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Introduction

The aim of this thesis is to examine the stability of the equilibria L4 and L5 of the
Restricted Planar Three–Body Problem (RPTBP) by means of the KAM theory. The
RPTBP is a particular case of the Three–Body Problem (TBP), which regards the study
of the dynamics of a system of three heavy bodies subject only to mutual gravitational
forces.

Attempts of solution of the TBP date back to Newton, and the triangular equilibria
were found by Lagrange ([Card]). Whereas the conditions on the system’s parameters
for the stability of these equilibria in the linearized problem can be computed without
difficulty (see [M&H, Szeb]), the problem of the Lyapunov stability, instead, was solved
only in the second half of the last century using perturbation theory, and specifically
the KAM approach ([Ar2, M&H, Pösch]), which makes use of Birkhoff Normal Forms
([Ben1, Ben2, FasLew]).

Physical interest of Restricted Three–Body Problem is attested in the study of Trojan
asteroids, which hold the surroundings of L4 and L5 of the Sun–Jupiter system (see
[Marz, Harv, Marchis, Morbi, Szeb]).

As of our work, first we obtain the Hamiltonian function and the equilibria of the
system, along with the condition on the masses for the stability in the linearized problem.
Classical Lyapunov methods, though, are found to be not sufficient to reach conclusions
about the Lyapunov stability, and therefore modern techniques need to be used.

The second chapter outlines the properties of KAM theory and its behaviour near the
equilibria of a system, after the Hamiltonian has been put in normal form by means of
Birkhoff series, which are described in the third chapter.

The fourth chapter faces the specific problem of applying KAM theory to the triangular
equilibria, gives a list of results in this field, and finally repeats in numerical form the
construction of normal forms which allows to state the Lyapunov stability of L4 and L5.

Finally, a brief description of an astronomical case of Restricted Three–Body Problem
is sketched in appendix, where some characteristics of the Trojan asteroids are reviewed.
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Chapter 1

Equations of motion and equilibria

The Restricted Three–Body Problem concerns the study of the motion of one celestial
body in the gravitational field of two other bodies (conventionally called the primaries)
moving along circular Keplerian orbits around their center of mass. The third body has
small mass with respect to the others’, and is treated like a test particle whose motion
results determined by the two bodies, yet without affecting their motion in turn. It is an
approximation of the Three–Body Problem, which regards the study of the dynamics of
three masses interacting by means of the gravitational force.

In this work we will consider the planar case, with two degrees of freedom; we remark
that the problem is not integrable.

This simplification of the Three–Body Problem can be applied to several astronomical
systems; the most studied cases are those in which one of the massive bodies is the Sun and
the other Jupiter or the Earth, the third body being for example (in the case of Jupiter) an
asteroid, but is also studied the problem with Earth and Moon as the two massive bodies,
the third body being an artificial satellite.

1.1 Lagrangian and Hamiltonian functions

The Lagrangian of the Planar Restricted Three–Body Problem is:

L′(q′, q̇′, t) =
1

2
m |q̇′|2 +

GmmA

‖q′ − qA(t)‖
+

GmmB

‖q′ − qB(t)‖
, q′ ∈ R2

where q′, q̇′ are coordinates and velocities of the point in study, qA(t), qB(t), mA, mB are
coordinates and masses of the primaries, and G is the universal gravitational constant.

We assume that the center of gravity of the system of the primaries is in the origin of
the coordinates, and that they move on a circular Keplerian orbit, with angular velocity

ω̃ =

√
GM
R3

where R is the distance between A and B, and M = mA + mB.
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Then, with a rotation: (
q1

q2

)
=

(
cos ω̃t − sin ω̃t
sin ω̃t cos ω̃t

) (
q′1
q′2

)
we pass to the so–called synodic frame of reference in which both A and B are at rest on
the q1-axis. We introduce the parameter µ = mA

M , 0 < µ < 1, so that the primaries have
massesMµ, M(1−µ), and their coordinates are (respectively) (R(1−µ), 0) and (−Rµ, 0).

The resulting Lagrangian function is, neglecting the common factor m:

L(q1, q2, q̇1, q̇2) =
1

2
(q̇2

1 + q̇2
2) + ω̃(q̇1q2 − q1q̇2) +

1

2
ω̃2(q2

1 + q2
2)+

+
GMµ√

(q1 −R+Rµ)2 + q2
2

+
GM(1− µ)√

(q1 +Rµ)2 + q2
2

The passage to rotating coordinates makes the system autonomous at the cost of the ap-
pearance of new terms (Coriolis and centrifugal) in the Lagrangian.

Now we perform the Legendre transform (q, q̇)
Λ→ (q, p = ∂L

∂q̇
) (in particular, we have

p1 = q̇1 + ω̃q2, p2 = q̇2 − ω̃q1) and obtain the Hamiltonian:

H(q, p) =
1

2
(p2

1 +p2
2)− ω̃(q1p2−q2p1)−

GMµ√
(q1 −R+Rµ)2 + q2

2

− GM(1− µ)√
(q1 +Rµ)2 + q2

2

(1.1)

1.2 Equilibria

Rescaling the coordinates and the momenta with the canonical transformation q 7→ Rq,
p 7→ ω̃Rp, we manage to remove the constants from (1.1), and rescaling the time with the
transformation t 7→ ω̃t we move ω̃ out of H, passing to a dimensionless formulation of the
problem in which the total mass of the system and the distance between the two primaries
are both unity, and (1.1) becomes:

H(q, p) =
1

2
(p2

1 + p2
2)− q · J2p− U(q) (1.2)

where

U(q) =
µ

d1(q)
+

1− µ

d2(q)

with

d1(q) =
√

(q1 − 1 + µ)2 + q2
2

d2(q) =
√

(q1 + µ)2 + q2
2
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and for any n = 2, 4, . . .

Jn =

(
0r 1r

−1r 0r

)
where r = n/2 and 1r is the r × r identity matrix.

