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Holomorphic symmetric differentials and
parallelizable compact complex manifolds

Abstract. We provide a characterization of complex tori using holo-
morphic symmetric differentials. With the same method we show that
compact complex manifolds of Kodaira dimension 0 having some sym-
metric power of the cotangent bundle globally generated are quotients of
parallelizable manifolds, therefore have an infinite fundamental group.
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1 - Introduction

The relations between differentials and topology of an algebraic variety were
known since the time of Kéhler and Severi (cf. [K&32], [Sev42], [Sev50]).

In recent years a lot of progress has been made towards understanding
the relationship between the fundamental group 71(X) of a compact Kéhler
manifold X and holomporphic symmetric differentials HY(X, S kQ}(), with Qﬁ(
the holomorphic cotangent bundle of X. In particular it is asked by Hélene
Esnault whether a compact Kéhler manifold X with infinite fundamental group
always carries a non vanishing H°(X, SkQ}() for some k& > 0, and this has an
affirmative answer, at least in the case where the fundamental group has a finite
dimensional representaion with infinite image (cf. [ BKT13]).

On the other hand, one could wonder whether the converse is true, i.e.
whether a variety with some (or many) holomporphic symmetric differentials
always have an infinite fundamental group. Because of Hodge decomposition it
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is immediate to observe that if a compact Kéler manifold has a non vanishing
holomorphic 1-form, then it has an infinite fundamental group. Also, the pres-
ence of particular rank-1 holomorphic symmetric differentials on a projective
variety implies that the fundamental group of a projective variety is infinite
(cf. [BDO11]), and on a complact complex manifold the presence of a nowhere
degenerate holomorphic section of S2Q% as well implies that the fundamental
group is infinite (cf. [BiDul8]).

However, this is not the case in general for higher order symmetric differen-
tials: there are varieties X C PV, which are general complete intersections of
high degree in PV and dimension n < N/2, that have ample cotangent bundle
QY (cf. [BrDal8]) and are simply connected. These varieties in particular
have some symmetric powers of the cotangent bundle with as many holomor-
phic sections as possible. These varieties have semiample (both weakly and
strongly, according to the definitions below) cotangent bundle and maximal
Kodaira dimension k(X) = n, i.e. they are of general type. We will show
that this cannot hold in case of a smooth projective variety of smaller Kodaira
dimension.

If X is a projective variety of Kodaira dimension k(X) = 0, in earlier works
inspired by the definition of base loci (cf. [BKK™15]) and Iitaka fibrations for
vector bundles, we showed that having a globally generated symmetric differ-
ential bundle Skﬁﬁ( for some k is equivalent to being isomorphic to an abelian
variety, and having a generically generated symmetric differential bundle SkQ}(
for some k is equivalent to being birational to an abelian variety (cf. [MU17]
and [Mis18]). In particular in those two cases the fundamental group 7 (X)
is infinite.

The purpose of this work is to show the following generalisation of these
results to the cases of a compact complex manifold, a compact Kahler manifold,
and a smooth projective variety:

Theorem 1.1. Let X be a compact complex manifold of dimension n and

Kodaira dimension k(X).

i. If k(X) = 0 and QY is strongly semiample, then the fundamental group
of X is infinite.

ii. If k(X) =0 and X is Kdhler, then Q% is strongly semiample if and only
if X is biholomorphic to a complex torus.

iii. If k(X) =0 and X is projective, then Q% is weakly semiample if and only
if X is an étale quotient an abelian variety by the action of a finite group.

w. If k(X) < n, X is projective, and Q}( is weakly semiample, then the
fundamental group of X is infinite.
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2 - Notations and basic lemmas

Let X be a compact complex manifold, let £ be a holomorphic vector bundle
on X. Let m: P(E) — X be the projective bundle of 1-dimensional quotients
of E. It comes with a tautological quotient 7*E — Op(g)(1), where Op(gy(1) is
a line bundle on P(E). Throughout this work we use Grothendieck’s (quotient)
notation for projective spaces: any map Y — P(F) is induced by a quotient
f*E — L with L a line bundle on Y, and given a vector space V, the projective
space P(V) will be the space of rank one quotients of V', or hyperplanes in V.
This is the reason for the signs appearing in Chern classes formula (1) below.

