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Abstract. Through the use of linearized bundles, we prove the stability
of tautological bundles over the symmetric product of a curve and of
the kernel of the evaluation map on their global sections.
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1. Introduction

Let C be a smooth projective curve, and E a globally generated vector bundle
on C. The vector bundle ME := ker(H0(C,E) ⊗ O → E) is considered in
many works in the literature (cf. [EL92], [But94] [Mis06], [Mis08], [MS12],
[BBPN15], and many others), mostly when E is a line bundle, and its stability
or semistability plays a crucial role. In recent works (cf. [ELM13], [FO12],
[Fey16]) the same problem arises on higher dimensional varieties and with E
being a higher rank vector bundle, and stability of ME is proven with various
advanced techniques.

The vector bundle ME is sometimes called Lazarsfeld-Mukai bundle,
but other times this term is used for other similar bundles on K3 surfaces, so
we will call this total transform bundle of the vector bundle E on the variety
X.

The purpose of this work is to give some examples of stability of the total
transform bundle of a stable vector bundle on a higher dimensional variety,
using elementary techniques. The examples treated are vector bundles on
symmetric products of curves, and can be summarized as the following:
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Theorem 1.1. Let C be a smooth projective curve of genus g 󰃍 1 over an
algebraically closed field of characteristic 0. Let L be a degree d line bundle
on C. Let SnC be the symmetric product of C, H̃ the natural polarization on
SnC, and L[n] the tautological bundle on SnC. Then

1. if d 󰃍 n the vector bundle L[n] is H̃-stable;
2. if d 󰃍 n+ 2g the total transform ML[n] is H̃-stable.

The article is organized as follows: in section 2 we recall the basic defini-
tions and properties of group actions and linearizations that we make use of,
and we prove that G-linearized vector bundles have G-linearized destabiliza-
tions (when unstable). In section 3.1 we prove the stability of the tautological
vector bundles L[n] on the symmetric product of a curve. In section 3.2 we
prove the stability of the total transform of those tautological bundles.

The technique we use is basically the observation that stability, or rather
poly-stability, is invariant when passing to a finite covering. We consider the
quotient map from the product to the symmetric product of the curve. Then
we obtain linearized vector bundles, and we show that having a linearization
poses remarkable restrictions on a possible destabilization.

1.1. Notations

By a variety we mean a smooth projective variety X over an algebraically
closed field. A polarization will be an ample divisor on X. We will denote by
Z1 ≡ Z2 numerical equivalence between cycles Z1 and Z2.

2. Stability and group actions

Let X be a variety with an action of an algebraic group G. We recall that a
G-linearized sheaf onX is a sheaf E onX with an isomorphism Φg : E−̃→g∗E
for all g ∈ G, satisfying the usual cocycle conditions.

A morphism ψ : E → F of G-linearized sheaves is G-equivariant if the
following diagram

E
ψ−→ F󰁂󰁂󰁼Φg ≀

󰁂󰁂󰁼≀ Φ′
g

g∗E
g∗ψ−→ g∗F

commutes for all g ∈ G.

Definition 2.1. Let H be a divisor on X, we say that H is numerically G-
invariant, if for all g ∈ G we have g∗H ≡ H.

Definition 2.2. Let E be a G-linearized sheaf on X, we say that a subsheaf
F ⊂ E is a G-equivariant subsehaf if we have the equality of subsheaves of
g∗E

Φg(F ) = g∗F

for all g ∈ G. That is, the G-linearization of E induces a G-linearization on
F such that the embedding F ⊂ E is G-equivariant.
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We recall that the slope of a torsion free sheaf E on X with respect to
a polarization H is

µH(E) =
c1(E).Hn−1

rkE
.

A sheaf is called semistable (respectively stable) if µH(F ) 󰃑 µH(E) (re-
spectively µH(F ) < µH(E)) for every subsheaf F ⊂ E with smaller rank.
Furthermore every torsion free sheaf E admits a unique maximal semistable
subsheaf F ⊂ E such that the slope of F is maximal among the slopes of
subsheaves of E and any subsheaf with same slope as F is contained in F .
A sheaf is semistable if and only if it coincides with its maximal semistable
subsheaf.