Proposition 1. The system whose Hamiltonian is (1.2) has 5 equilibria: L1, L2, L3, L4, L5.

• L1, L2, L3, named the Euler collinear points, lay on the q1–axis.

• L4, L5, named the Lagrange equilateral points, have coordinates:

L4 = (qL4
1 , qL4

2 , pL4
1 , pL4

2 ) = (
1

2
− µ,

√
3

2
,−
√

3

2
,
1

2
− µ) (1.3)

L5 = (qL4
1 ,−qL4

2 , pL4
1 ,−pL4

2 )

Proof. In order to find the equilibria, the partial derivatives of H as in (1.2) must be null,
i.e.: {

∂H
∂q

= −J2p− ∂U
∂q

= 0
∂H
∂p

= p + J2q = 0

which is

q +
∂U

∂q
= 0 (1.4)

If we set

V (q) =
1

2
‖q‖2 + U(q) (1.5)

we have ∂V
∂q

= q + ∂U
∂q

, so that equation (1.4) can be solved via the search of the critical
points of V .

To do that, we observe that the map q 7→ d(q) = (d1(q), d2(q)) is a local diffeomorphism
at each point q with q2 6= 0. Therefore, in order to find the equilibria for q2 6= 0, instead of
the critical points of V (q) we consider those of:

Ṽ (d) =
1

2
‖d‖2 + Ũ(d)

with Ũ(d(q)) = U(q).
In particular, we note that

‖q‖2 = q2
1 + q2

2 = µd2
1 + (1− µ)d2

2 − µ(1− µ)

so that

∂Ṽ

∂d
(d) = 0 ⇔

{
µd1 − µ

d2
1

= 0

(1− µ)d2 − (1−µ)

d2
2

= 0
(1.6)
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system whose only solution is d1 = d2 = 1. Correspondently, in the q coordinates there are
two solutions placed at the vertexes of two equilateral triangles whose common base is the
segment joining the primaries. These are L4 and L5.

Besides, we consider the equilibria on the segment joining the primaries (i.e. with
q2 = 0). Because we have

∂V

∂q2

(q1, 0) = 0 ∀q1 ∈ R

the equilibria with q2 = 0 are determined by the critical points of the function q1 7→ V (q1, 0).
Since

V (q1, 0) =
1

2
q2
1 +

µ

|q1 − 1 + µ|
+

1− µ

|q1 + µ|
is smooth at all points q1 6= −µ, 1− µ, and

lim
q1→±∞

V (q1, 0) = +∞

lim
q1→−µ

V (q1, 0) = +∞

lim
q1→1−µ

V (q1, 0) = +∞

it results that V has at least one critical point in each of the intervals ]−∞,−µ[, ]−µ, 1−µ[,
]1− µ, +∞[.
Since in each of these intervals we have

d2V

dq2
1

(q1, 0) = 1 +
µ

(|q1 − 1 + µ|)3
+

1− µ

(|q1 + µ|)3
> 0

V is there convex, hence we conclude that V has exactly three critical points. These are
L1, L2, L3.

Figure (1.2) shows L1, L2, L3, L4, L5 .

Figure 1.1: The five equilibria of the Restricted Three–Body Problem.
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1.3 Linearization at L4

Now we turn to the study of the Lyapunov stability of the triangular points. Because of the
symmetry of the problem with respect to the line joining the primaries, we can restrict our
consideration to L4, defined by (1.3). We start with the first Lyapunov method (spectral
method), which will give sufficient (though not necessary) conditions for the stability.

By definition, the Hamiltonian vector field XH relative to a Hamiltonian H is:

XH = J4∇H

so that the linearization X ′
H of XH at an equilibrium E = (Eq, Ep) is:

X ′
H(Eq, Ep) = J4H

′′(Eq, Ep),

where H ′′ denotes the Hessian of H, namely

X ′
H(Eq, Ep) =

(
J2 12

U ′′(Eq) J2

)
(1.7)

Now we study the eigenvalues of X ′
H(Eq, Ep) to apply the first Lyapunov method. From

(1.5) we have Uii = Vii − 1, Ujk = Vjk, j 6= k and the characteristic equation is:

λ4 + [4− V11(Eq)− V22(Eq)]λ
2 − [V12(Eq)]

2 + V11(Eq)V22(Eq) = 0

In the specific case of L4 we have V11((L4)q) = 3
4
, V12((L4)q) = 3

√
3

4
(1−2µ), V22((L4)q) = 9

4
,

and the characteristic equation is:

λ4 + λ2 +
27

4
µ(1− µ) = 0

which has four roots, given by:

λ2 =
1

2
[−1±

√
1− 27µ(1− µ)].

Thus we conclude that:

• If µ > µRouth, where

µRouth :=
1

2
(1−

√
69

9
) = 0.0385208965 . . .

all the eigenvalues have nonzero real part so that, by Lyapunov first method, L4 is
not stable.
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• If µ ≤ µRouth, we have purely imaginary eigenvalues ±iω̂1, ±iω̂2, where:

ω̂1 =

√
1

2
[1 +

√
1− 27µ(1− µ)] > ω̂2 =

√
1

2
[1−

√
1− 27µ(1− µ)] (1.8)

and L4 is an elliptic equilibrium.

We will study the stability of L4 in the latter case. To this end, we must remark that it is
not known whether the second Lyapunov method can be applied to study the stability of
L4. In particular the Hamiltonian H cannot be used as a Lyapunov function, because H ′′

is not definite; from the point of view of the Lagrange–Dirichlet theorem, this corresponds
to the fact that U does not have an isolated minimum at the equilibria.

However, since the planar problem has two degrees of freedom, we can approach the
problem of the stability of L4 for µ ≤ µRouth by means of KAM theory.



Chapter 2

Elements of KAM theory

In this chapter we will review some properties of KAM theory we will later use to study
the stability of the triangular equilibria.

