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Common part

30.9.2024 Introduction to the course: general informations and brief presentation
of the course contents.

Some notations, definition of a partial differential equation (PDE), classi-
fication in linear, semi-linear, quasi-linear and fully non-linear equations.
Typical problems one can deal with when studying a PDE.
Some examples (transport equation, Laplace equation, heat equation,
wave equation).
Classification of linear (and quasi-linear) second order partial differential
equations in Rn.
Examples.

2.10.2024 Some recalls: the space Ck(Ω), the space Ck(Ω̄), sets of regularity Ck or
Lipschitz. Examples. The divergence theorem.
The continuity equation or equations of conservation of mass and some
particular cases: the transport equation, the heat equation, the Laplace
equation.

Recalls on the convolutions between two functions f, g.

7.10.2024 The lesson was not held due to the absence of many students.

9.10.2024 Definition of a family of mollifiers (or approximate identity) (ρn)n. Some
recalls on convergence of ρn ∗ f for f ∈ C0 and f ∈ Lp, p ∈ [1,+∞).
A brief introduction to the theory of distributions: definition, examples, δ
(Dirac’s delta), some sequences approximating δ, examples and exercises.
Convolution of a distribution with a function.

14.10.2024 Convolution of δ with a function (δ ∗ ψ = ψ).

The Laplace equations: some physical examples, typical boundary con-
ditions (Dirichlet, Neumann, Robin), definition of harmonic function.
Variational nature of harmonic functions: Dirichlet’s principle (also in
dimension 1). Comments and a mention to the example of Hadamard.



16.10.2024 Two exercises: minimisation of the Dirichlet functional in dimension1
and an example in dimension 2.
Energy methods for uniqueness: Dirichlet, Neumann, Robin problems.
A compatibility conditions for the Neumann problem. Holomorphic func-
tions and harmonic functions.
The Laplacian is rotations invariant.

21.10.2024 Looking for radial functions satisfying −∆u = δ in the distributional
sense. Definition of fundamental solutions for a general differential ope-
rator. The fundamental solutions E for the Laplacian. Proof of the
following fact: −∆E = δ in dimension 2.

Some properties of harmonic functions: definitions of subharmonic and
superharmonic functions. Comments.
In dimension 1 the only functions that are both subharmonic and supe-
rharmonic are u(x) = ax+ b, a, b ∈ R.

23.10.2024 The mean value property for C2 functions; the maximum principle for
subharmonic and superharmonic functions in a bounded and connected
domain.
A convex function on a convex domain is subharmonic.
(Strong and weak maximum principles without proof). Some simple con-
sequences of the maximum principles. EX: direct proof of the maximum
principle for subharmonic functions u ∈ C2 satisfying −∆u 6 0.
Uniqueness via maximum principle for the Dirichlet problems.
Comparison for the Dirichlet problems.
Stability and continuous dependence on the boundary data for the Diri-
chlet problem.
Green’s identities and some simple consequences.

28.10.2024 A representation for C2 functions: the Stokes identity. Some consequen-
ces, in particular: there are no harmonic functions u 6≡ 0 compactly
supported, a harmonic function u ∈ C2 is in fact C∞. A function u
harmonic in Ω is locally analytic in Ω (without proof).
Another representation formula for C2 functions following by the Sto-
kes identity. Consequence: a function u ∈ C2 is sub-harmonic (super-
harmonic) if and only if −∆u 6 0 (−∆u > 0).

Towards the solution of the Dirichlet problem: Green’s function, Poisson
kernel and possible representation formula for the solution of the Poisson
equation with Dirichlet boundary datum.
Simmetry of the Green’s function (without proof): G(x, y) = G(y, x).
The Poisson kernel is harmonic.



Comment: once called Gx the function Ω 3 y 7→ G(x, y) one has that
−∆Gx = δx in D′(Ω) and Gx = 0 in ∂Ω.

30.10.2024 The Green function for a ball. Poisson formula in a ball and solution of
the Dirichlet problem in a ball. In general −∆u = f with f ∈ C0(Ω) has
no C2 solutions (without proof).
Some consequences of the Poisson formula: u continuous and satisfying
the mean value property is C2 and harmonic.
The Harnack inequality (1 and 1-bis).

4.11.2024 The Harnack inequality (2). Comments.
Results about sequences of harmonic functions (Harnack principle).
Theorem of Liouville. Comments.