We have the following property

Proposition 2.3. Let F ↩→ E be the maximal semistable subsheaf with respect
to the polarization H, where E is a G-linearized torsion free sheaf, and H
is a numerically G-invariant ample divisor. Then F ↩→ E is a G-equivariant
subsheaf.

Proof. Consider the following diagram

F ↩→ E
≀ ↓ ↺ ↓ ≀
ϕ(F ) ↩→ g∗E

g∗F ↩→

where the isomorphism ϕ = Φg : E→̃g∗E is given by the G-linearizaion of E.
We want to show that ϕ(F ) and g∗F are the same subbundle of g∗E, i.e. the
linearization of E induces a linearization of F .

We will show that they both are semistable subsheaves of maximal slope
of g∗E. First notice that g∗F is a subbundle of g∗E, and its degree is given
by

c1(g
∗F ).Hn−1 = g∗c1(F ).g∗Hn−1 = g∗(c1(F ).Hn−1) = c1(F ).Hn−1 .

By the same computation we see that the slope of a sheaf is invariant by the
action of G, hence also g∗F is semistable, and it is the semistable maximal
subsheaf of g∗E.

As ϕ is an isomorphism of sheaves, then c1(ϕ(A)) = c1(A) and µH(ϕ(A)) =
µH(A) for all subsheaves A ⊂ E. Therefore ϕ(F ) is the maximal semiastable
subsheaf of g∗E. Then ϕ(F ) = g∗F , as we have proven that g∗F is the max-
imal subsheaf of g∗E. Hence, the linearization on E induces a linearization
on F , and clearly the inclusion morphism is G-equivariant.

□

We see from this proposition that having a group action poses strict
conditions on linearized sheaves for being destabilized, and this is what we
use to investigate the stability of tautological sheaves. Next lemma will be
useful in the following sections:
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Lemma 2.4. Let I be a finite set together with a transitive G action. Let Ei

be coherent sheaves on X, and let E = ⊕i∈IEi carry a G-linearization Φ
such that Φg(Ei) = g∗Eg(i) for every i ∈ I and g ∈ G. Let πi : E → Ei be
the i-th projection. Then for every G-equivariant subsheaf F ⊂ E such that
πi(F ) = 0 for some i, we already have F = 0.

Proof. To prove that F = 0 we need to prove that πj(F ) = 0 for all j ∈ I.
Let g ∈ G be an element of the group G, and call j = g(i). Then we have the
following commutative diagram:

F ↩→ E
πi−−→ Ei

≀ ↓ Φg ≀ ↓ Φg ≀ ↓ Φg

g∗F ↩→ g∗E
g∗πj−−−→ g∗Ej

where the left square commutes because the subsheaf F ⊂ E is G-equivariant,
and the right square commutes because of the assumption of the compatibility
between Φ and the G-action on I. Now, as πi(F ) = 0, the composition of
the top row is 0, so the composition of the bottom row is 0 as well. Then
g∗πj(g

∗F ) = 0, so πj(F ) = 0. Applying this to all g, we have that πj(F ) = 0
for all j ∈ I. □

3. Symmetric product of a curve

In this section we define tautological sheaves and their total transforms.
Let C be a smooth projective curve, X = Cn the cartesian product of

C, and G = Sn the symmetric group acting on X permutating the factors.
As C is a smooth curve, the symmetric product X/G := SnC is a

smooth variety. In fact it coincides with the Hilbert scheme of length-n 0-
dimensional subschemes of C.

We will denote the elements of SnC, wich are n-tuples of points of C
order free, by x1 + · · ·+ xn.

We can consider the universal family associated to the Hilbert scheme:
the universal subscheme Z ⊂ SnC×C consists of all the couples (ξ, x) where
ξ is a 0-dimensional subscheme, and x is a point of X lying in ξ. There are
two natural projections π1 and π2 of SnC × C to SnC and C, respectively.

On the product SnC × C we have the following exact sequence:

0 → IZ → OSnC×C → OZ → 0 .

As C is a curve, then Z is a divisor in SnC×C, and IZ = OSnC×C(−Z).
Given a vector bundle E on C, a tautological bundle E[n] on SnC is defined
as follows:

E[n] := π1∗(π
∗
2E ⊗OZ) ,

so, on a point ξ ∈ SnC the vaector bundle E[n] has fiber

E[n](ξ) = H0(ξ, E|ξ) .