Definition 2.1. Let E be a holomorphic vector bundle on a compact
complex manifold X.

1. We say that the vector bundle F is strongly semiample if the symmetric
product S¥FE is a globally generated vector bundle on X, for some k > 0.

7. We say that the vector bundle E is semiample or weakly semiample if
OP(E)(l)‘X’k = Opg)(k) is a globally generated line bundle on P(E), for
some k > 0.

i13. We say that the vector bundle F is Asymptotically Generically Generated
or AGG if there exixsts an open dense subset U C X such that the
map ev,: H(X,S*E) — S*E(x) is surjective for some k > 0 and for all
zeU.

Remark 2.2. If L is a line bundle on a compact complex variety X, then
the Iitaka-Kodaira dimension k(X, L) of L is the growth rate of the dimension
of holomorphic sections H°(X, L®*). In particular k(X,L) = 0 if and only if
RO(X, L¥) < 1 for all k> 0 and it is equal to 1 for some k > 0.

The main lemmas we will use do follow Fujiwaras constructions in [Fuj92].

Lemma 2.3. Let E be a holomorphic vector bundle over a compact complex
manifold X. Suppose that E admits a morphism h: E — L to a line bundle
L such that the induced map S™h: S™E — L®™ is surjective and splitting for
some m > 0. Then h: E — L is surjective and splitting as well.

Proof. First, remark that as S™h is surjective then h must be surjective.
Let us prove that h splits by recursive induction on m. Suppose m > 2.
Decompose S™h as ao f: SME — 8" 'E® L — L™, where

a=(S"h) @1, S"IE® L — L&™
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and S(v1 -+ ... - V) = % S(V1 e Ui ) @ (v;) € STTIE® L.
As S™h splits, then « splits, and then S™ 'h = a ® 1; -1 splits and we can
apply recursive induction. O

3 - Parallelizable manifolds

A complex parallelizable manifold is a complex manifold with trivial cotan-
gent bundle. It is known that a compact complex manifold is parallelizable if
and only if it is a quotient of a complex Lie group by a discrete subgroup, in
particular a compact Kéahler manifold is parallelizable if and only if it is a torus
(cf. [Wan5b4]).

Lemma 3.1. Let X be a compact complex manifold admitting a finite étale
cover which is parallelizable, then 71 (X) is infinite.

Proof. First remark that by Galois closure any finite étale cover X’ — X
admits a cover X” — X’ such that X” — X is a finite étale Galois cover,
furthermore if X’ is parallelizable then X" is parallelizable as well. So we can
suppose that the cover X’ — X is finite étale Galois, and X' parallelizable.
Therefore 71 (X’) C 71(X) and we need to show that a compact parallelizable
manifold has infinite fundamental group.

Now suppose that X’ = G/T" with G a complex Lie group and I" a discrete
subgroup. If I' is finite, then G is compact as well, therefore G is a complex
torus and has an infinite fundamental group, and G — X’ is a finite étale
covering, so m1(X’) 2 71(G) is infinite. On the other hand if T" is infinite, then
the covering G — X' yields a group extension 1 = m(G) = m(X') = T — 1
therefore 71 (X’) is infinite. O

Theorem 3.2. Let X be a compact complex manifold, let E be a holomor-
phic vector bundle on X. Suppose that E is strongly semiample, and that its
determinant has Iitaka-Kodaira dimension k(X,det E) = 0. Then there exists
a finite Galois cover f: X' — X such that f*E is trivial.

Proof. First remark that det E is a torsion line bundle. In fact we recall
that a line bundle that has litaka-Kodaira dimension 0 is trivial if globally
generated, as it cannot have more than 1-dimensional space of global sections.

As some symmetric power S™F is globally generated, for any point x € X
we find sections o1, ...,0n € H°(X, S™E) linearly independent and providing
a basis for the fiber S™FE(z), with N = rkS™FE, therefore we obtain a section
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o1 A ... Aoy € HY(X, (det E)*M) of the line bundle det(S™E) = (det E)®M
which does not vanish on 2z € X. So (det E)®M is globally generated and
of Kodaira dimension 0, and therefore it is trivial. This shows that det E is
torsion.

