Corso di laurea: Ingegneria Meccanica

Programma di Analisi Matematica I – a.a. 2025/2026

Docente: Fabio Paronetto

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

30.9.2025 Introduzione al corso: informazioni generali e breve presentazione dei prerequisiti e dei contenuti del corso.

Proposizione e predicato. Qualche elemento di teoria degli insiemi: come definire o descrivere un insieme. Insiemi numerici $\mathbf{N}, \mathbf{Z}, \mathbf{Q}$. Operazioni tra insiemi: unione, intersezione, sottrazione, complementare di un insieme. Insieme vuoto. Insieme delle parti di un insieme e sua cardinalità nel caso finito. Prodotto cartesiano tra due insiemi.

Connettivi logici \vee, \wedge, \neg . Costruzione delle proposizioni $P \vee Q$ e $P \wedge Q$ e loro connessione con l'insieme unione e intersezione, la proposizione $\neg P$ e la sua connessione con l'insieme complementare.

1°.10.2025 Tabelle di verità delle proposizioni $P \lor Q$ e $P \land Q$. Proposizioni $\neg P$, $P \Rightarrow Q$, $P \Leftrightarrow Q$. Le proposizioni $\neg Q \Rightarrow \neg P$ e $\neg P \lor Q$ sono equivalenti a $P \Rightarrow Q$. Quantificatori: \forall , \exists , !. Negazione di alcune proposizioni. Qualche esempio.

Numeri reali - Fattorizzazione in primi, numeri coprimi fra loro. Esistono numeri che non sono razionali, ad esempio $\sqrt{2}$ (*), da cui la necessità di introdurre i numeri reali.

2.10.2025 Assiomi che sono soddisfatti sia da Q che da R.

Modulo (o valore assoluto) di un numero reale e sue proprietà (in particolare: disuguaglianza triangolare e conseguenze). Sottoinsiemi di R: intervalli, intorni (o palle), definizioni di insieme superiormente limitato, inferiormente limitato, definizione di insieme aperto, insieme chiuso. Esempi.

Definizione di maggiorante, minorante, massimo, minimo per un insieme. Esempi e commenti. Definizione di estremo superiore e di estremo inferiore per un insieme limitato e non vuoto. Assioma di completezza. Se $a = \min A$ allora $a = \inf A$ (analogamente se $a = \max A$ allora $a = \sup A$) Una caratterizzazione dell'estremo superiore e dell'estremo inferiore per un insieme limitato (*).

- 3.10.2025 Lezione saltata per sciopero.
- 7.10.2025 L'insieme \mathbf{Q} è denso in \mathbf{R} .

Esempi ed esercizi su estremo superiore ed inferiore.

8.10.2025 Principio di induzione: cosa significa essere induttivo, differenza tra l'essere induttivo e l'essere vero; cosa significa che un predicato su $n \in \mathbb{N}$ è vero definitivamente. Esempi. Somma dei primi n interi (*) (tre dimostrazioni).

Somma dei primi n interi dispari (EX), somma dei primi n interi pari (EX). Esercizi sull'induzione. Somma dei quadrati dei primi n interi (*). Disuguaglianza di Bernoulli (*). Binomio di Newton (*) (triangolo di Tartaglia).

9.10.2025 Alcune varianti della di Bernoulli tramite lo sviluppo del binomio di Newton (*). Il prodotto di n numeri positivi la cui somma è n è minore o uguale ad 1 ed è uguale ad 1 se e solo se i numeri sono tutti uguali tra loro (*).

La media geometrica di n numeri positivi è minore o uguale della loro media aritmetica (*).

Funzioni: definizione di funzione, funzioni iniettive, suriettive, biiettive. Immagine di una funzione. Composizione tra funzioni. Esempi di corrispondenze iniettive, suriettive, biiettive.

Cardinalità di un insieme: insiemi con cardinalità finita. Biiezioni tra insiemi di cardinalità infinita.

10.10.2025 Cardinalità di un insieme: insiemi con cardinalità finita. Biiezioni tra insiemi di cardinalità infinita. Esiste una corrispondenza biunivoca tra l'insieme ${\bf N}$ dei numeri naturali e ${\bf Z}$, insieme dei numeri interi (*).

Esiste una corrispondenza biunivoca tra l'insieme N dei numeri naturali dei numeri razionali Q (*).

Non esiste una corrispondenza biunovoca tra l'insieme tra ${\bf N}$ e ${\bf R}$. Grafico di una funzione. Funzioni invertibili e funzione identità.

Funzioni reali di una variabile reale: funzioni crescenti, strettamente crescenti, decrescenti, strettamente decrescenti. Funzioni monotòne, strettamente monotòne. Iniettività e invertibilità delle funzioni strettamente monotòne. Le funzioni strettamente monotone sono invertibili: se f è strettamente monotona è invertibile; anche f^{-1} è strettamente monotona e invertibile.

Funzioni elementari: potenze ad esponente naturale positivo, intero, razionale. Radici n-esime, potenze ad esponente razionale. Funzione esponenziale sui razionali. Funzioni $x \mapsto x^{m/n}$.