From the exact sequence above we get an exact sequence

0 → π1∗(π
∗
2E⊗O(−Z)) → H0(C,E)⊗OSnC → E[n] → R1π1∗(π

∗
2E⊗O(−Z)) .
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By projection formula (cf. [Sca05] pages 34 for generalised projection
formulas, and 43 for the computation below)

H∗(SnC,E[n]) = H∗(C,E)⊗ Sn−1H∗(C,OC) ,

hence, H0(SnC,E[n]) = H0(C,E), and in the sequence above the map
H0(C,E)⊗OS2C → E[n] is the evaluation map.

When E[n] is globally generated, we call NE the total transform of E[n],
i.e.

NE := π1∗(π
∗
2E ⊗O(−Z)) .

In the following we want to investigate about the stability of the tautological
sheaf L[n] of a line bundle L on the curve C, and of its total transform NL.

Remark 3.1. We recall that, in characteristic 0, if ϕ : X → Y is a finite
morphism, and M is a torsion free coherent sheaf on Y , then M is polystable
if and only if ϕ∗M is polystable. More precisely, if M is (poly)stable, then
ϕ∗M is polystable. And, in any characteristic, if ϕ∗M is (semi)stable, then
M is (semi)stable (cf. [HL97], chapter 3).

3.1. Tautological sheaf of a line bundle on SnC

We apply in this section the methods described above to show stability results
on SnC. In order to apply the 2 lemmas stated below, we restrict to charac-
teristic 0 throughout this and the following section. However, we expect that
stability of the tautological sheaf hold in any characteristic.

We will consider the ample divisor H = Σn
i=1p

−1
i (p) in Cn, for some

point p ∈ C, which is the pull-back of the divisor H̃ = p + Sn−1C in SnC.
Let us call

fi := p−1
i (p)

the hypersurface in Cn. Then

H = Σn
i=1fi , Hn−1 = Σn

i=1(n− 1)!f1 . . . f̂j . . . fn , and Hn = n! ,

furthermore the numerical class of f1 . . . f̂j . . . fn is represented by the curve
x1 × · · ·× xj−1 × C × xj+1 × · · ·× xn, for any (x1, . . . , x̂j , . . . , xn) ∈ Cn−1.

We call as usual ∆ = {x1 + · · ·+ xn ∈ SnC | ∃i ∕= j with xi = xj} the
diagonal in SnC, it is a divisor divisible by 2, as it is the branch locus of the
quotient map σ : Cn → SnC.

We will the use the following computations:

Lemma 3.2. c1(L
[n]) ≡ (degL)H̃ − ∆

2

Proof. From Göttsche’s appendix in [BS91], we know that

c1(L
[n]) = L̃⊠n − ∆

2
,

where L̃⊠n is the unique line bundle on SnC such that its pull-back via
σ : Cn → SnC is equal to L⊠n = p∗1L⊗ . . . p∗nL. And we can verify easily that

L⊠n ≡ degL(f1 + · · ·+ fn) = (degL)H and L̃⊠n ≡ (degL)H̃.
□
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Lemma 3.3. c1(σ
∗L[n]).Hn−1 = n!(degL− n+ 1)

Proof. This follows from the equalities H̃n = 1 and ∆
2 .H̃

n−1 = n− 1.

In fact a we can choose a representative in the numerical class of H̃
as the divisor pj + Sn−1C, with pj a point of C, then choosing n distinct

points p1, . . . , pn and n corrensponding divisors H̃j = pj+Sn−1C numerically

equivalent to H̃, then the divisors H̃j intersect properly and H̃1 ∩ · · ·∩ H̃n =
{p1 + · · ·+ pn} is a point in SnC.

In the same way the numerical class of the cycle H̃n−1 is represented by
p1+. . . pn−1+C, and the divisor ∆ is the divisor with support {x1+· · ·+xn ∈
SnC | ∃i ∕= j with xi = xj}, so it intersects the cycle p1 + · · · + pn−1 + C
exactly in n− 1 points (each of which with multiplicity 2).

Therefore c1(L
[n]).H̃n−1 = ((degL)H̃ − ∆

2 ).H̃
n−1 = (degL − n + 1),

and the statement of the lemma follows, as σ is a degree n! cover.

□

We can now prove the first part of Theorem 1.1 stated in the introduc-
tion:

Theorem 3.4. Let L be a line bundle of degree d 󰃍 n on C, then L[n] is an
H̃-stable vector bundle on SnC.