Then also the symmetric power S™FE is a trivial vector bundle, in fact if
the sections o1, ...,0n € H°(X,S™E) chosen above give a basis of S™E(z) on
a point x € X, as the determinant is trivial, then they provide a basis at all
points y € X, so the induced map O??N — S™FE is an isomorphism.

Now consider 7w: P(E) — X, the projective bundle of 1-dimensional quo-
tients of F, and its tautological quotient 7*FE — Op(g)1). As S™E is globally
generated, then so is 7*S™E and Op(gy(m). Therefore Opgy(m) induces a
map ®: P(E) — PN~ Let us show that this map induces many sections of 7.

Let x € X be a point, and consider the diagram:

P(E(z)) — P(E) 3 pN-1

| |

{z} — X

Now ®p(g(2)) : P(E(x)) — PV~ is induced by the linear system on P(E(x))
given by the image of the restriction map

HY(P(E), Op(s)(m)) — H*(P(E(x)), Op(p(x)) (m)) -

But as S™F is trivial this map is an isomorphism: in fact we have natural
isomorphisms

HO(P(E), Op(s)(m)) = H(X,S™E) = S™E(x) , and

HO(P(E(2)), Op(p() (m)) = S"H(P(E(x)), O(1)) = S™E(x) .

Therefore the map ®, when restricted to the projective space P(E(z)), is a
Veronese embedding, in particular it is injective, and letting x € X vary the
map Ppga)): P(E(z)) — PV has a fixed image. Therefore for every piont
w € PV, a fiber ®~!(w) meets a fiber 771 (x) = P(E(x)) exactly in one point,
and actually 7 is trivial as projective bundle. Therefore W = ®~!(w) provides
a section of 7: P(F) — X, with 7 inducing an isomorphism W = X

Such a section yields a quotient £ — L, where L = Op(g)(1);w, and so
Lo = Op(g)(m)jw = Ow is trivial on W, as W' is a fiber of .

By Lemma 2.3 the vector bundle E splits as F' & L, and considering the
cyclic étale covering h: W’ — W induced by L®™ = Oy, then we obtain on
W' a splitting h*E = h*F @& h*L = h*F @& Ow. Repeating recursively the
argument for the vector bundle h*F on W', we obtain a finite covering where
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E becomes trivial. Then by Galois closure we obtain a finite Galois covering
where E becomes trivial. U

4 - Fundamental groups

From Theorem 3.2 we obtain the first part of Theorem 1.1:

Corollary 4.1. Let X be a compact complex manifold of Kodaira dimen-
sion k(X) = 0 such that Q}( s a strongly semiample vector bundle. Then X
admits a finite étale Galois covering which is parallelizable. In particular w1 (X)
1s infinite.

Proof. This follows directly applying Theorem 3.2 to the cotangent bundle
Q}(, and Lemma 3.1. O

In the compact Kahler case we can prove the second part of Theorem 1.1.
The proof is actually very similar to the projective case, which is treated in
[MU17] and does generalise easily in this case:

Theorem 4.2. Let X be a compact Kdhler manifold of Kodaira dimension
k(X) = 0 such that QY is a strongly semiample vector bundle. Then X is
biholomorphic to a complex torus.

Proof. Let us apply Theorem 3.2 to the cotangent bundle 2x and obtain
~v: X’ — X which is an étale Galois cover. Now X’ is a compact Kéahler
parallelizable manifold, so it is a torus 7', and carries a finite group action
such that v: T — T/G = X. Now as the covering is étale v*Q} = Q%p and
v*SmOL = SmOL. Therefore

Y H(X, 5™ ) = H(T, S™Qp)% € HY(T, S™Qp) = S"HO(T, Q) -
For some m > 0, the vector bundle Smﬁﬁ( is globally generated, so
dim H°(X, S™QY) > rkS™QL = rkS™OQL = dim S"H(T, QL) .