14.10.2025 Le funzioni strettamente monotone sono invertibili. Funzione esponenziale sui razionali e sui reali. Proprietà e biiettività della funzione (a > 0,

$$a \neq 1$$
)
$$\mathbf{R} \longrightarrow (0, +\infty)$$

$$x \mapsto a^{x}$$

Logaritmo \log_a come inversa della funzione precedentemente definita. Proprietà del logaritmo. Grafici delle funzioni esponenziali e logaritmiche. La base "e".

Cambiamento di base nelle funzioni esponenziali e nei logaritmi.

Funzioni trigonometriche: sen, cos, tg e loro grafici. Principali formule trigonometriche per la funzioni seno e coseno.

Funzioni arcsen, arccos, arctg e loro grafici.

15.10.2025 Qualche esercizio su semplici grafici di composizione di funzioni e loro inverse, tra cui $x \mapsto \operatorname{tg}(\operatorname{arctg} x)$ e $x \mapsto \operatorname{arctg}(\operatorname{tg} x)$.

Qualche esercizio su semplici grafici di composizione di funzioniSup/ing e massimo /minimo di semplici funzioni. Le funzioni strettamente monotone sono invertibili; osservazioni sulla composizione (somma e prodotto) di funzioni monotone ed esercizi su composizione di funzioni strettamente monotone. Traslazioni di funzioni: significato di $x \mapsto f(x-c)$, $x \mapsto f(x) + c$, $x \mapsto c f(x)$ con $c \in \mathbf{R}$. Qualche esempio. Grafici di polinomi.

16.10.2025 Successioni - Definizione di successione, definizione di limite per una successione, successioni convergenti, divergenti, regolari, indeterminate. Unicità del limite.

Esempi. Calcolo e verifica di qualche limite semplice. Qualche altra verifica di qualche limite semplice.

Definizione di sottosuccessione. Data una successione che ammette limite, ogni sua sottosuccesione ammette lo stesso limite (*). Teorema della permanenza del segno (*). Successioni limitate. Ogni successione convergente è limitata (*). Operazioni con i limiti: limite della somma e del prodotto di due successioni (*). Esempi di applicazioni e controesempi a forme indeterminate. Come mostrare che una successione non ammette limite. Esempio: $(-1)^n$.

17.10.2024 Teorema dei due carabinieri (*). Teorema del confronto (*). Successioni monotone. Una successione monotona ammette limite (*). Alcuni limiti (tutti dimostrati, tranne la formula di Stirling) (*):

 $\lim_{n\to+\infty}\log n=+\infty$, $\lim_{n\to+\infty}p(n)$ con p polinomio, $\lim_{n\to+\infty}\frac{p(n)}{q(n)}$, p e q polinomi; $\lim_{n\to+\infty}a^n$ con $a\in\mathbf{R}$. Criterio del rapporto per successioni: $\lim_{n\to+\infty}\frac{a^n}{n^k}$ con a>1 e k>0; $\lim_{n\to+\infty}\sqrt[n]{n}=1$; $\lim_{n\to+\infty}\sqrt[n]{a}=1$ per ogni a>0; $\lim_{n\to+\infty}\sqrt[n]{n!}=+\infty$, $\lim_{n\to+\infty}n!/n^n=0$, $\lim_{n\to+\infty}a^n/n!=0$ ($a\in\mathbf{R}$).

21.10.2024 formula di Stirling nella formulazione $\lim_{n \to +\infty} \frac{n!}{n^n e^{-n} \sqrt{2\pi n}} = 1,$ $\lim_{n \to +\infty} \log_a n = +\infty \text{ se } a > 1 \text{ e } \lim_{n \to +\infty} \log_a n = -\infty \text{ se } a \in (0,1) \text{ (*)},$ limpulazione $\lim_{n \to +\infty} \log_a n = -\infty \text{ se } a \in (0,1) \text{ (*)},$

 $\lim_{n \to +\infty} \frac{\log n}{n} = 0 \ (*).$

Le successioni limitate ammettono sottosuccessioni convergenti (*). Successioni di Cauchy: una successione è convergente se e solo se è di Cauchy (*). Condizioni equivalenti ad essere di Cauchy.

Le successioni $a_n = (1 + \frac{x}{n})^n$ sono strettamente monotone per x > 0e definitivamente strettamente monotone per x < 0 (*). In particolare le due successioni $a_n = (1 + \frac{1}{n})^n$ e $b_n = (1 - \frac{1}{n})^{-n}$ sono strettamente monotone (*). Vale $a_n \leq b_k$ per ogni $n \geq 1$ e $k \geq 2$ (*); in particolare la successione $\{a_n\}_n$ è superiormente limitata, la successione $\{b_n\}_n$ è inferiormente limitata. Il numero e come limite di $(1+\frac{1}{n})^n$ per $n\to +\infty$. Anche $\lim_{n\to+\infty} (1-\frac{1}{n})^{-n} = e$ (*). Data $\{a_n\}_n$ con $\lim_n a_n = +\infty$ si ha $\lim_n (1+\frac{1}{a_n})^{a_n} = e$. La successione $(1+\frac{x}{n})^n$ converge ad e^x , $x \in \mathbf{R}$.