Proof. Let us suppose that there exists a destabilization of L[n], i.e. an injec-
tion of sheaves F̃ ↩→ L[n], such that µH̃(F̃ ) 󰃍 µH̃(L[n]), with F̃ torsion free

of rank r < n. As we remark at the end of the proof, we can assume that F̃
is locally free.

Let us set F := σ∗F̃ . Pulling the injection F̃ ↩→ L[n] back to Cn by the
quotient map σ : Cn → SnC we have an injection F ↩→ σ∗L[n].

Let us consider the vector bundle L⊞n =
󰁏n

i=1 p
∗
iL and remark that it

carries a Sn-linearization given by the direct sum of the natural isomorphisms
p∗iL→̃g∗p∗g(i)L, for g ∈ Sn.

We have a natural Sn-equivariant injection σ∗L[n] ↩→
󰁏n

i=1 p
∗
iL. In fact

L[n] ∼= (σ∗L
⊞n)Sn (cf. [BL11] Proposition 1.1), then by adjunction we get a

map

σ∗L[n] → L⊞n

which is injective on the generic point on SnC (choose n distinct points in C)
and therefore it is an injective map of sheaves. Furthermore, it makes σ∗L[n]

an equivariant subsheaf of L⊞n as the linearization induces a linearization on
σ∗L[n].

Hence we have a Sn-equivariant injective morphism

F ↩→
n󰁐

i=1

p∗iL .
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As A :=
󰁙r

F = detF and
󰁙r 󰁏n

i=1 p
∗
iL carry linearizations induced by

those of F and
󰁏n

i=1 p
∗
iL, we have a Sn-equivariant morphism

ψ : A →
r󰁡 n󰁐

i=1

p∗iL .

We claim that this morphism must be zero, hence the maps F → σ∗L[n]

and F̃ → L[n] cannot be injective.
Decomposing

󰁙r 󰁏n
i=1 p

∗
iL as

󰁏
|J|=r LJ , where LJ = p∗j1L⊗ · · ·⊗p∗jrL,

we decompose the map ψ =
󰁏

ψJ : A →
󰁏

LJ as well.

Using the notations at the beginning of the section: fi := p−1
i (p) ⊂ Cn,

H = Σn
i=1fi, H

n−1 = Σn
i=1(n−1)!f1 . . . f̂j . . . fn, and Hn = n!, the numerical

class f1 . . . f̂j . . . fn being represented by the curve x1 × · · · × xj−1 × C ×
xj+1 × · · ·× xn, for any (x1, . . . , x̂j , . . . , xn) ∈ Cn−1, we have that

c1(F ).Hn−1 = c1(detF ).Hn−1 󰃍 r

n
c1(σ

∗L[n]).Hn−1 =
r

n
(n!)(d−n+1) > 0 ,

where the last equality is given by Lemma 3.3.
We can suppose that c1(F ).(f2.f3 . . . fn) > 0. Hence

deg(A|C×x2×···×xn
) > 0 , for all (x2 . . . , xn) ∈ Cn−1 .

For all J such that 1 /∈ J , LJ|C×x2×···×xn
= O. Hence, for all such

J , ψJ : A → LJ is the zero map, as we can see by restriction to the curve
C × x2 × · · ·× xn.

Then we can apply Lemma 2.4: if the map ψJ vanishes for a J , then the
whole map ψ vanishes, and the morphism F →

󰁏n
i=1 p

∗
iL cannot be injective.

The assumption that F is locally free is not limiting, as for any F
torsion free of rank r, we have a line bundle A, such that c1(A) = c1(F ), with
A =

󰁙r
F on the locus where F is locally free, and such that F →

󰁏n
i=1 p

∗
iL

induces A →
󰁙r 󰁏n

i=1 p
∗
iL. This last map being zero, the map F →

󰁏n
i=1 p

∗
iL

cannot be injective.
□

We recall that in characteristic 0, if we show that the vector bundle L[n]

is stable with respect to the polarization H̃, then the vector bundle σ∗L[n] is
polystable with respect to H (cf. Remark 3.1). Thus, we have the following

Corollary 3.5. The vector bundle σ∗L[n] on Cn is poly-stable with respect to
the polarization H.

