?
And if X is compact Kähler?

The techniques used to prove Theorem 4.4 cannot be (directly) used for
the compact Kähler case, nevertheless, in order to apply Höring’s result to a
compact Kähler manifold in Kodaira dimension 0 we would just need that the
cotangent bundle be numerically trivial. We leave these questions to futher
investigations.

Q u e s t i o n 5.6. Let X be a compact complex manifold with a fixed her-
mitian metric, and let E be a weakly semiample vector bundle on X. If the
Iitaka-Kodaira dimension of the determinant is k(X,det(E)) = 0, is E a nu-

merically trivial vector bundle? Numerically trivial means that both E and its
dual E∗ are nef. And what if X is compact Kähler?
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R ema r k 5.7. A positive answer to Question 5.6 above, would allow to ap-
ply Höring’s theorem to the case of complex tori, in order to generalize Fujiwara
results and Theorem 1.1 as follows: let X be a compact Kähler manifold with
Kodaira dimension k(X) = 0, then the cotangent bundle is weakly semiample
if and only if X is an étale quotient of a complex torus by the action of a finite
group.

Ac k n ow l e d gm en t s. I am very thankful to Simone Diverio and An-
dreas Höring, for their ideas and conversations, and to Sorin Dumitrescu, for
introducing me to complex parallelizable manifolds. I would like to thank the
referee for his useful remarks.
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