2.1 KAM theory

First, let us recall an important definition:

Definition 1. A Hamiltonian system with Hamiltonian H(p, q) is called completely inte-
grable in a domain B ⊂ R2n if there exists a canonical diffeomorphism w : B → D × Tn,
where D ⊂ Rn and Tn is the n–dimensional torus, such that the transformed Hamiltonian
H̃ = H ◦ w−1 does not depend on the angles:

H̃(I, ϕ) = K(I)

for some function K : D → R. I and ϕ are called action–angle variables.

At the International Mathematical Congress in Amsterdam, in 1954, A.N. Kolmogorov
gave an address on “The general theory of dynamical systems and classical mechan-
ics”. This event has played an important role in the development of the so–called KAM
(Kolmogorov–Arnold–Moser) theory, which has been subsequently studied and brought
forth by Arnol’d, Moser and many others.

This theory refers to small perturbations of completely integrable Hamiltonian dynam-
ical systems, with Hamiltonian (in action–angle variables) of the form:

H(I, ϕ) = K(I) + εF (I, ϕ), I ∈ D ⊂ Rn, ϕ ∈ Tn (2.1)

The equations of motion relative to (2.1) are:{
İ = −ε∂F

∂ϕ
(I, ϕ)

ϕ̇ = ω(I) + ε∂F
∂I

(I, ϕ)
(2.2)
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where

ω :=
∂K

∂I
(I) : D → Rn (2.3)

is the frequency map. If ε = 0, the actions I (slow variables) are constant, whereas the
angles ϕ (fast variables) move linearly on the tori I = const (the motion is quasi–periodic).

The basic result of the KAM theory is that, for analytic small perturbations of analytic
integrable systems, if the frequencies are nondegenerate in a sense to specify, most of the
invariant tori do not disappear, but are just a little bit deformed. The motions of the
perturbed system are quasi-periodic on a deformed torus and fill it everywhere densely.

Let us set Ω := ω(D), and ∀ γ > 0 let us define the set of the γ–Diophantine frequencies
as:

Ωγ = {ω̄ ∈ Ω : |k · ω̄| ≥ γ

‖k‖n
∞
∀k ∈ Zn \ {0}} (2.4)

where:
‖k‖∞ = |k1|+ |k2|+ · · ·+ |kn|

It is known that, if γ is sufficiently small (see [Ben1]), then:

µ(Ω \ Ωγ) = O(γ)

where µ denotes the Lebesgue measure, so that Ωγ is large for small γ.

A possible formulation of KAM theorem is (see [Pösch, Ben1]):

Theorem 1 (KAM). Consider a Hamiltonian H of the form (2.1). Suppose that:

1. H is analytic in the domain D × Tn 3 (I, ϕ).

2. The frequency map (2.3) is a local diffeomorphism at each point, i.e. it satisfies
(nondegeneracy condition):

det[
∂ω

∂I
(I)] 6= 0 ∀I ∈ D (2.5)

Then there exist positive numbers δ and γ0 independent of ε, such that for all γ ≤ γ0 and
|ε| ≤ γ2δ, there exists a diffeomorphism:

T : D × Tn → D × Tn

which on Dγ × Tn, with Dγ = ω−1(Ωγ) \ Uγ (where Uγ is a neighbourhood of ∂D with
measure O(γ)), conjugates the flow of the unperturbed system to that of the perturbed
system expressed by equations (2.2).

Thus, the surviving tori are those of frequencies belonging to Ωγ. Applying theorem 1
with γ = O(

√
ε), and taking into account that the map ω is a local diffeomorphism, one

concludes that the complement of the set of actions corresponding to preserved tori has
measure O(

√
ε) so that each point in D has distance at most O(ε

1
2n ) from a preserved

torus.
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2.2 KAM theory in two degrees of freedom

First, let us state an important definition:

Definition 2. A system with Hamiltonian as (2.1) is said to be isoenergetically non–
degenerate if:

det

(
∂2K
∂I2 (I) ∂K

∂I
(I)

∂K
∂I

(I) 0

)
= det

(
∂ω
∂I

(I) ω(I)
ωT (I) 0

)
6= 0 ∀I ∈ D (2.6)

Let us study the case of two degrees of freedom (n = 2): the phase space has dimension 4, so
that the surfaces of constant energy of the unperturbed Hamiltonian are three–dimensional
and have the form(see fig. 2.2):

Ke = {(I, ϕ) : K(I) = e}

Figure 2.1: The tori relative to K

Now we remark an important distinction:

• If n = 2, since the phase space has dimension 4, the surfaces of constant energy
H = const are three–dimensional, so that the two–dimensional tori ‘divide’ these
surfaces, and a motion starting in a gap between two deformed tori cannot ‘escape’
from this gap.
Correspondently, the actions remain nearly constant and we can conclude that the
motion is stable.

• If n > 2, instead, the surfaces of constant energy are (2n − 1)–dimensional, so that
the n–dimensional tori do not “divide” them, and there may exist motions in which
the actions evolve significantly. The unstable motion of the actions is called Arnold
diffusion.

The first point develops into the following proposition:

Proposition 2. Let the hypotheses of theorem 1 be verified, and let condition (2.6) hold.
Then, along any motion t 7→ (It, ϕt) of the system with Hamiltonian (2.1) we have:

|It − I0| = O( 4
√

ε) (2.7)
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Proof (sketch). Let H be as in (2.1) and let us consider a motion on H = const. First, we
observe that condition (2.6) is equivalent to the fact that the images K ′

e = ω(Ke) of the
surfaces Ke of constant energy are transversal to the halflines out of the origin. Indeed,
this transversality condition is equivalent to the relation

0 6= u ∈ R2, u · ω(I) = 0 ⇒ ∂ω

∂I
(I)u ∦ ω

namely {
u · ω(I) = 0
∂ω
∂I

(I)u ‖ ω(I)
⇒ u = 0

That is: {
u · ω(I) = 0
∂ω
∂I

(I)u + λω(I) = 0
⇒ u = 0, λ = 0 (2.8)

The one above is a linear system in u and λ which reads:(
∂ω
∂I

ω
ωT 0

) (
u
λ

)
=

(
0
0

)
(2.9)

and (2.6) implies that (2.9) has only the trivial solution.

