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Stability of line bundle transforms on curves with respect to
low codimensional subspaces

Ernesto C. Mistretta

Abstract

We show the stability of certain syzygies of line bundles on curves, which we call line bundle
transforms. Furthermore, we prove the existence of reducible theta divisors for the transforms
having integral slope. A line bundle transform is the kernel of the evaluation map on a subspace
of the space of global sections.

1. Introduction

In the study of vector bundles on curves, it is a natural question to investigate the stability
of kernels of evaluation maps of global sections. This was used in particular by Paranjape and
Ramanan (cf. [6]) and Butler (cf. [2]) to prove normal generation of certain vector bundles, by
Ein and Lazarsfeld (cf. [3]) to show the stability of the Picard bundle, and by Beauville (for
example, in [1]) to study theta divisors.

Definition 1.1. Let C be a smooth projective curve over an algebraically closed field k,
and let E be a globally generated vector bundle over C. We call MV,E := ker(V ⊗OC � E)
the transform of the vector bundle E with respect to the generating subspace V ⊂ H0(C,E),
and ME := MH0(E),E = ker(H0(C,E) ⊗OC � E) the total transform of E.

Starting from a result of Butler, who proved the stability of total transforms under certain
hypotheses, we want to investigate the stability of transforms of line bundles by generic
subspaces of certain codimensions.

Theorem 1.2 (Butler). Let C be a smooth projective curve of genus g � 1 over an
algebraically closed field k, and let E be a semistable vector bundle over C with slope μ(E) �
2g; then the vector bundle ME := ker(H0(C,E) ⊗OC � E) is semistable. Furthermore, if E
is stable and μ(E) � 2g, then ME is stable, unless μ(E) = 2g, and either C is hyperelliptic or
ωC ↪→ E.

It is natural to ask what happens when we take subspaces in the place of the vector space
of global sections. Our results can be summarized in the following theorem.

Theorem 1.3. Let L be a line bundle of degree d on a curve C of genus g � 2 such that
d � 2g + 2c, with 1 � c � g. Then MV,L is semistable for a generic subspace V ⊂ H0(L) of
codimension c. It is stable unless d = 2g + 2c and the curve is hyperelliptic.
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Similar results can be deduced by some constructions in Vincent Mercat’s work [5] on
Brill–Noether loci, but we think that in our case it is useful to give a more direct proof that
applies to all line bundles of degree d � 2g + 2c, and not only to generic line bundles.

Eventually, we observe the existence of theta divisors associated to the (semi)stable
transforms having integer slope −2. These theta divisors are always non-integral, and in most
cases reducible, and hence give further examples of stable vector bundles admitting a reducible
theta divisor (cf. [1]).

Remark 1.4. A geometrical interpretation of this kind of results goes as follows: a
generating subspace V ⊂ H0(C,L) gives rise to a base-point-free linear system |V | ⊂ |L| on
the curve C, and determines a map ϕV : C → P(V ∗), which associates to a point x ∈ C, the
hyperplane of global sections in V vanishing in x. The Euler sequence on P(V ∗) is the dual of
the tautological sequence

0 −→ ΩP(V ∗)(1) −→ V ⊗OP(V ∗) −→ OP(V ∗)(1) −→ 0,

which, restricted to C, gives the evaluation sequence

0 −→ MV,L −→ V ⊗OC −→ L −→ 0.

As the stability of a vector bundle is not affected by dualizing and tensorizing by a line bundle,
we see that the stability of MV,L = Ω(1)|C is equivalent to the stability of the restriction of the
tangent bundle of the projective space P(V ∗) to the curve C.

Therefore our theorem translates to the following theorem.

Theorem 1.5. Let C ⊂ Pd−g be a genus g � 2 degree d non-degenerate smooth curve,
where d > 2g + 2c and c is a constant such that 1 � c � g. Then for the generic projection
Pd−g ��� Pd−g−c the restriction TPd−g−c|C is stable.

2. Stability of transforms

We essentially use the following two lemmas.

Lemma 2.1 [2, Lemma 1.10]. Let C be a curve of genus g � 2, and let F be a vector bundle
on C with no trivial summands and such that h1(F ) �= 0. Suppose that V ⊂ H0(F ) generates
F . If N = MV,F is stable, then μ(N) � −2. Furthermore, μ(N) = −2 implies that either C is
hyperelliptic, F is the hyperelliptic bundle, and N is its dual, or F = ω and N = Mω.