3.2. Transform of the tautological sheaf of a line bundle

In this paragraph we show that when degL > 2g + n the total transform

NL = ML[n] = ker(H0(C,L)⊗OSnC ↠ L[n])

is stable. The proof is inspired by Ein and Lazarsfeld’s proof of the stability
of ML for line bundles (cf. [EL92]), in this work the stability of the Picard
bundle is shown proving the stability of a total transform:
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Theorem 3.6 (Ein-Lazarsfeld). Let L be a line bundle of degree d > 2g (re-
spectively d 󰃍 2g) on a smooth projective curve of genus g, then the total
transform ML is stable (respectively semistable).

Using a similar argument we show the following:

Lemma 3.7. Let x1, . . . , xn−1 ∈ C be fixed distinct points, and let i : C → SnC
mapping i(x) = x1 + · · ·+ xn−1 + x be the embedding with image x1 + · · ·+
xn−1 + C ⊂ SnC. Then i∗(NL) = ML(−x1···−xn).

Proof. Let us remark that, for every P ∈ PicC, we have an isomorphism

MP
∼= pr1∗(pr

∗
2P ⊗OC×C(−δ))

where δ ⊂ C × C is the diagonal. As we remarked at the beginning of this
section, the total transform of the tautological bundle NL, is given by the
formula:

NL := π1∗(π
∗
2L⊗O(−Z)) ,

where Z ⊂ SnC × C is the universal family and is a divisor, and π1,π2 are
the projections. Furthermore, the pull-back of the universal family Z through
i is the closed subset:

Y := i∗Z = (i× idC)
−1(Z) = {(x, y) | y ∈ {x1, . . . , xn−1, x}} ⊂ C × C .

This is a divisor in C × C with n irreducible components:

δ , pr−1
2 (x1), . . . , pr

−1
2 (xn−1) ,

therefore OC×C(−Y ) = OC×C(−δ)⊗ pr∗2OC(−x1 − · · ·− xn−1).
Now by flat base change,

i∗NL = i∗(π1∗(π
∗
2L⊗O(−Z))) = pr1∗(pr

∗
2L⊗ (i× idC)

∗O(−Z)) =

= pr1∗(pr
∗
2L⊗ (i× idC)

∗O(−Z)) = pr1∗(pr
∗
2L(−x1− · · ·−xn−1)⊗O(−δ)) =

= ML(−x1−···−xn−1) .

□
Finally, we can prove a stability result for the total transforms of tau-

tological sheaves on the symmetric product of a curve, i.e. the second part
of Theorem 1.1:

Theorem 3.8. Let C be a smooth curve of genus g 󰃍 1, and let L be a line
bundle on C of degree d 󰃍 2g + n. Then NL is a stable bundle on SnC with
respect to the polarization H̃.

Proof. We just need to remark that the class of x1+. . . xn−1+C is numerically

equivalent to H̃n−1, and that we know stability when restricting to that
curve. In greater detail: suppose by contradiction that there is a destabilizing
subsheaf F ⊂ NL on SnC (where F can be supposed to be a reflexive sheaf
without loss of generality), with

µH̃ =
F.H̃n−1

rkF
󰃍 µH̃(NL) (3.1)
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then by choosing sufficiently general points x1, . . . , xn−1 ∈ C and consider-
ing the injection i defined above, we can suppose that we have an injection
i∗F ⊂ i∗NL of vector bundles. However as i∗(NL) = ML(−x1···−xn) by Lemma
3.7, this vector bundle on C being stable by Ein and Lazarsfeld result, and

µ(i∗NL) =
NL.H̃n−1

rkNL
= µH̃(NL), then equality (3.1) cannot hold.

□

Remark 3.9. As according to Proposition 2.3 G-linearized vector bundles are
destabilized by G-linearized subbundles, it would be interesting to apply this
in a more general setting of a (finite) group action, or for tautological bundles
of higher rank: in fact an earlier (unpublished) version of this work has been
recently extended by Andreas Krug in [Kru18].

Question 3.10. In the recent works (cf [BKK+15], [MU19], [Mis18], [Mis19])
we consider globally generated vector bundles and their base loci, in order to
get positivity properties, and construct Iitaka fibrations. It would be inter-
esting to understand whether these loci can be used in order to understand
positivity properties of tautological bundles and their Iitaka fibrations.
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