Proof of (2.7) develops now onto the following steps:

I. The frequencies of the image of the preserved tori in the frequencies’ plane (ω1, ω2)
have the structure of closed halflines out of the origin, each of which corresponds to a
Diophantine frequency ω̄ and its multiples λω̄, λ > 1. In this framework, each level
curve of K is mapped by the frequency map ω ◦πI into the level curve K ′ = K ◦ω−1

(πI : (I, φ) 7→ I is the projection of the phase space onto the actions’ space).

II. In the phase space (which is 4–dimensional), each closed halfline corresponds to a
3–dimensional 1–parametric family of tori T2. If in the frequencies’ plane the rays
are transversal to the level curves of K ′ (equivalently, if (2.6) holds), then in the
phase space the 1-parametric families are transversal to the level surfaces of the
unperturbed Hamiltonian K. For ε small enough, transversality holds with respect
to the level surfaces of the perturbed Hamiltonian H, too.

Since the gaps between the tori in the plane (ω1,ω2) (and, consequently, in the phase
space) are O( 4

√
ε) wide, and the frequency map ω(I) is differentiable, it follows that

on the level curves of H the gaps between two KAM tori are O( 4
√

ε)-close to the
unperturbed ones.

III. Finally, the tori projected back in the actions’ plane (I1, I2) occupy a region O( 4
√

ε)
wide, which proves (2.7).
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A graphical illustration of steps I, II, III is given in figure 2.2.

Figure 2.2: The steps I, II and III.
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Chapter 3

Symplectic diagonalization and
Birkhoff normal forms

This chapter shows how to put the quadratic terms of the Hamiltonian function near an
elliptic equilibrium in a diagonal form and then explains the elements of Birkhoff series
theory necessary for our purpose.

3.1 Symplectic diagonalization

We show here how to diagonalize a real Hamiltonian matrix with a symplectic linear
transformation, and then apply the result to our case.

Definition 3. – A 2n× 2n matrix S is called symplectic iff ST J2nS = J2n.

– A 2n× 2n matrix P is called Hamiltonian iff P T J2n = −J2nP .

– A basis {x1, x2, . . . , x2n} of R2n is called symplectic iff xi · J2nxj = (J2n)ij.

Proposition 3. Let P be a 2n × 2n Hamiltonian matrix, with distinct, purely imaginary
(hence nonzero) eigenvalues ±iα1, . . . ,±iαn. Let x±i = x′i ± ix′′i (x′i, x

′′
i ∈ R2n) be the cor-

responding eigenvectors. Then, x′i · J2nx
′′
i 6= 0, i = 1, . . . , n.

Moreover, denote βi =
√
|x′i · J2nx′′i | and

z′i =

{
x′i/βi if x′i · J2nx

′′
i > 0

x′′i /βi if x′i · J2nx
′′
i < 0

z′′i =

{
x′′i /βi if x′i · J2nx

′′
i > 0

x′i/βi if x′i · J2nx
′′
i < 0

Then, the matrix
S = col(z′1, . . . , z

′
n, z

′′
1 , . . . , z

′′
n) (3.1)

is symplectic and the canonical transformation (q, p) 7→ (q̃, p̃) = S−1(q, p) conjugates the
Hamiltonian of P

(
q
p

)
to

h̃(q̃, p̃) =
n∑

i=1

sign(x′i · J2nx
′′
i )

αi

2
(q̃i

2 + p̃i
2)
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Proof. Since the 2n eigenvalues ±iαi are distinct, the eigenvectors x′i ± ix′′i are linearly
independent, and so are x′i and x′′i , their real and imaginary part. If we denote by Wi the
plane spanned by x′i and x′′i , we have:

R2n = W1 ⊕ · · · ⊕Wn

We define here the symplectic skew product of two vectors u, v ∈ R2n as:

u · J2nv

Each factor Wi of the above decomposition is symplectically orthogonal to the others (i.e.
Wi · J2nWj = 0 ∀i 6= j). In fact, recall that, if λ and µ 6= −λ are eigenvalues of a
Hamiltonian matrix A, the corresponding eigenspaces x and y of A are symplectically
orthogonal:

λx · J2ny = Ax · J2ny = −x · J2nAy = −µx · J2ny

Thus, the restriction of the symplectic skew product to every Wi is non–degenerate (i.e. Wi

is symplectic): in fact, by contradiction, let us assume that R2n = U⊕V with U ·J2nV = 0
and the symplectic skew product degenerates on U . It follows that there exists a vector
0 6= u ∈ U such that u · u′ = 0 ∀u′ ∈ U ; because each vector of R2n is sum of an element
of U and of one of V , it would follow that u is symplectically orthogonal to any vector in
R2n, against the nondegeneracy of the symplectic skew product on R2n. The fact that the
planes Wi are two–dimensional, along with the linear independence of x′i and x′′i , allows us
to conclude that x′i · J2nx

′′
i 6= 0, ∀i = 1, . . . , n. Therefore we can define a new basis of R2n

made of the vectors z′1, . . . , z
′′
n, with z′i, z

′′
i spanning the corresponding Wi. The fact that

the matrix S as in (3.1) is symplectic follows from:

z′i · J2nz
′′
j = 0 if i 6= j

because the planes Wi are symplectically orthogonal, and from:

z′i · J2nz
′′
i = 1

which follows by definition of z′i, z
′′
i . The Hamiltonian h(q, p) of P

(
q
p

)
is:

h(q, p) =
1

2
(q, p) ·M

(
q

p

)
, M = −J2nP ;

which is conjugate to:

h̃(q̃, p̃) =
1

2
(q̃, p̃) · ST MS

(
q̃

p̃

)
=

n∑
i=1

±αi

2
(q̃2

i + p̃2
i )

since ST MS = −ST J2nPS = −J2nS
−1PS = −J2n[±diag(α1, . . . , αn)J2n] = diag(±α1, . . . ,±αn).

