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Abstract

We prove that a vector bundle on a smooth projective variety is
(semi)stable if the restriction on a fixed ample smooth subvariety is (semi)stable

1 Introduction

The purpose of this work is to show a property of slope-stability of vector bundles
with respect to restriction to a given ample subvariety.

Given a slope-stable vector bundle E on a projective variety X, it is rather
difficult to prove that the restriction of E to an ample subvariety is stable.
This can be done for general subvarieties of sufficiently high degree (cf. [MR82,
Fle84]).

On the converse, it is easy to show that, if the restriction of E on a general
ample subvariety of high degree is slope-stable, then E is slope-stable as well.

The purpose of this work is to show that if the restriction of E|Y to one
given smooth ample hypersurface Y ⊂ X (of any degree) is (semi)stable, then
the vector bundle E is (semi)stable on X. This is sometimes stated, however it
does not appear explicitly in the literature, so we think it is useful to write it
here, for future use and for the interest of the result in itself.

1.1 Notation and main definitions

Throughout this work X is a smooth projective variety of dimension n over an
algebraically closed field k.

Intersection products, pull-backs, push-forwards, and Chern classes will be
considered in the Chow ring A∗(X) with integral coefficients, and we will identify
divisors in A1(X) with line bundles when useful. For a 0-cycle W =

∑
λipi,

with pi ∈ X, λi ∈ Z we will denote by

< W >X=
∑

λi ∈ Z

its degree. For any higher dimensional cycle Z we will set < W >X= 0. There-
fore the intersection number of two classes a, b ∈ A∗(X) with complementary
dimensions will be denoted < a.b >X .
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We will say that two cycles a, b ∈ A∗(X) are numerically equivalent when
< a.c >X=< b.c >X for every cycle c ∈ A∗(X).

Definition 1.1. Let H be an ample divisor on X. Let F be a torsion free sheaf
on X. Let n be the dimension of X.

i. We call slope of F (with respect to the polarization H) the rational number

µH(F ) :=
< c1(F ).Hn−1 >X

rkF

ii. We say that a vector bundle E on X is (semi)stable if for every torsion
free subsheaf F ⊂ E with rkF < rkE the slopes satisfy

µH(F ) < µH(E) (µH(F ) 6 µH(E) for semistability)

2 Lemmata

The following is the first useful observation:

Lemma 2.1. Let F be a torsion free sheaf on X. Suppose that F is locally
free outside of a subset Z ⊂ X of codimension at least 3 in X. If Y ⊂ X is a
hypersurface and H is its class in A1(X), then

< c1(F ).Hn−1 >X=< c1(F|Y ).(H|Y )n−2 >Y .

Proof. Let us first remark that, if i : Y ↪→ X is the immersion of Y in X, then

c1(F|Y ) = i∗C1(F ) .

In fact this is obvious when F is a vector bundle. In general notice that c1(F|Y )
and i∗C1(F ) are two line bundles on Y , isomorphic on an open subset U = Y \Z
whose complementary Y ∩Z has codimension at least 2 in Y , therefore they are
isomorphic. Hence c1(F|Y ).(H|Y )n−2 = i∗(c1(F ).Hn−2).

To complete the proof observe that < w >Y =< i∗w >X for any cycle
w ∈ A∗(Y ), and that by projection formula:

i∗(c1(F|Y ).(H|Y )n−2) = i∗([Y ].i∗(c1(F ).Hn−2)) = i∗[Y ].(c1(F ).Hn−2) ,

where [Y ] is the identity class in A∗(Y ), and clearly i∗[Y ] = H.

Lemma 2.2. Let E be a vector bundle on X.

i. Suppose that µH(F ) < µH(E) for all subsheaf F ⊂ E such that the quo-
tient E/F is torsion free, then E is stable.

ii. Suppose that µH(F ) < µH(E) for all subsheaf F ⊂ E such that F ∼= F ∗∗,
where the dual sheaf of F is defined as the sheaf of homomorphisms F ∗ =
HomOX

(F,OX). Then E is stable.
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Corresponding statements can be made on semistability.

Proof. To prove stability we have to consider the slope of any subsheaf F ⊂ E.
Suppose that condition (i) holds. Given any subsheaf F ⊂ E consider the

exact sequence 0→ F → E → G→ 0. If G = E/F is not torsion free consider
its torsion T = T (G) and its torsion free quotient G� G′ = G/T . Then

F ⊂ F ′ := ker(E � G′) ⊂ E , and F ′/F = ker(G� G′) = T (G)

Now observe that c1(T ) is effective, in fact c1(T ) = c1(F ′) ⊗ c1(F )∗, and as
F ⊂ F ′ then the line bundle c1(T ) has a section. Therefore

< c1(F ).Hn−1 >X6< c1(F ′).Hn−1 >X , and µH(F ) 6 µH(F ′) < µH(E) .

Suppose now that condition (ii) holds. Given any subsheaf F ⊂ E consider
the injection of F in its bidual: F ↪→ F ∗∗. Now F ∗∗ is a subsheaf of E as well.
In fact morphisms from F to E factor through F ↪→ F ∗∗, as it can be seen from
the computation of homomorphism from F to E, recalling that E is a vector
bundle:

HomOX
(F,E) = F ∗ ⊗ E = (F ∗∗)∗ ⊗ E = HomOX

(F ∗∗, E) .

Therefore F ⊂ F ∗∗ ⊂ E and we can proceed ads above.