The proof of this lemma is based on the result by Paranjape and Ramanan asserting the
stability of Mω (see [2, 6]).

Lemma 2.2. Let L be a degree d � 2g + 2c line bundle on a curve C of genus g � 2 with
c � g. Let V ⊂ H0(L) be a generating subspace of codimension c, and suppose that there
exists a stable sub-bundle of maximal slope N ↪→ MV,L such that 0 �= N �= MV,L and μ(N) �
μ(MV,L).

Then there exist a line bundle F of degree f � d − 1, a generating subspace W ⊂ H0(F ),
and an injection F ↪→ L such that N fits into the following commutative diagram.

0 −→ N −→ W ⊗OC −→ F −→ 0↪→ ↪→ ↪→

0 −→ MV,L −→ V ⊗OC −→ L −→ 0
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That is, a destabilization of MV,L must be the transform of a line bundle injecting into L such
that the global sections we are transforming by are in V .

The importance of this lemma lies in the fact that we associate a line bundle F to a
destabilizing N , and this allows us more easily to parameterize destabilizations and bound
their dimension.

Proof. We remark that μ(MV,L) = −d/(d − g − c) � −2 for d � 2g + 2c. Consider a stable
sub-bundle N ↪→ MV,L of maximal slope. Then it fits into the following commutative diagram.

0 −→ N −→ W ⊗OC −→ F −→ 0↪→ ↪→ ↓
0 −→ MV,L −→ V ⊗OC −→ L −→ 0

Here W ↪→ V is defined by W ∗ := Im(V ∗ → H0(N∗)), and hence W ∗ generates N∗; write
F ∗ := ker(W ∗ ⊗O � N∗).

Then F is a vector bundle with no trivial summands. Moreover the morphism F → L is not
zero, as W ⊗O does not map to MV,L. We have to show that rkF = 1 and deg F � d − 1. We
distinguish the two cases: h1(F ) = 0 and h1(F ) �= 0.

Case 1. Let us suppose that h1(F ) = 0. Then h0(F ) = χ(F ) = rkF (μ(F ) + 1 − g). On the
other hand, h0(F ) > rkF as F is globally generated and not trivial.

Together, this yields
μ(F ) > g. (2.1)

Furthermore

μ(N) = − deg F

dim W − rkF
� − μ(F )

μ(F ) − g
= μ(MF ), (2.2)

as dim W � h0(F ) = rkF (μ(F ) + 1 − g).
Consider the image I = Im(F → L) ⊆ L. The commutative diagram

W ↪→ H0(F ) −→ H0(I)↪→ ↪→

V ↪→ H0(L)

shows that the map W → H0(I) is injective and its image W ′ ⊂ H0(I) is contained in V ⊂
H0(L), and hence N ↪→ MW ′,I ↪→ MV,L. As N is a sub-bundle of MV,L of maximal slope, this
yields μ(N) � μ(MW ′,I); that is, −deg F/rk N � −deg I/rkMW ′,I . Then

deg F � deg I

(
rkN

rk MW ′,I

)
� deg I � degL = d.

If rkF � 2, then μ(F ) � degL/2 = d/2, and so

μ(N) � −μ(F )
μ(F ) − g

� −d/2
d/2 − g

=
−d

d − 2g
� −d

d − g − c
= μ(MV,L).

Here the first inequality is (2.2). For the second, we show that the function −x/(x − g) is
strictly increasing for x > g. Then use μ(F ) > g due to (2.1). Equality holds only if rkF = 2,
deg F = d, W = H0(F ), and g = c. However, in this case we would find that

dim W = h0(F ) = d + 2 − 2g > d + 1 − g − c = dim V,

which is impossible as by construction W ↪→ V .
Hence rk F = 1, and so F = I is a globally generated and acyclic line bundle of degree f � d,

and μ(N) = −f/(dim W − 1).
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It is easy to see that the case f = d cannot hold, as in that case we cannot have μ(N) �
μ(MV,L). Hence f � d − 1.

Case 2. In the case h1(F ) �= 0, by Lemma 2.1, μ(N) � −2. Equality holds only if F = ωC

and W = H0(ω), or if the curve C is hyperelliptic and F is the hyperelliptic bundle. In the
latter case the only generating space of global sections is H0(F ). In any case we have f =
deg F < d − 1.

Remark 2.3. The diagram in the statement of the lemma is a construction from Butler’s
proof of Theorem 1.2.