In the previous lines, in each case, one takes the plus or the minus sign according to x′i·J2nx
′′
i

being positive or negative.
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3.2 Birkhoff normal forms

If n = 2, it follows from proposition 3 that in the expansion of a Hamiltonian near an
elliptic equilibrium (set at the origin)

H =
∞∑

j=2

Hj (3.2)

one has

H2 =
n∑

i=1

ω̄i
p2

i + q2
i

2
(3.3)

We would like to find a change of coordinates (Birkhoff series)

(q, p) 7→ (q̃, p̃)

which conjugates H to its Birkhoff Normal Form (BNF) of order r

H(r) = H2 + G + f (3.4)

where G =
∑r/2

j=2 G2j, and G2j is a j–degree homogenous polynomial in the variables

Ik =
p̃2

k+q̃2
k

2
k = 1, 2 and f is a power series starting with terms of order r + 1.

3.2.1 Construction of BNF

Definition 4. Let ω̄ = (ω̄1, . . . , ω̄n) ∈ Rn. A resonance of order r for ω̄ is a vector k ∈ Zn

such that
n∑

i=1

|ki| = r, k · ω̄ = 0

and we say ω̄ is nonresonant up to order r if it has no resonances of order j = 1, . . . , r.

We now state the following result:

Theorem 2 (Birkhoff). Assume that the vector ω̄ = (ω̄1, . . . , ω̄n) is nonresonant up to
order r. Then there exists a Birkhoff normal form of order r for any power series (3.2)
defined in some neighbourhood of the origin with H2 as in (3.3).

Proof (sketch). To construct the symplectic transformation that puts (3.2) into BNF, we
use the Lie method. This method uses the fact that Φt

χ, the map at time t of the flow of
an analytic Hamiltonian vector field X with Hamiltonian χ, is analytic in t for small t.
Thus, if F : R2n → R is an analytic function, using the relation:

d

dt
(F ◦ Φt

χ) = LχF ◦ Φt
χ
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where

Lχ(·) = {·, χ} =
n∑

i=1

∂χ

∂pi

∂

∂qi

− ∂χ

∂qi

∂

∂pi

is the “Poisson bracket” operator, we write:

F ◦ Φt
χ = F +

∞∑
j=1

tj

j!

dj

dtj
(F ◦ Φt

χ)|t=0 = F +
∞∑

j=1

tj

j!
Lj

χF (3.5)

If χ is small then F ◦ Φt
χ is analytic up to t = 1. Under such hypotheses, we have:

F ◦ Φ1
χ = F + LχF +

1

2
L2

χF + . . .

=: F + R1
χ(F )

=: F + LχF + R2
χ(F )

where R1
χ(F ) and R2

χ(F ) are the remainders of first and second order of the series expansion
(3.5), respectively. Now we turn to the construction of BNF. First of all, we pass to complex
coordinates, with the immersion:

R2n ↪→ C2n

(q, p) 7→ (w, z)

where

wj = i
qj − ipj√

2
j = 1, . . . , n

are the coordinates and

zj =
qj + ipj√

2
j = 1, . . . , n

are the momenta. In these coordinates (3.3) becomes:

H2 =
n∑

j=1

iω̄jwjzj

and LH2 = {·, H2} has the expression

LH2 =
n∑

j=1

iω̄j(wj
∂

∂wj

− zj
∂

∂zj

) (3.6)

Now our aim is to build a sequence of Lie transforms (s = r − 2)

Φ1
χ1

, Φ1
χ2

, . . . , Φ1
χs

such that H ◦ Φ1
χ1
◦ Φ1

χ2
◦ · · · ◦ Φ1

χs
has the expression (3.4).
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We start from s = 1. Since we have:

H ◦ Φ1
χ1

= H2 + H3 + {H2, χ1}+ · · · !
= H2 + G + f

the function χ1 must satisfy the relation:

{H2, χ1} = −(H3 −G) (3.7)

If we denote
f(w, z) =

∑
µ,ν∈Nn

fµνw
µzν

the Taylor series of a function f (with µ, ν multi–indices: wµzν ≡ wµ1

1 wµ2

2 · · · · · zν1
1 zν2

2 · . . . ),
then (3.7) becomes (using the expression (3.6))∑

µ,ν∈Nn

iω̄ · (µ− ν)(χ1)µνw
µzν = −(H3 −G)

If ω̄ is nonresonant up to the third order, the equation above has the solution:

χ1 =
∑

µ 6=ν∈Nn

|µ|+|ν|=3

(H3)µνw
µzν

iω̄ · (ν − µ)
(3.8)

G =
∑
µ∈Nn

(H3)µµ = 0

in which the last equality follows from the fact that H3 is a homogeneous polynomial of
degree 3, so that (H3)µµ = G = 0, and χ1 is analytic with the assumptions made. Moreover,
f has the form:

f = R1
χ1

(H3 + . . . ) + R2
χ1

(H2 + . . . )

We showed how to construct the BNF of order 3 for H. An analogous procedure iterated
for s times leads to the proof of theorem 2.

3.2.2 Fourth order normal form

Our aim is to find the expression of order 4 of fourth–order BNF of the Hamiltonian, which
is

H(4) = H2 + G4 + O(5) (3.9)

With a procedure similar to the one previously described, if ω̄ is nonresonant up to the
fourth order, one finds that:

G4 = H4 +
1

2
{H3, χ1} (3.10)
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where χ1 is like in (3.8), that is:

χ1 =
∑

µ 6=ν∈Nn

|µ|+|ν|=3

(H3)µνw
µzν

iω̄ · (ν − µ)

and in (3.10) means the average:

f =
∑
ν∈Nn

|ν|=2

fννw
νzν .