22.10.2025 Limiti notevoli: data $\{a_n\}_{n\in\mathbb{N}}$ successione tale che $\lim_{n\to+\infty}a_n=0$ e $a_n \neq 0 \text{ valgono: } \lim_{n \to +\infty} \frac{\sin a_n}{a_n} = 1 \text{ (*), } \lim_{n \to +\infty} \frac{1-\cos a_n}{a_n^2} = \frac{1}{2} \text{ (*), } \lim_{n \to +\infty} \frac{e^{a_n}-1}{a_n^2} = 1 \text{ (*), } \lim_{n \to +\infty} \frac{b^{a_n}-1}{a_n} = \log b \text{ (*), } \lim_{n \to +\infty} \frac{\log_e(1+a_n)}{a_n} = 1 \text{ (*), } \lim_{n \to +\infty} \frac{(1+a_n)^p-1}{a_n} = p \text{ per ogni } p > 0 \text{ (*).}$

Osservazione: se $\lim_{n\to+\infty} a_n = 0$, $a_n \neq 0$ e $\lim_{n\to+\infty} \frac{b_n}{a_n} = \ell \in \mathbf{R}$ allora $\lim_{n\to+\infty}b_n=0.$

Alcune conseguenze dei risultati appena visti (*): per ogni successione $\{a_n\}_n$ con $\lim_{n \to +\infty} a_n = 0$ si ha

(a)
$$\lim_{n \to +\infty} \operatorname{sen} a_n = 0$$
,

$$(b) \lim_{n \to +\infty} \cos a_n = 1,$$

$$(c) \lim_{n \to +\infty} b^{a_n} = 1 ,$$

$$(d) \lim_{n \to +\infty} \log(1 + a_n) = 0,$$

(e)
$$\lim_{n \to +\infty} (1 + a_n)^p = 1$$
,

$$(f) \lim_{n \to +\infty} b^{a_n} = b^a,$$

$$(g) \lim_{n \to +\infty} \log a_n = \log a ,$$

$$(h) \lim_{n \to +\infty} a_n^p = a^p,$$

(i)
$$\lim_{n \to +\infty} b_n^{a_n} = b^a \operatorname{con} \lim_{n \to +\infty} b_n = b$$
.

Primi esercizi sui limiti di successioni.

23.10.2025 Ancora esercizi sui limiti di successioni.

Successioni per ricorrenza: definizione nel caso più semplice.

Serie numeriche - Introduzione. Definizione, successione delle somme parziali. Carattere di una serie: serie convergenti, divergenti, indeterminate.

24.10.2025 Criterio di Cauchy per le serie (*). La serie armonica diverge a $+\infty$: la somma $\sum_{n=2^{k-1}+1}^{2^{k}} \frac{1}{n} \geqslant \frac{1}{2}$ (*). Serie geometrica: carattere nel caso generale e somma $\sum_{n=k}^{+\infty} q^n$ per $q \in (-1,1)$. Condizione necessaria affinché una serie $\sum a_n$ converga è che $\lim_n a_n = 0$ (*). Il viceversa è falso: esempio è la serie armonica. Serie telescopiche: esempi.

pio è la serie armonica. Serie telescopiche: esempi. Stima: $\frac{1}{\log 2} \log(n+1) \leqslant \sum_{k=1}^n \frac{1}{k} \leqslant \log(n+1)$ (*). Operazioni con le serie. Serie a termini positivi - Criteri del confronto (*).

28.10.2025 Commenti sul criterio di Cauchy: coda di una serie.

Criterio del confronto asintotico (*). Esempi. La serie $\sum \frac{1}{n^{\alpha}}$ diverge per $0 < \alpha < 1$ (confronto con la serie armonica). La serie $\sum \frac{1}{n^{\alpha}}$ converge per $\alpha \geqslant 2$ (confronto con la serie $\sum \frac{1}{n(n+1)}$).

Criterio del rapporto (*) e suo corollario (*), della radice n-esima (*) e suo corollario (*). Esempi.

Se esiste il limite $\lim_{n} \frac{a_{n+1}}{a_n}$ allora esiste anche $\lim_{n} \sqrt[n]{a_n}$ e i due limiti sono uguali. Il viceversa (in generale) non è vero. Esempio. Criterio di condensazione di Cauchy (*).

29.10.2025 Commenti sul criterio di condensazione di Cauchy; in particolare un esempio di $\{a_n\}_n$ non decrescente per cui $\sum a_n$ e $\sum 2^n a_{2^n}$ non hanno lo stesso carattere.

Esempi di applicazione del criterio di condensazione di Cauchy. Serie armonica generalizzata.

Criterio di Leibniz (*). Serie a segno variabile: convergenza assoluta. Se una serie converge assolutamente converge anche semplicemente. (*).

Primi esercizi sulle serie.

30.10.2025 Esercizi sulle serie.