Remark 2.4. Looking carefully at the numerical invariants in the above proof, we can
deduce some inequalities that will be useful in the following: let us consider again the diagram
in the above lemma

0 −→ N −→ W ⊗OC −→ F −→ 0↪→ ↪→ ↪→

0 −→ MV,L −→ V ⊗OC −→ L −→ 0

and suppose that h1(F ) = 0. Let us write f := deg F , s := d − f , and b := codimH0(F )W . Then
we can show that

0 < c − b < s � d

g + c
(c − b). (2.3)

In fact, as W ↪→ V , and W �= V ,

d − s + 1 − g − b = h0(F ) − b = dim W < dim V = d + 1 − g − c,

and hence c − b < s. And as

− d − s

d − s − g − b
= μ(N) � μ(MV,L) = − d

d − g − c
,

we see that s(g + c) � d(c − b), and hence c − b > 0 and s � (d/(g + c))(c − b).

2.1. Line bundles of degree d = 2g + 2

A first consequence of these lemmas is the following proposition asserting semistability for
hyperplane transforms of line bundles of degree 2g + 2.

Proposition 2.5. Let L be a line bundle of degree d = 2g + 2 on a curve C of genus g � 2.
Then MV,L is semistable for every generating hyperplane V ⊂ H0(L). It is strictly semistable
if C is hyperelliptic.

Proof. Let us prove the semistability of MV,L.
Consider a stable sub-bundle N ↪→ MV,L of maximal slope, and suppose that it destabilizes

MV,L in the strict sense; that is, μ(N) > −2 = μ(MV,L). By Lemma 2.2 we know that N fits
into the following diagram, with F a line bundle.

0 −→ N −→ W ⊗OC −→ F −→ 0↪→ ↪→ ↪→

0 −→ MV,L −→ V ⊗OC −→ L −→ 0
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Moreover, h1(F ) = 0 since otherwise μ(N) � −2 by Lemma 2.1. Hence deg F = 2g by (2.3),
and W = H0(F ) (we have c = 1, so b = 0 and 1 < s � 2). Therefore

rkN = h0(F ) − 1 = deg F − g

and

μ(N) = − deg F

deg F − g
= − 2g

2g − g
= −2,

and this shows that it is not possible to find a strictly destabilizing N .
If the curve is hyperelliptic, then MV,L is strictly semistable: we can show that there is a

line bundle of degree −2 injecting in MV,L. In fact we can consider the line bundle A dual to
the only g1

2 of the curve, that is, the dual of the hyperelliptic bundle.
The hyperelliptic bundle A∗ has h0(A∗) = 2, and from the exact sequence

0 −→ MV,L ⊗ A∗ −→ V ⊗ A∗ −→ L⊗ A∗ −→ 0,

we see that there are destabilizations of MV,L by the line bundle A if and only if

H0(MV,L ⊗ A∗) = ker(ϕ : V ⊗ H0(A∗) −→ H0(L ⊗ A∗)) �= 0.

Counting dimensions, we see that the map ϕ cannot be injective:

dim V · dim H0(A∗) = (g + 2)2 > g + 5 = dim H0(L ⊗ A∗).

In order to prove stability for non-hyperelliptic curves, though, we need to take a generic
hyperplane, and not just a generating hyperplane. The following is a special case of a more
general result, proved in Subsection 2.3.

Theorem 2.6. Let L be a line bundle of degree d = 2g + 2 on a curve C of genus g � 2.
Then MV,L is stable for a generic hyperplane V ⊂ H0(L) if and only if C is non-hyperelliptic.

2.2. Line bundles of degree d > 2g + 2c

Here we show that for a generic subspace the transform of a line bundle of degree d > 2g + 2c
is stable. In contrast to Proposition 2.5, we have to consider generic hyperplanes, and not just
generating hyperplanes.

Theorem 2.7. Let L be a line bundle of degree d on a curve C of genus g � 2 such
that d > 2g + 2c, with 1 � c � g. Then MV,L is stable for a generic subspace V ⊂ H0(L) of
codimension c.

Proof. Let us proceed as in Proposition 2.5. We see that −2 < μ(MV,L) < −1.
Consider a stable sub-bundle N ↪→ MV,L of maximal slope. By Lemma 2.2 we know that it

fits into the following diagram.