Chapter 4

Application of KAM theory to the
Restricted Three–Body Problem

This chapter applies what seen in chapter 2 to the problem of the stability of the triangular
equilibrium points of the Restricted Three–Body Problem.

4.1 KAM at the equilibria

The application of KAM theorem to the stability of elliptic equilibria of Hamiltonian sys-
tems with two degrees of freedom develops into two steps: diagonalization of the quadratic
part of the Hamiltonian and construction of normal forms.
If (p̃, q̃) = (0, 0) is an equilibrium of the system with analytic Hamiltonian H(p̃, q̃), then
the expansion of H in series near the origin is:

H =
∑
s≥2

Hs (4.1)

where Hs is a homogeneous polynomial of degree s in (p̃, q̃), and we took H0 = 0.
If the equilibrium is elliptic and its frequencies ω̄ = (ω̄1, . . . , ω̄n) are nonresonant up

to order 2, then by means of a linear symplectic transformation, we can pass to new
coordinates (p, q) reducing H2 to the diagonal form:

H2 = ω̄ · I, I = (I1, . . . , In), Ii =
p2

i + q2
i

2

which is a completely integrable system.
In a small neighbourhood of the origin the terms H3, H4, . . . are small compared with

H2, and can be regarded as a perturbation of the integrable system with Hamiltonian H2.
As seen in chapter 3, given any r > 1, if the frequencies ω̄ are nonresonant up to order r,

it is possible to construct a canonical transformation conjugating H with H(r), its Birkhoff
normal form of order r:

H(r) = H2 + G + f (4.2)
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where G =
∑r

j=3 Gj and Gj is a homogeneous polynomial of degree j/2 in the actions, so
that in particular Gj = 0 for odd j. The Hamiltonian system with Hamiltonian K = H2+G
is completely integrable, and f is a series starting with terms of order r + 1.

We would like to apply theorem 1 to H(r). As a matter of fact, there are technical
differences with the theory explained in the previous sections, because here the action–
angle variables are singular in the equilibrium, so that the construction of Normal Forms
that leads to the KAM theorem can be done only in a neighbourhood deprived of the
equilibrium point. The aim of the theorem in this framework is to find a neighbourhood
in which the invariant tori survive on any surface of constant energy.

In our case the Hamiltonian H written in fourth–order BNF reads:

H = H2 + G4 +O(5) (4.3)

where:

H2 = ω̄ · I, G4 =
1

2
I · LI

for some matrix L.

Condition of isoenergetic non–degeneracy is sufficient for the stability, and actually, refer-
ring to Hamiltonian (4.3), we can even weaken this condition. To understand how, first we
observe that, since:

ω(I) =
∂(H2 + G4)

∂I
(I) = ω̄ + LI (4.4)

condition (2.6) for I = 0 reads:

D(I) := det

(
L ω(I)

ω(I)T 0

)
= det

 l11 l12 ω1(I)
l12 l22 ω2(I)

ω1(I) ω2(I) 0


In order to show that D 6= 0 in a neighbourhood of the equilibrium, it is sufficient to show
that D 6= 0 at the equilibrium itself. The computation of the last determinant yields:

−
(
−ω̄2

ω̄1

)
·
(

l11 l12
l12 l22

) (
−ω̄2

ω̄1

)
(4.4)
= −2G4(−ω̄2, ω̄1)

so that:
D = 0 ⇐⇒ G4(−ω̄2, ω̄1) = 0

which happens if and only if H2 divides G4, since H2 vanishes in (I1, I2) = (−ω2, ω1).
Generalizing these considerations to BNF of order r, one can prove the following version
of the KAM theorem for the equilibria (see [M&H]):

Theorem 3 (Arnold’s Stability Theorem). Let n = 2. The origin is stable for the system
with Hamiltonian written in BNF of order r:

H(r) = H2 + G4 + · · ·+ Gr + f



4.2 Diagonalization at L4 23

(the hypotheses on H(r) being the same as in 4.2), provided for some k ∈ N, 2 ≤ k ≤ [r/2],
D2k := G2k(−ω2, ω1) 6= 0, or, equivalently, provided H2 does not divide G2k. Moreover,
arbitrarily close to the origin, there are invariant tori and the motion on these invariant
tori is linear.

4.2 Diagonalization at L4

We remark the fact that, in order to apply the constructions seen in the last chapter to the
specific case of L4, the parameter µ has to be such that the frequencies are nonresonant
up to the fourth order. To simplify the computations, first note that for µ ≤ µRouth we
have (as seen at the end of chapter 1) 0 < ω̂2 <

√
2

2
< ω̂1. Moreover, ω̂2

1 + ω̂2
2 = 1 and

ω̂2
1ω̂

2
2 = 27µ(1−µ)

4
.

We set γ̂ := 3
√

3(1− 2µ). As µ 7→ ω̂1(µ) and µ 7→ ω̂2(µ) are local diffeomorphisms, we
can express γ̂ in terms of ω̂1 and ω̂2, in fact:

16ω̂2
1ω̂

2
2

(ω̂2
1 + ω̂2

2)
2

= 27− γ̂2

so that

γ̂2 =
27ω̂4

1 + 38ω̂2
1ω̂

4
2 + 27ω̂4

2

(ω̂2
1 + ω̂2

2)
2

(4.5)

If we compute the components of (1.7) in L4, the linearization at this point results:

X ′((L4)q, (L4)p) =


0 1 1 0
−1 0 0 1

−1
4
− γ̂

4
0 1

γ̂
4

5
4

−1 0

 (4.6)

Now we apply the techniques of diagonalization we will see in the last chapter to
investigate the KAM stability of L4. The eigenvalues of the matrix (4.6) are found to be
±iω̂1,±iω̂2. After some computations (see [M&H]), one verifies that in this case:

z′1 =
4
√

ω̂2
1 + ω̂2

2

2ξ1

√
ω̂1


13ω̂2

1 + 9ω̂2
2

−γ̂(ω̂2
1 + ω̂2

2)
γ̂(ω̂2

1 + ω̂2
2)