The Dirichlet problem in a bounded domain (the Perron’s method): defi-
nition of some classes of sub-harmonic and super-harmonic functions: the
classes σ(Ω;ϕ) and Σ(Ω;ϕ) with Ω bounded open set and ϕ ∈ C0(∂Ω).
Definition of harmonic lifting. The harmonic lifting hv;xo,ρ of a sub-
harmonic function v in a ball Bρ(xo). The function vxo,ρ > v, where
vxo,ρ = v in Ω \Bρ(xo) and vxo,ρ = hv;xo,ρ in Ω \Bρ(xo).
The function vxo,ρ is sub-harmonic if v is sub-harmonic.
The exterior ball condition. Comments and examples.
In n = 2: an open set Ω of class C2 satisfies the exterior ball condition.

6.11.2024 An open set Ω of class C1 but not C2 may not satisfy the exterior ball
condition.
The function uϕ is harmonic in Ω, uϕ(x) = sup{v(x) | v ∈ σ(Ω;ϕ)}.
The same holds for Uϕ, Uϕ(x) = inf{w(x) |w ∈ Σ(Ω;ϕ)}.
Given v ∈ σ(Ω;ϕ) and w ∈ Σ(Ω;ϕ) one has that w − v > 0 and, in
particular, uϕ 6 Uϕ.
The function uϕ ∈ C0(Ω̄), uϕ = ϕ in ∂Ω and uϕ = Uϕ.
Theorem (Perron): if Ω, open and bounded, satisfies the exterior ball
condition then the Dirichlet problem admits a unique solution.
Barriers and regular points.

11.11.2024 Theorem: the Dirichlet problem admits a unique solution if and only if
all the points of the boundary are regular. The exterior cone condition.
Examples of regular sets: convex sets, C2 sets and in general the sets sa-
tisfying the exterior ball condition, but also the exterior cone condition.
A harmonic bounded function defined in Ω \ {xo} admits a unique har-
monic extension to {xo}.
A brief mention to existence in external domains, capacity of a compact
set and Wiener criterion.



Only for mathematical engineering

In the following the symbol (∗) denotes the result has been proved.

1.10.2024 Definition of a topological space. Comments and examples.
Definition of a σ-algebra. Comments and examples. Measurable sets. σ-
algebra of Borel. The Lebesgue measure as a measure on Rn defined on
the σ-algebra of Borel when Rn is endowed with the standard topology.
There are sets in Rn that are not measurable.
Measurable functions in Rn. Examples of measurable functions: conti-
nuous functions and the Dirichlet function. The set Q of rational num-
bers is measurable (∗) and has measure zero (∗).
Definition of a norm and of a scalar product on a vectorial space. Exam-
ples. The Cauchy-Schwarz inequality (∗).

8.10.2024 Normed spaces. A scalar product on a vectorial space induces a norm.
Definition of a complete space. Banach spaces and Hilbert spaces. The
function fp : R2 → [0,+∞), fp(x, y) = (|x|p + |y|p)1/p for p ∈ (0,+∞);
fp defines a norm on R2 for p > 1 and cannot be a norm for p ∈ (0, 1).
Meaning of almost everywhere and of for almost every.
The space Lp with p ∈ [1,∞]. Hölder’s inequality and Minkowski’s
inequality. Lp is a Banach space, L2 is a Hilbert space.
Theorem: given a sequence (un)n converging in Lp, p ∈ [1,+∞] there
exists a subsequence pointwise converging almost everywhere.

15.10.2024 The dual space of a Banach space. Norm in the dual space. A linear
map from a Banach space X to a Banach space Y is continuous if and
only if is bounded. An example of an unbounded linear map valued in
R. The Riesz theorem (in Lp). The weak topology. A characterisation
of convergence of sequences with respect to the weak topology.

22.10.2024 The set S = {x ∈ X | ‖x‖X = 1} is not closed in the weak topology if X
has infinite dimension.
Theorem: a bounded sequence {fn}n in Lp admits a subsequence {fnk

}k
such that

∫
fnk

g dx →
∫
fg dx for every g ∈ Lp′ if p ∈ [1,+∞) and for

every g ∈ L1 if p = +∞. Definition of separable space. Examples Lp

with p ∈ [1,+∞).