0 −→ N −→ W ⊗OC −→ F −→ 0↪→ ↪→ ↪→

0 −→ MV,L −→ V ⊗OC −→ L −→ 0

We can conclude right away that h1(F ) = 0, as by Lemma 2.1 we would otherwise have
μ(N) � −2.

Therefore F is a globally generated line bundle with h1(F ) = 0, deg F =: d − s � d − 2, and
W is a b-codimensional subspace of H0(F ). By Remark 2.4, we see that for every b with
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0 � b < c there is a finite number of values of s, giving rise to a possible destabilization of
MV,L.

For any of those b and s we will construct a parameter space allowing F , W , and the
subspace V ⊂ H0(L) to vary. For any such b and s we want to consider the parameter space
Db,s, parameterizing subspaces V ⊂ H0(L) together with a destabilizing bundle of MV,L of
degree s − d originating from a subspace W as in the construction above:

Db,s := {(F, F ↪→ L,W ⊂ H0(F )), V ⊂ H0(L)) | F ∈ Picd−s(C),

(ϕ : F ↪→ L) ∈ P(H0(F ∗ ⊗ L)),W ∈ Gr(b,H0(F ))

V ∈ Gr(c,H0(L)), ϕ|W : W ↪→ V ⊂ H0(L)}.
In order to estimate its dimension, we use the natural morphisms

πb,s : Db,s −→ Picd−s(C), (F, F ↪→ L,W, V ) 	−→ F,

and ρb,s : Db,s → Gr(c,H0(L)), (F, F ↪→ L,W, V ) 	→ V .
The image of πb,s is formed by all the line bundles F ∈ Picd−s(C) such that h0(F ∗ ⊗ L) �= 0.

In particular, dimπb,s(Db,s) = min(s, g), because the degree of F ∗ ⊗ L is s. The fiber over F ∈
πb,s(Db,s) has the same dimension as P(H0(F ∗ ⊗ L)) × Gr(b, (H0(F ))) × Gr(c, (H0(L)/W )).

By Clifford’s theorem, h0(F ∗ ⊗ L) � s/2 + 1 if s � 2g, and h0(F ∗ ⊗ L) = s + 1 − g other-
wise. Therefore,

dimDb,s � min(s, g) + sup(s/2, s − g) + b(d − s − g + 1 − b) + c(s + b − c)
� 3

2s + b(d − s − g + 1 − b) + c(s + b − c).

Claim: for g, d, c as in the hypothesis and s, b satisfying the inequalities of Remark 2.1, we
have

3
2s + b(d − s − g + 1 − b) + c(s + b − c) < c(d + 1 − g) − c2 = dim Gr(c,H0(L)).

Once we have proved the claim, it follows that for all s and b giving rise to possible
destabilizations, the morphisms ρb,s : Db,s → Gr(c,H0(L)) have a locally closed image of
dimension strictly smaller than Gr(c,H0(L)), and hence the generic subspace avoids all possible
destabilizations of MV,L.

The claim is equivalent to

3s

2(c − b)
+ s + b < d + 1 − g.

Using inequalities (2.3) we get

3s

2(c − b)
+ s + b � 3/2 + (c − b)

g + c
d + b,

and hence we want to prove that

3/2 + (c − b)
g + c

d + b < d + 1 − g,

which is equivalent to
b + g − 1

b + g − 3/2
<

d

g + c
,

and as b � 0 � 2 − g, we have

b + g − 1
b + g − 3/2

� 2 <
d

g + c
.
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2.3. Line bundles of degree d = 2g + 2c

We have shown in Subsection 2.1 that hyperplane transforms of a degree 2g + 2 line bundle are
always semistable. We prove here that generic c-codimensional transforms of a degree 2g + 2c
line bundle are stable, except in the hyperelliptic case, where they are strictly semistable.

Theorem 2.8. Let L be a line bundle of degree d = 2g + 2c on a curve C of genus g � 2.
Then MV,L is semistable for a generic subspace V ⊂ H0(L) of codimension c. It is stable if and
only if C is non-hyperelliptic.

Proof. As in the proof of Theorem 2.7 we want to construct parameter spaces for
destabilizations and verify by dimension count that the generic subspace avoids them. Let us
consider a line bundle L of degree d = 2g + 2c on a curve C of genus g � 2, and the transform
MV,L for a subspace V ⊂ H0(L) of codimension c.

To show semistability, let us suppose that there is a destabilizing stable vector bundle N ↪→
MV,L, with μ(N) > μ(MV,L) = −2. By Lemma 2.2 we know that it fits in the following diagram.