4
√

(ω̂2
1+ω̂2

2)3(5ω̂2
1+9ω̂2

2)√
ω̂3

1

 z′′1 =

√
ω̂1

4
√

ω̂2
1 + ω̂2

2

2ξ1


0

8
√

ω̂2
1 + ω̂2

2
5ω̂2

1+ω̂2
2√

ω̂2
1+ω̂2

2

−γ̂
√

ω̂2
1 + ω̂2

2



z′2 =
4
√

ω̂2
1 + ω̂2

2

2ξ2


0

8ω̂2

√
ω̂2

1 + ω̂2
2

ω̂2(ω̂2
1+5ω̂2

2)√
ω̂2

1+ω̂2
2

−γ̂ω̂2

√
ω̂2

1 + ω̂2
2

 z′′2 =
4
√

ω̂2
1 + ω̂2

2

2ξ2


9ω̂2

1 + 13ω̂2
2

−γ̂(ω̂2
1 + ω̂2

2)
γ̂(ω̂2

1 + ω̂2
2)

9ω̂2
1 + 5ω̂2

2


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where ξ1 =
√

(ω̂2
1 − ω̂2

2)(13ω̂2
1 + 9ω̂2

2), ξ2 =
√

ω̂2(ω̂2
1 − ω̂2

2)(9ω̂
2
1 + 13ω̂2

2).

Thus, using Proposition 3 of chapter 3 and relations (4.5), together with the fact
that x′1 · J4x

′′
1 > 0, x′2 · J4x

′′
2 < 0, we know that the matrix (3.1) is symplectic and

(q, p) 7→ (q̃, p̃) = S−1(q, p) conjugates the Hamiltonian of (4.6) to the Hamiltonian:

K(p̃, q̃) =
ω̂1

2
(q̃2

1 + p̃2
1)−

ω̂2

2
(q̃2

2 + p̃2
2) (4.7)

The minus sign reflects the fact that the Hessian of H is not positive definite.

4.3 Normal form and stability in L4

In section 1.3 we showed that the linearization in L4 has four purely imaginary eigenvalues
±iω̂1, ±iω̂2 given by (1.8) if µ ≤ µRouth = 0.0385 . . . , and in section 4.2 we found symplectic
coordinates in which the quadratic part of the Hamiltonian has the form (in action–angle
variables):

H2 = ω̂1I1 − ω̂2I2

We define µp the value of µ for which ω̂1/ω̂2 = p. In particular we have (using the
expressions obtained in chapter 1) µ2 ≈ 0.0243, µ3 ≈ 0.0135, so that:

µ3 < µ2 < µ1 = µRouth

Thus when 0 < µ < µ1, provided µ 6= µ2, µ3 (so that ω̂ is nonresonant up to the fourth
order, see chapter 3) the Hamiltonian (1.2) can be written in BNF of fourth order, becom-
ing:

H(4) = ω̂1I1 − ω̂2I2 + G4 + . . .

Deprit and Deprit–Bartholome, in order to apply the Arnold’s Stability Theorem as in
section (4.1), computed (by hand) G4 and derived that: (see [M&H])

D4 = G4(ω̂2, ω̂1) = −36− 541ω̂2
1 + ω̂2

2 + 644ω̂4
1ω̂

4
2

8(1− 4ω̂2
1ω̂

2
2)(4− 25ω̂2

1ω̂
2
2)

which vanishes at µ = µ0 ≈ 0.0109. Thus, the hypotheses of theorem 3 hold for
µ 6= µ0, µ1, µ2, µ3.

Meyer and Schmidt (see [M&S]), using an algebraic processor, brought the normalization
to sixth order, obtaining:

D6 =
P

Q
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where:

P = −3105

4
+

1338449

48
σ − 489918305

1728
σ2 +

7787081027

6912
σ3 − 2052731645

1296
σ4−

− 1629138643

324
σ5 +

1879982900

81
σ6 +

368284375

81
σ7

Q = ω̂1ω̂2(ω̂
2
1 − ω̂2

2)
5(4− 25σ)3(9− 100σ)

σ = ω̂2
1ω̂

2
2

and then
D6|µ=µ0 ≈ 66.64

so by Arnold’s theorem it is possible to conclude that L4 is stable if 0 < µ < µ1, provided
µ 6= µ2, µ3. Using particular techniques, in [Alf1] and [Alf2] it is proved that L4 is unstable
for µ = µ2, µ3, and in [Sok] that it is unstable for µ = µ1.

4.4 Numerical results

Using the software Mathematica R©, we repeated the passages that led to the fourth–order
normal form (3.9), evaluating it numerically for different values of µ. The commands shown
below, in order:

I Implement the Hamiltonian function (1.1), find its linearization in L4 (4.6) and
compute its eigenvalues and eigenvectors (see (1.8) in section 1.3).

I Diagonalize the Hamiltonian with the techniques described in Proposition 3 of chapter
3 and in section 4.2.

I Expand the Hamiltonian (1.1) translated in L4 in Taylor series up to fourth–order
terms, apply the symplectic diagonalization, pass to complex coordinates and reach
an explicit expression for terms of order 2, 3 and 4 of the transformed Hamiltonian
(H2, H3 and H4) as in the proof of theorem 2.

I Compute the Normal Form of order 4, H(4) (as in (3.9)).

I Plot G4(−ω2, ω1) as a function of µ.
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Appendix

An astronomical example: the Trojan asteroids

The aim of this brief chapter is to study the triangular equilibrium points L4 and L5 of
the Restricted Three–Body Problem within the framework of the system in which the two
primaries are Sun (�) and Jupiter (X) (we refer to [Marz, Marchis, Morbi, Szeb]).