This implies that G acts trivially on S"HO(T,QL), and it can be shown that
the action of G on H%(T, QL) must be then through homotheties. Actually the
action of G must be trivial on H%(T, QL) otherwise the action of G on T' could
not be free (cf. [Mis18], proof of Theorem 4.1). Therefore, as G acts trivially
on H(T, Q%p), it acts on 1" by translations, so the quotient is a torus. O
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The third and fourth points in Theorem 1.1 are consequence respectively of
the work of Fujiwara [Fuj92] and a recent theorem by Andreas Horing [H613|:

Theorem 4.3 (Horing). Let X be a projective manifold with strongly semi-
ample cotangent bundle, i.e. for some positive integer m € N the symmetric
product S™Q% is globally generated. Then there exists a finite cover X' — X
such that X' =Y x A, where Y has ample canonical bundle and A is an abelian
variety.

Now, Theorem 4.3 is stated only for projective varieties X with strongly
semiample cotangent bundle Q}(, however the result still holds for varieties
with weakly semiample cotangent bundle, provided that one shows that the
canonical bundle wx = det Q}( is semiample in this case. This holds in general
for weakly semiample vector bundle on projective varieties, and is the object
of the following theorem, which is proved in [Fuj92]:

Theorem 4.4 (Fujiwara). Let X be a projective variety, and let E be
a weakly semiample vector bundle on X. Then the determinant det E is a
semiample line bundle.

The proof is contained in the work of Fujiwara [Fuj92], however, we give a
detailed proof here, as it is related to Theorem 3.2 :

Proof. Let m: P(F) — X be the projectivisation of the vector bundle
E, and Opgy(1) the tautological bundle. Fix 2 € X, we will prove that some
power of det E has a section which does not vanish on z. We have the fiber
7 1(x) = P(E(x)), and the restriction Op(g)(1)|z-1(z) is the usual very ample
line bundle Op(p(y))(1). Let us recall that CH'(X) = Pic(X), and the same
for P(E), cf. Remark 4.5 below. Let & € Pic(P(E)) = CH'(P(E)) be the class
of the line bundle Op(g)(1), and r = rkE. The Chern classes in the Chow ring
of X are determined by the relation:

(1) D (—)imte(E)E =0, with co(E) = 1€ CH(P(E)) .
=0

For dimensional reasons we have 77*57‘C =0if k<r—2, and 77*57"_1 =1€
CH"™(X) as ¢ restricts to O(1) on the fibers of . Therefore the equation (1)
above gives (using projection formula):

co(E).ml" — c1(B).mé 1 =0e CHY(X)

so m&" = c1(E) € CHYX).
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Now suppose that Op(g)(m) is globally generated, and consider ®: P(E) —
P(HO(P(E),O(m))) = PN. Notice that ®p(z(,) : P(E(z)) — P is induced by
the linear system

Im(H°(P(E), Op(m) (m)) — HO(P(E(x)), Op(p(z))(m))) ,

this is a base point free subsystem of the very ample linear system given by
HO(P(E(x)), Op(g(z)) (m)) on P(E(x)), therefore ®p(p () : P(E(z)) — PV is
a finite map obtained as the composition of a projection after the embed-
ding defined by the very ample linear system (cf. Example 1.1.12 page 14
in [Laz04]). So N > r — 1 and we can choose r generic sections oy, ...,0, €
H°(P(E), Op(g)(m)), such that V (o1)N- - -0V (0, )NP(E(x)) = 0. Now the inter-
section V(o1)N---NV (o, ) is an effective cycle whose class is m"¢" € CH" (P(E)).
Therefore the image of V(o1)N---NV(0,) in X is the divisor of a holomorphic
section of (det E)®™". So the line bundle (det E)®™" = m,(m"¢") has a section
which is non zero out of 7(V(o1)N---NV(o,)), in particular it does not vanish
onz e X. O

Remark 4.5. It is important to notice that we are working with Chow
groups, and Chern classes taking values in the Chow groups. In singular co-
homology, we could get a divisor, or a current, which is Poincaré dual to the
cohomology class m”.cq(detE), but from this we would not get a holomorphic
section of (det E)®™". This is the reason why we cannot extend directly this
result to the compact Kéahler case, which would be interesting to investigate in
a future work.