0 −→ N −→ W ⊗OC −→ F −→ 0↪→ ↪→ ↪→

0 −→ MV,L −→ V ⊗OC −→ L −→ 0

We can suppose that h1(F ) = 0 by Lemma 2.1. In this case we can follow the same computations
as in Theorem 2.7: we have a parameter space for destabilizations

Db,s := {(F, F ↪→ L,W ⊂ H0(F )), V ⊂ H0(L)) | F ∈ Picd−s(C),

(ϕ : F ↪→ L) ∈ P(H0(F ∗ ⊗ L)),W ∈ Gr(b,H0(F ))

V ∈ Gr(c,H0(L)), ϕ|W : W ↪→ V ⊂ H0(L)},
with dimension bounded by

dimDb,s � 3
2s + b(d − s − g + 1 − b) + c(s + b − c),

with b and s satisfying 0 < c − b < s � (d/(g + c))(c − b). Except in the case b = 0 and g = 2,
we can follow the very same proof as that of Theorem 2.7, and we see that this bound shows
that the generic subspace avoids the destabilization locus.

In the case b = 0 and g = 2 as well, it can be easily shown that dimDb,s < dim Gr(c,H0(L)),
for all s giving rise to destabilizations.

To show that we have strict semistability in the hyperelliptic case, we can proceed as in
Proposition 2.5, and show that the dual of the hyperelliptic bundle is a sub-bundle of MV,L of
slope −2.

To show that we have stability in the non-hyperelliptic case, we have to exclude slope −2
sub-bundles N ↪→ MV,L. Again we can apply Lemma 2.2 and consider the following diagram.

0 −→ N −→ W ⊗OC −→ F −→ 0↪→ ↪→ ↪→

0 −→ MV,L −→ V ⊗OC −→ L −→ 0

Here we can distinguish the two cases H1(F ) = 0 and H1(F ) �= 0.
In the case H1(F ) = 0 we can again follow the same computations as in Theorem 2.7.
In the case H1(F ) �= 0, Lemma 2.1 implies that F = ω and N = Mω, and hence the

parameter space for destabilizations will be

D := {(ω ↪→ L, V ⊂ H0(L)) | H0(ω) ⊂ V },
and it can be shown that dimD < dim Gr(c,H0(L)).
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3. Theta divisors and transforms

When a vector bundle has integer slope μ(E) = μ ∈ Z, we can define the set

ΘE := {P ∈ Picν(C) | H0(C,E ⊗ P ) �= 0},
where ν := g − 1 − μ.

As χ(E ⊗ P ) = 0, either ΘE = Picν(C), or it carries the natural structure of an effective
divisor in Picν(C). In the latter case we say that E admits a theta divisor. The class of this
divisor in H2(Picν(C), Z) is rk E · ϑ, where ϑ is the class of the canonical theta divisor of
Picν(C). Whenever a vector bundle admits a theta divisor, it is semistable. Moreover, strictly
semistable vector bundles admitting a theta divisor have non-integral theta divisors.

However, there are examples of stable vector bundles with no theta divisor, or with a
reducible theta divisor. Beauville shows in [1] that the total transform ML of a degree 2g
line bundle L on a genus g curve C always has a reducible theta divisor, and that if L is very
ample, and C is not hyperelliptic, then ML is stable.

The vector bundles considered above, that is, transforms of degree d � 2g + 2c line bundles,
with respect to c-codimensional subspaces of global sections, have slope μ such that −2 � μ <
−1. The case of integer slope μ = −2 appears if and only if d = 2g + 2c.

Following the same argument as in [1], we prove that for the generic V ⊂ H0(C,L) those
transforms always carry a non-integral theta divisor.

To prove that, for a generic V ⊂ H0(C,L) within the numerical conditions above, the
transform MV,L admits a theta divisor, we need the following lemma.

Lemma 3.1. Let P be a 2-dimensional vector space, let H be a vector space of dimension
n + c, and let K ⊂ P ⊗ H be a subspace of dimension 2c. If K contains no pure vectors, then
the generic c-codimensional subspace V ∈ Gr(c,H) satisfies

K ∩ (P ⊗ V ) = 0.