Possible relevance of the triangular equilibrium points L4 and L5 in celestial mechanics
became evident in 1906, when the German astronomer Max Wolf discovered the asteroid
588 Achilles in the region near the equilateral point L4 of the system formed by Sun and
Jupiter. With subsequent observations, it has been found that the neighbourhoods of L4

and L5 of the aforecited system are populated by two swarms of asteroids, altogether called
Trojans. The Trojans are defined as celestial objects having orbital period between 0.97
and 1.03 relatively to Jupiter, absolute values of angular distance from Jupiter between
40◦ and 90◦ and eccentricities less than 0.15 (see [Morbi]). On behalf of distinction, the
members of the two groups were later named after the Greek (L4) and Trojan (L5) heroes
of the Homer’s Iliad (the exceptions being 617 Patroclus and 624 Hector, which are in the
“enemy’s field”).

Two basic remarks must be mentioned (see [Szeb]):

– Since the biggest Trojan asteroid, 624 Hector (H), has mass mH ≈ 1.4 · 1019 kg, we
have: (mX ≈ 1898.8 · 1024 kg)

mH

mX
≈ 7.37 · 10−9

so that the error made neglecting the presence of H in the equations of motion
of � and X is less than one hundred thousand millionth, estimate which enables
us to considerate this as a reasonable example of Restricted Three–Body Problem.
Nevertheless we notice that, because the eccentricities are nonzero (see table 4.4), the
physical problem is three–dimensional, whereas in the previous discussion we studied
the planar problem.

– We can apply in this framework the considerations on the stability of equilibria
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studied in the previous chapters because we have:

µ�X =
mX

m� + mX
≈ 0.000954

so that µ�X < µRouth, and the equilibria of the system are elliptic.

– Finally, we observe that the KAM theory reviewed in the second chapter of this work
does not allow under no circumstances to reach a realistic estimate about a physically
significant area of stability. Results in this field are obtained with other perturbative
techniques, which, differently from what we did in chapter 2, aim at finding finite
times of stability.

Figure 4.1 shows the position of the Greek and the Trojan camp of the Trojan asteroids.
The Greeks rotate 60 degrees ahead of Jupiter and the Trojans trail 60 degrees back.

Figure 4.1: Inner Solar System, Jupiter and the Trojan asteroids (Credit: UC Berkeley–
IMCCE–Observatoire de Paris)

Though from the figure the two swarms seem coorbital with Jupiter, most of the asteroids
actually revolve around the Sun following orbits much more inclined and eccentric than
Jupiter’s.
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Different hypotheses hold regarding the Trojans’ origin: the most accepted one states that
originally they orbited near Jupiter and then, after Jupiter’s mass growth and subsequent
collisions, they have been captured in the regions near L4 and L5 (see [Marz]).
However, recent observations (at the Keck Observatory in Mauna Kea, Hawai’i, see [Marchis])
have found that 617 Patroclus, which in reality is a binary asteroid, formed by two bodies
of similar sizes, Patroclus and Moenetius (see fig. 4.2), has a density lower than water ice,
which suggests the idea that as a matter of fact some Trojans can be fragments of comets
or other celestial bodies coming from the periphery of the Solar System and the Kuiper
belt (see also [Morbi]). Therefore, the study of these asteroids can tell more also about the
formation of the Solar System.

Figure 4.2: 617 Patroclus observed with the Keck 10–m telescope on the Mauna Kea
summit in Hawai’i and its adaptive optics system (Credit: [Marchis])

As of 2007, Jan. 7, 1149 Jupiter Trojans are known to be near L4 and 929 near L5 (a
daily updated list can be found in [Harv]).

Table 4.4 shows the data relative to the first discovered 16 Trojan asteroids ordered by
date of first observation, where:

– Designation(and name): contains object’s number and name.

– Ln: indicates whether the asteroid is in L4 or in L5.

– q and Q: perihelion and aphelion distance (in AU).

– H: absolute visual magnitude.

– Incl.: Inclination of the orbit to the ecliptic, in degrees.
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– e: orbital eccentricity.

– a: major semiaxis (in AU).

Designation and name Ln q Q H Incl. e a

(588) Achilles L4 4.433 5.956 8.67 10.3 0.147 5.195
(617) Patroclus L5 4.504 5.949 8.19 22.0 0.138 5.227
(624) Hektor L4 5.104 5.350 7.49 18.2 0.024 5.227
(659) Nestor L4 4.587 5.798 8.99 4.5 0.117 5.192
(884) Priamus L5 4.534 5.788 8.81 8.9 0.121 5.161
(911) Agamemnon L4 4.908 5.600 7.89 21.8 0.066 5.254
(1143) Odysseus L4 4.784 5.733 7.93 3.1 0.090 5.258
(1172) Aneas L5 4.656 5.727 8.33 16.7 0.103 5.192
(1173) Anchises L5 4.593 6.053 8.89 6.9 0.137 5.323
(1208) Troilus L5 4.761 5.714 8.99 33.6 0.091 5.237
(1404) Ajax L4 4.701 5.905 9.0 18.0 0.114 5.303
(1437) Diomedes L4 4.936 5.384 8.30 20.5 0.043 5.160
(1583) Antilochus L4 4.840 5.374 8.60 28.6 0.052 5.107
(1647) Menelaus L4 5.115 5.349 10.3 5.6 0.022 5.232
(1749) Telamon L4 4.614 5.730 9.2 6.1 0.108 5.172
(1867) Deiphobus L5 4.909 5.357 8.61 26.9 0.044 5.133

Table 4.1: List of Trojan asteroids(Credit: [Harv])

We recall that 1 AU= 1.496 · 108 km (the mean distance between Sun and Earth), and
that, for Jupiter, qX = 4.952 AU, QX = 5.455 AU, aX = 5.20 AU, eX = 0.048. Moreover,
we recall that H, the absolute visual magnitude, by definition is the apparent magnitude
that a celestial object would have if it were at a distance of 10 parsec (1 parsec= 2.06 · 105

AU).
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