In particular the third point of Theorem 1.1 follows directly from Fujiwara’s
characterization of quotients of abelian varieties appearing in [Fuj92], and the
fourth point follows applying Horing’s theorem above: suppose X is a smooth
projective variety with k(X) < n and Q}( weakly semiample. Then it admits
an étale finite cover X’ — X with X' & A x Y, the variety Y having ample
canonical bundle and A an abelian variety of dimension n — k(X), therefore
m(X) 2 7w(A) x 7(Y) and it is infinite.

5 - Examples, questions, and remarks

Example 5.1. Given a surjective morphism f: Y’ — Y and a vector bun-
dle £ on Y, then F is weakly semiample if and only if f*FE is weakly semiample
(cf. [Fuj83]). However the same cannot be said for strongly semiample bun-
dles, even in the case that f is finite étale and Galois: for example consider
a non-trivial 2-torsion line bundle L on a curve C, therefore L determines an
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étale Z/2Z-cover f: C' — C such that f*L = O¢r. Therefore the vector bundle
E = O¢ & L is weakly semiample on C, as its pull back f*FE is trivial and so
it is weakly (and strongly as well) semiample.

However E is not strongly semiample, as any symmetric power S™FE con-
tains a copy of L as direct factor, and cannot be globally generated. As stated
above, the vector bundle f*FE being trivial, it is strongly semiample.

Example 5.2. According to Theorem 4.2 the only compact K&hler man-
ifolds X with strongly semiample cotangent bundle and Kodaira dimension
k(X) = 0 are compact tori.

Therefore any étale finite quotient of a torus has Kodaira dimension 0 and
weakly semiample cotangent bundle, if this quotient is not again a torus, it
gives an example of a variety with weakly semiample cotangent bundle but not
strongly semiample.

Such an example is any bielliptic surface, which is covered by an abelian
surface.

Remark 5.3. In the proof of Theorem 3.2 we see that a vector bundle
E on a compact complex variety X such that S™F is trivial splits as a direct
sum F @ L with L an m-torsion line bundle. As E = (F® L™'® O) ® L then
S"E = S™(F ® L~ ® O) has a direct factor F ® L~! which is trivial as well.
Therefore E = LE%F is a direct sum of the same torsion line bundle.

Question 5.4. Is there a compact complex manifold X of Kodaira di-
mension k(X) = 0 with cotangent bundle Q}( which is not trivial but strongly
semiample? According to Corollary 4.1 and Remark 5.3 it must be a cyclic
quotient of a parallelizable compact manifold, and cannot be Kéhler. Futher-
more its tangent bundle shoud decompose as a direct sum of isomorphic torsion
line bundles.

Question 5.5. Let X be a compact complex manifold, and let E be a
weakly semiample vector bundle on X. Is det(E) a semiample line bundle?
And if X is compact Kéhler?

The techniques used to prove Theorem 4.4 cannot be (directly) used for
the compact Kéahler case, nevertheless, in order to apply Horing’s result to a
compact Kéhler manifold in Kodaira dimension 0 we would just need that the
cotangent bundle be numerically trivial. We leave these questions to futher
investigations.

Question 5.6. Let X be a compact complex manifold with a fixed her-
mitian metric, and let F be a weakly semiample vector bundle on X. If the
litaka-Kodaira dimension of the determinant is k(X,det(E)) = 0, is E a nu-
merically trivial vector bundle? Numerically trivial means that both E and its
dual E* are nef. And what if X is compact K&hler?
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Remark 5.7. A positive answer to Question 5.6 above, would allow to ap-
ply Horing’s theorem to the case of complex tori, in order to generalize Fujiwara
results and Theorem 1.1 as follows: let X be a compact Kahler manifold with
Kodaira dimension k(X ) = 0, then the cotangent bundle is weakly semiample
if and only if X is an étale quotient of a complex torus by the action of a finite

group.
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