Proof. We consider the map

f : Gr(c,H) −→ Gr(2c, P ⊗ H),
V 	−→ P ⊗ V,

and we claim that the image of f is not contained in the closed subscheme

Z := {W ∈ Gr(2c, P ⊗ H) | dim K ∩ W � 1}.
Let us observe at first that Z carries a filtration

Z = Z1 ⊇ Z2 ⊇ . . . ⊇ Zs := {W ⊂ P ⊗ H | dim K ∩ W � s} ⊇ . . . .

The tangent space of the Grassmannian Gr(2c, P ⊗ H) at a point W is

TW Gr(2c, P ⊗ H) = Hom(W,P ⊗ H/W ).

The subscheme Zs \ Zs+1 is smooth and its tangent space at a point W is given by first-order
deformations of W ⊂ P ⊗ H that deform W ∩ K into an s-dimensional subspace of K:

TW (Zs \ Zs+1) = {ϕ ∈ Hom(W,P ⊗ H/W ) | ϕ(W ∩ K) ⊆ K/(W ∩ K)}.
Also, the differential of the morphism f at the point V ∈ Gr(c,H) is the map

dfV : TV Gr(c,H) −→ TP⊗V Gr(2c, P ⊗ H)
ϕ ∈ Hom(V,H/V ) 	−→ 1 ⊗ ϕ ∈ Hom(P ⊗ V, P ⊗ (H/V )).
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We can prove now that if V ∈ Gr(c,H) is a subspace such that P ⊗ V ∈ Zs \ Zs+1, then

dfV (TV Gr(c,H)) � TP⊗V (Zs \ Zs+1) :

we claim that there exists a ϕ ∈ Hom(V,H/V ) such that 1 ⊗ ϕ �∈ TP⊗V (Zs \ Zs+1).
To see this, let us choose a basis (e1, e2) for P , and a vector w = e1 ⊗ v1 + e2 ⊗ v2 ∈ K ∩

(P ⊗ V ). By the hypothesis on K, v1 ∦ v2. Let us consider now a vector z = e1 ⊗ z1 + e2 ⊗ z2 ∈
(P ⊗ (H/V )) such that z /∈ (K/(P ⊗ V ∩ K)).

Then if we choose a ϕ ∈ Hom(V,H/V ) such that ϕ(v1) = z1 and ϕ(v2) = z2, we see that
(1 ⊗ ϕ)(w) = z /∈ K/(P ⊗ V ∩ K). Hence the image of a generic deformation of V avoids the
subscheme Z ⊂ Gr(2n, P ⊗ H).

We can now prove the existence of theta divisors for generic transforms of slope −2.

Theorem 3.2. Let L be a line bundle of degree d = 2g + 2c on a genus g curve C, where
c ∈ N is a positive integer and g � 2. Then, if V ⊂ H0(C,L) is a generic c-codimensional
subspace, the transform MV,L admits a non-integral theta divisor.

Proof. We recall that μ(MV,L) = −2. We have to show first that, for the generic
V ⊂ H0(C,L), we have

ΘMV,L �= Picg+1(C),

that is, there is a P ∈ Picg+1(C) such that H0(MV,L ⊗ P ) = 0. By the exact sequence

0 −→ MV,L ⊗ P −→ V ⊗ P −→ L⊗ P −→ 0,

this is the same as a P ∈ Picg+1(C) such that the multiplication map

μ : V ⊗ H0(P ) −→ H0(L ⊗ P )

is injective.
If P belongs to the divisor D = (ωC) − Cg−2 + C ⊂ Picg+1(C) (that is, if P can be written

in the form P = ωC(x1 − x2 − . . . − xg−1) for some points x1, x2, . . . , xg−1 ∈ C), then either
h0(P ) > 2, or h0(P ) = 2 and P has a base point. In either case this implies that μ is not
injective for any V (cf. [1]).

Any P in Picg+1(C) \ D is base-point-free and has h0(P ) = 2. Let us fix such a P , and assume
by generality that h1(L ⊗ P ∗) = 0. We claim that for the generic V ⊂ H0(C,L) of codimension
c the multiplication map μ : H0(P ) ⊗ V → H0(P ⊗ L) is injective. From the exact sequence

0 −→ P ∗ −→ H0(P ) ⊗OC −→ P −→ 0

we get

0 −→ H0(P ∗ ⊗ L) −→ H0(P ) ⊗ H0(L) −→ H0(P ⊗ L) −→ 0,

and hence the map μ is injective if and only if the subspace V ⊂ H0(C,L) satisfies H0(P ∗ ⊗
L) ∩ (H0(P ) ⊗ V ) = 0. This is given by Lemma 3.1.

