Degree course: Mathematics Programme of the first part of **Introduction to Partial Differential Equations** – a.y. 2023/2024 Teachers: Claudio Marchi and Fabio Paronetto

2.10.2023 Introduction to the course: general informations and brief presentation of the course contents.

Some notations, definition of a partial differential equation (PDE), classification in linear, semi-linear, quasi-linear and fully non-linear equations. Typical problems one can deal with when studying a PDE.

Some examples (transport equation, Laplace equation, heat equation, wave equation).

Classification of linear second order partial differential equations in \mathbf{R}^2 .

3.10.2023 Classification of linear second order partial differential equations in \mathbb{R}^n . Examples.

Some recalls: the space $C^k(\Omega)$, the space $C^k(\overline{\Omega})$, sets of regularity C^k or Lipschitz. Examples. The divergence theorem.

The continuity equation: starting to compute $\frac{d}{dt} \int_{E(t)} \rho(x, t) dx \dots$

9.10.2023 The continuity equation or equations of conservation of mass and some particular cases: the transport equation, the heat equation, the Laplace equation.

A brief introduction to the theory of distributions: definition, examples, δ (Dirac's delta), some sequences approximating δ , convolution of a distribution with a function, convolution of δ with a function ($\delta * \psi = \psi$).

- 10.10.2023 The Laplace equations: some physical examples, some possible (linear) generalisations of $-\Delta$, typical boundary conditions (Dirichlet, Neumann, Robin), definition of harmonic function. Variational nature of harmonic functions: Dirichlet's principle (also in dimension 1).
- 16.10.2023 Energy methods for uniqueness: Dirichlet, Neumann, Robin problems. A compatibility conditions for the Neumann problem. Holomorphic functions and harmonic functions.

The Laplacian is rotations invariant. Looking for radial harmonic functions. Definition of fundamental solutions for a general differential operator. The fundamental solutions for the Laplacian. 17.10.2023 Proof of the following fact: $-\Delta E = \delta$ in dimension 2.

Some properties of harmonic functions: definitions of subharmonic and superharmonic functions, the mean value property fir C^2 functions, the maximum principle for subharmonic and superharmonic functions. (Strong and weak maximum principles without proof). Some simple consequences of the maximum principles. Proof of the maximum principle for subharmonic functions $u \in C^2$ satisfying $-\Delta u \leq 0$. Comparison for the Dirichlet problems. Green's identities and some simple consequences.

23.10.2023 Uniqueness via maximum principle for the Dirichlet problems.

A representation for C^2 functions: the Stokes identity. Some consequences, in particular: there are no harmonic functions $u \neq 0$ compactly supported, a harmonic function $u \in C^2$ is in fact C^{∞} . A function u harmonic in Ω is locally analytic in Ω (without proof).

Another representation formula for C^2 functions following by the Stokes identity. Consequence: a function $u \in C^2$ is sub-harmonic (superharmonic) if and only if $-\Delta u \leq 0$ ($-\Delta u \geq 0$).

Towards the solution of the Dirichlet problem: Green function, Poisson kernel and possible representation formula for the solution of the Poisson equation with Dirichlet boundary datum.

Simmetry of the Green function (without proof).

- 24.10.2023 The Green function for a ball. Poisson formula in a ball and solution of the Dirichlet problem in a ball. In general $-\Delta u = f$ with $f \in C^0(\Omega)$ has no C^2 solutions (without proof). Some consequences of the Poisson formula: u continuous and satisfying the mean value property is C^2 and harmonic. The Harnack inequality (1 and 1-bis).
- 30.10.2023 The Harnack inequality (2). Comments. Results about sequences of harmonic functions (Harnack principle). Theorem of Liouville. Comments.

The Dirichlet problem in a bounded domain (the Perron's method): definition of some classes of sub-harmonic and super-harmonic functions. Definition of harmonic lifting.

31.10.2023 The harmonic lifting $h_{v;x_o,\rho}$ of a sub-harmonic function v in a ball $B_{\rho}(x_o)$. The function $v_{x_o,\rho} \ge v$, where $v_{x_o,\rho} = v$ in $\Omega \setminus B_{\rho}(x_o)$ and $v_{x_o,\rho} = h_{v;x_o,\rho}$ in $\Omega \setminus B_{\rho}(x_o)$. The function $v_{x_o,\rho}$ is sub-harmonic if v is sub-harmonic. The exterior ball condition. Comments and examples. In n = 2: an open set Ω of class C^2 satisfies the exterior ball condition, an open set Ω of class C^1 but not C^2 may not satisfy the exterior ball condition. The classes $\sigma(\Omega; \varphi)$ and $\Sigma(\Omega; \varphi)$. The function u_{φ} is harmonic in Ω , $u_{\varphi}(x) = \sup\{v(x) \mid v \in \sigma(\Omega; \varphi)\}$. The same holds for U = U(x) in for $(x) \mid x \in \Sigma(\Omega; \varphi)$.

The same holds for
$$U_{\varphi}$$
, $U_{\varphi}(x) = \inf\{w(x) \mid w \in \Sigma(\Omega; \varphi)\}.$

6.11.2023 Given $v \in \sigma(\Omega; \varphi)$ and $w \in \Sigma(\Omega; \varphi)$ one has that $w - v \ge 0$ and, in particular, $u_{\varphi} \le U_{\varphi}$.

The function $u_{\varphi} \in C^0(\overline{\Omega}), u_{\varphi} = \varphi$ in $\partial \Omega$ and $u_{\varphi} = U_{\varphi}$.

Theorem (Perron): if Ω , open and bounded, satisfies the exterior ball condition then the Dirichlet problem admits a unique solution.

Barriers and regular points. Theorem: the Dirichlet problem admits a unique solution if and only if all the points of the boundary are regular. The exterior cone condition. Examples of regular sets: convex sets, C^2 sets and in general the sets satisfying the exterior ball condition, but also the exterior cone condition.

7.11.2023 Some exercises.