The following is a well known lemma (cf. [Har94], Lemma 1.5 and Theorem
1.9):

Lemma 2.3. Let F be a coherent sheaf on X, then

i. F is torsion-free if and only if it satisfies Serre’s condition S1: i.e. for all
schematic points x ∈ X

depth(Fx) > min{1,dimOX,x} .

ii. F is reflexive if and only if it satisfies Serre’s condition S2: i.e. for all
schematic points x ∈ X

depth(Fx) > min{2,dimOX,x} .

Corollary 2.4. Let F be a reflexive (respectively torsion-free) coherent sheaf
on X. The singular locus of F ,

sing(F ) = {x ∈ X | Fx is not a free OX,x-module } ,

has codimension at least 3 (respectively at least 2).
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Proof. Suppose that F is a reflexive sheaf, let Z ⊂ X be an integral subscheme
of codimension at most 2, and let z ∈ X be the generic point of Z. Then OX,z

has dimension at most 2. Therefore

depth(Fz) > dimOX,z .

But as X is a smooth variety, then OX,x is a regular ring for all x ∈ X, so it
satisfies the Auslander-Buchsbaum formula (cf. [AB57]): for any coherent sheaf
F and any schematic point x ∈ X

depth(Fx) + dh(Fx) = dimOX,x ,

where dh(Fx) is the minimal length of projective resolutions of Fx. In particular
for z ∈ X above, we have dh(Fz) = 0, therefore Fz is a free OX,z-module. So
sing(F ) cannot contain any 2-codimensional subscheme.

The same argument applies to the codimension of the singular locus of a
torsion-free sheaf.

3 Main Theorem

We give in this section the proof of the main theorem stated in the introduction.

Theorem 3.1. Let X be a smooth projective variety of dimension at least 2. Let
H be an ample divisor on X. Let E be a vector bundle on X, and Y ⊂ X a fixed
smooth hypersurface numerically equivalent to a multiple mH, with m ∈ Q>0.
Assume that E|Y is (semi)stable with respect to the polarization H|Y . Then E
is (semi)stable on X with respect to the polarization H.

Proof. Let us prove the statement concerning stability, the argument being es-
sentially the same for semistability.

We want to prove that given a subsheaf F ↪→ E, we have µH(F ) < µH(E),
knowing that this property holds on Y .

According to Lemma 2.2 we can suppose that F is reflexive and that G :=
E/F is torsion-free, so by Corollary 2.4 the singular locus of F ,

sing(F ) = {x ∈ X | Fx is not a free OX,x-module } ,

has codimension at least 3, and sing(G) has codimension at least 2 in X.
Let us restrict the exact sequence 0→ F → E → G→ 0 to the hypersurface

Y :
0→ T or1OX

(G,OY )→ F|Y → E|Y → G|Y → 0 ,

and let us remark that, as codimXsing(F ) > 3, then codimY sing(F|Y ) > 2.
As supp(T or1OX

(G,OY )) ⊂ sing(G)∩Y , and codimXsing(G) > 2 in X, then
T or1OX

(G,OY ) is a torsion sheaf on Y , injecting in F|Y . So its support must be
contained in sing(F|Y ).

4



Hence c1(F|Y ) = c1(F|Y /T or1OX
(G,OY )), because quotienting by subsheaves

concentrated on high codimension subsets does not affect the first Chern class.
On Y we have the following exact sequence

0→ F|Y /T or1OX
(G,OY )→ E|Y → G|Y → 0 .

Hence by stability of E|Y we have that

< c1(F|Y ).Hn−2 >Y

rkF
<
< c1(E|Y ).Hn−2 >Y

rkE
,

where dimX = n. As codimXsing(F ) > 3, and E is a vector bundle, then by
Lemma 2.1 we have:

< c1(F|Y ).(mH)n−2 >Y =< c1(F ).(mH)n−1 >X , and

< c1(E|Y ).(mH)n−2 >Y =< c1(E).(mH)n−1 >X ,

so
< c1(F ).Hn−1 >X

rkF
<
< c1(E).Hn−1 >X

rkE
.

Therefore we get stability on X.

4 Applications and questions

By recursive induction it is immediate to prove the following consequence of the
main theorem:

Corollary 4.1. Let X be a smooth projective variety of dimension n, and let
E be a vector bundle on X. Let H be an ample divisor, let Yi ≡ miH be
hypersurfaces numerically equivalent to a rational multiple of H, for i = 1, . . . , r
with r < n. Suppose that the complete intersections Zs := Y1 ∩ · · · ∩ Ys are
irreducible and smooth for all s 6 r. If E|Zr

is (semi)stable on Zr, then E is
(semi)stable on X (with respect to the polarizations induced by H).

Restriction to smooth curves obtained in such a way is used in various ways
in the literature: in some works of the author (cf. [Mis06, Mis20]) some complete
intersection curves are constructed in order to prove the stability of vector bun-
dles on higher dimensional varieties. Also, in [EL92], stability of Picard bundles
is proven by restriction to curves which are intersection of theta divisors. Even
though it is not needed to fix one subvariety in these cases, Corollary 4.1 could
be used in these works.

Question 4.2. Since stability is obtained knowing stability on a fixed smooth
subvariety, it is natural to ask about weakening the hypothesis to stability on a
fixed singular hypersurface, possibly limiting the kind of singularities. We leave
this question to further investigations.
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Remark 4.3. In the recent works (cf. [BKK+15, MU19, Mis18, Mis19]) we con-
sider asymptotic base loci of vector bundles, in order to get positivity properties,
and construct Iitaka fibrations. It would be interesting to consider restrictions
of stable vector bundles to (smooth subvarieties in) their asymptotic base loci
as well. Any relationship between asymptotic base loci and stability would be
surprising.
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I am thankful to Alex Küronya for our recent discussions on this subject.
This research was partially funded by the PRIN research project “Geometria
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