Hence we know that for the generic subspace V , the transform MV,L admits a theta divisor.
To observe that it is not integral, we notice that the set of points of ΘMV,L contains the divisor
D with cohomology class (g − 1)ϑ (cf. [4]). As the cohomology class of ΘMV,L is (g + c)ϑ, it
must be a non-integral divisor.

As we have proved the existence of theta divisors for transforms with respect to subspaces
of any codimension, this shows semistability in some cases not previously treated.
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Corollary 3.3. Let L be a line bundle of degree d = 2g + 2c on a genus g curve C, where
c ∈ N is any positive integer and g � 2. Then, if V ⊂ H0(C,L) is a generic c-codimensional
subspace, the transform MV,L is semistable.

Remark 3.4. If C is not hyperelliptic and L is a degree d = 2g + 2c line bundle, where
d /∈ 2(g − 1)N, then the transform MV,L of L with respect to a generic subspace V ⊂ H0(C,L)
of codimension c admits a reducible theta divisor. In fact the set of points of ΘMV,L contains
the divisor

D = (ωC) − Cg−2 + C ⊂ Picg+1(C),

which is irreducible if C is not hyperelliptic, and with cohomology class (g − 1)ϑ. As the
cohomology class of ΘMV,L is (g + c)ϑ = (d/2)ϑ, it cannot be a multiple of (g − 1)ϑ, and so
ΘMV,L must be reducible.

Hence, if c � g and c �= g − 2, then we have further examples of stable vector bundles (by
Theorem 2.8) with reducible theta divisors.

4. Conclusions

We have proved the stability of transforms of line bundles with respect to subspaces of low
codimension. On the other hand, it is rather easy to show the stability of transforms with
respect to subspaces of low dimension: any stable vector bundle M∗ of slope μ(M∗) > 2g − 1
is globally generated. Hence we can choose any stable vector bundle M∗ of determinant L
and rank r, such that r < d/(2g − 1), where degL = d. Choosing any generating subspace
V ∗ ⊂ H0(M∗) of rank r + 1, we get an exact sequence

0 −→ L∗ −→ V ∗ ⊗O −→ M∗ −→ 0.

Dualizing, we get an exact sequence

0 −→ M −→ V ⊗O −→ L −→ 0,

where M is a stable transform of L. Hence, every stable bundle M of rank

rk (M) = r <
d

2g − 1

and determinant L∗ is a stable transform of L. Thus the rational map

Gr(r + 1,H0(L)∗) ��� SU(r,L), V 	−→ (MV,L)∗

is dominant.
By the same argument we see that there is only one globally generated vector bundle,

among the vector bundles of determinant L and rank d − g with no trivial summands, where
d = degL � 2g. Furthermore, this is semistable, and even stable if d > 2g. In fact, having such
a globally generated bundle N , we can choose a vector space V of global sections of dimension
rk N + 1 generating N . This gives rise to the exact sequence

0 −→ L∗ −→ V ⊗O −→ N −→ 0,

and dualizing,

0 −→ N∗ −→ V ∗ ⊗O −→ L −→ 0.

However, as N is globally generated and has no trivial summands, H0(N∗) = 0. And since
V ∗ and H0(L) have the same dimension, V ∗−̃→H0(L). Hence N∗ = ML is unique.
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Table 1. Transform stability according to rank.

rk(MV,L) = r Stability Map

1 � r <
d

2g − 1
Stable Gr(r + 1, H0(L)∗) ��� SU(r,L) dominant

d

2g − 1
� r < d − g − c ?? ??

d − g − c � r < d − g Stable Gr(r + 1, H0(L)∗) ��� SU(r,L)

r = d − g Stable {∗} ↪→ SU(r,L)

Therefore, when we consider the rational map

Gr(r + 1,H0(L)∗) ��� SU(r,L), V 	−→ (MV,L)∗,

we are saying that its image is made by globally generated bundles, and we can sum all this
up in Table 1, where we suppose that d > 2g + 2c, with 1 � c � g.

Here Theorem 2.7 corresponds to the existence of the rational map

Gr(r + 1,H0(L)∗) ��� SU(r,L).
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4. G. Farkas, M. Mustaţǎ and M. Popa, ‘Divisors on Mg,g+1 and the minimal resolution conjecture for
points on canonical curves’, Ann. Sci. École Norm. Sup. (4) 36 (2003) 553–581.
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