Sobolev spaces in dimension 1: definition of weak derivative, W 1,p(I)
and Wm,p(I), I interval.
Density results: Cm(I) ∩ Lp(I) and Cm(Ī) are dense in Wm,p(I).
Definition of W 1,p

0 (I).



Theorem: W 1,p(I) ⊂ C0(Ī) and the injection W 1,p(I) ↪→ C0(Ī) is con-
tinuous for every p ∈ [1,+∞], is compact for p ∈ (1,+∞], and the
injection W 1,p(I) ↪→ Lq(I) is compact for every q ∈ [1,+∞).

29.10.2024 Examples and comments on the last theorem of the previous lesson.
Lipschitz continuous and Hölder continuous functions. A function u ∈
W 1,p satisfies u(x)− u(y) =

∫ y
x
u′(t) dt and is 1/p′-Hölder continuous for

p ∈ (1,+∞), is Lipschitz continuous for p = +∞.
The Poincaré inequality in a bounded interval. Comments and examples.
The dual space of W 1,p

0 (I), I interval, for p ∈ [1,+∞).

5.11.2024 Representation of a linear form in W 1,p
0 (I).

Sobolev spaces in dimension greater than 1: definition of W 1,p(Ω) and
Wm,p(Ω), Ω ⊂ Rn. Examples of functions in W 1,p(Ω) in R2: a non-
differentiable function, an unbounded function, a bounded discontinuous
function that cannot be extended to a continuous function.
Density results.
Sobolev inequalities (embeddings of Wm,p(Ω) into other spaces).
An example of a function in Lq for every q ∈ [2,+∞), but not bounded.

12.11.2024 Examples of functions in Lp(R) that have no limit at infinity.
Motivation of the exponent p∗ in the Sobolev inequalities.
Compactness: Rellich-Kondrachov theorem. Counterexample in R. The
space W 1,p

0 (Ω). The Poincaré inequality in a bounded set Ω.
The trace operator.

19.11.2024 Other comments on the trace. A function u ∈ W 1,p
0 iff Tu = 0 in ∂Ω. The

dual space of W 1,p
0 (Ω). The triplet (p = 2) H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω).
W 1,p

0 (Ω) ⊂ L2(Ω) ⊂ W−1,p′(Ω) also for p > 2n
n+2

.

If {un}n weakly converges to u in a Hilbert space H and ‖un‖H converges
to ‖u‖H then {un}n stronglyly converges to u in H (proved).

Some examples of solutions of a second order equation in dimension 1.

26.11.2024 Recalls on the orthogonal projection on a closed subspace of a Hilbert
space and the orthogonal subspace.
The Lax-Milgram theorem (with the proof).
Application to linear partial differential equations, in particular for the
existence and uniqueness of the solution to the problem{

−div(aDu) + bDu+ c u = f in Ω
u = 0 in ∂Ω

with a matrix, b vector, c scalar and aij, bi, c ∈ L∞(Ω) and suitable
assumptions on a, b, c.



3.12.2024 In Ω bounded one can solve also the problem the problem{
−div(aDu) = f in Ω
u = 0 in ∂Ω

How to solve the problem the problem{
−div(aDu) + bDu+ c u = f in Ω
u = ϕ in ∂Ω

with ϕ ∈ L2(∂Ω) (knowing that ϕ = Tφ for some φ ∈ H1(Ω)).
A priori estimates for this last problem.
Euler-Lagrange equation for the functional Fu = 2−1[

∫
Ω

(aDu,Du)dx +∫
Ω
cu2dx]− 〈f, u〉. Comments on the minimisation problem.

Difference between Dirichlet and Neumann conditions for the weak for-
mulation of −∆u = f .
Regularity results. Weak maximum principle. Harnack inequality. Com-
ments.

10.12.2024 For function f : [0, T ]→ B, B Banach space, definition of a measurable
function, Bochner integral, space Lp(0, T, B). Evolution triple V ⊂ H ⊂
V ′ (H = L2(Ω) and V such that H1

0 (Ω) ⊂ V ⊂ H1(Ω)) and the spaces
V ,H,V ′,W . The space W continuously embeds in C0([0, T ];H).
Abstract position of a parabolic problem. A priori estimates (dependence
of the solution on the data) (with proof).

17.12.2024 Existence and uniqueness of the solution of a linear parabolic problem
(with proofs).
Some regularity results. Weak maximum principle. Harnack inequality.
Examples.


