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Introduction

In this thesis we treat the linear stability of equilibrium points L4 and L5

in the Elliptic Restricted Three-Body Problem. The purpose of our work is
to present and compare different approaches to this problem, and the steps
that we have chosen to make can be summarized as follows.

In the first chapter we present a Hamiltonian formulation of the problem
and we use the Poincaré-Lyapunov theory to present some classical results
on linear stability on the parameter plane. Then we define an interesting
property for systems of differential equations, introduced by Hale in [3], and
we show how to take advantage of that in our problem, retracing what has
been done by Meire and Vanderbauwhede in [6].

In the second chapter we present a lesser-known theory developed by Tschauner
in [9], which allows to reduce the order of the differential systems used so far.
Then we explain the notion of transition curve and we discuss how Meire in
[5] proposes to search for the boundaries of the linear stability region.

In the third chapter we discuss some numerical results, comparing them
with those obtained by Danby, [2], and Meire, [5].
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Chapter 1

Hamiltonian formulation

Let us consider two bodies that revolve around their center of mass in ellip-
tic orbits under the influence of their mutual gravitational attraction and a
third body (attracted by the previous two but not influencing their motion)
that moves in the plane defined by the two revolving bodies: the Elliptic
Restricted Three-Body Problem is to describe the motion of this third body.
Note that this is an approximation of the Three-Body Problem that still re-
sults not integrable.

In the Nechville coordinate system, in which the two revolving bodies re-
sult to be in quiet, the Lagrangian function of the ERTBP is

L(q, q̇, t) =
1

2
r2(t) ‖q̇‖2 + c

√
GM q · E2 q̇ +

GM

r(t)
(V (q) +

1

2
‖q‖2) (1.1)

where q = (q1, q2) and q̇ = (q̇1, q̇2) are respectively position and velocity of
the third body, qa/qb and ma/mb are respectively positions and masses of
the revolving bodies, V (q) = 1−µ

‖q−qa‖ + µ

‖q−qb‖ , r(t) = c2

1+e cos (ϑ(t))
, e is the

eccentricity of the ellipse, ϑ is the true anomaly, c = a(1 − e2) (a is the
major semi-axis of the ellipse), G is the gravitational constant, M = ma +

mb and µ = ma

M
, ‖ · ‖ represents the Euclidean norm, E2n =

(

On In

−In On

)

.

To find out more about the construction of (1.1) and for a comprehensive
study of the ERTBP in accordance with a Lagrangian approach, refer to [10].

1.1 Hamiltonian function

Performing the Legendre transform on (1.1) the velocity, expressed in func-

tion of position and conjugate momenta, results q̇i =
pi

r2(t)
± c

√
GM qi
r2(t)

so the

7



8 CHAPTER 1. HAMILTONIAN FORMULATION

Hamiltonian function obtained is

K(q1, q2, p1, p2, t) =
1

r2(t)

(

1

2
(p21 + p22) + c

√
GM(p1q2 − q1p2) +

1

2
(q21 + q22)

(

c2GM − r(t)GM
)

+ r(t)GM V (q1, q2)

)

(1.2)

where V (q1, q2) =
1−µ√

(q1−µ)2+q2
2

+ µ√
(q1−1+µ)2+q2

2

.

Proposition 1. The solutions of (1.2) with independent variable t are the
same solutions of the Hamiltonian

H(q1, q2, p1, p2, ϑ) =
1

2
(p21 + p22) + p1q2 − q1p2+

e cos (ϑ)

2 (1 + e cos (ϑ))
(q21 + q22) +

1

1 + e cos (ϑ)
V (q1, q2)

(1.3)

with independent variable θ.

Proof. It is clearly seen that (1.2) can be written in the form

K(q1, q2, p1, p2, t) =
c
√
GM

r2(t)
K̄(q1, q2, p1, p2, t) (1.4)

where

K̄(q1, q2, p1, p2, t) =
1

2 c
√
GM

(p21 + p22) + p1q2 − q1p2+

1

2
(q21 + q22)

(

c
√
GM − c

√
GM

1 + e cos (ϑ(t))

)

+
c
√
GM

1 + e cos (ϑ(t))
V (q1, q2) (1.5)

and using r2(t) = c
√
GM

ϑ̇(t)
in (1.4), we obtain

K(q1, q2, p1, p2, t) = ϑ̇(t) K̄(q1, q2, p1, p2, t), (1.6)

where ϑ̇(t) > 0, and so the change of variable t → ϑ(t) is a diffeomorphism.
The Hamilton equations of (1.6) are in the form

q̇i = ϑ̇
d K̄

d pi
, ṗi = −ϑ̇

d K̄

d qi
(1.7)
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and, considering ϑ as independent variable, we have also

q̇i =
d qi
d ϑ

d ϑ

d t
=

d qi
d ϑ

ϑ̇ , ṗi =
d pi
d ϑ

d ϑ

d t
=

d pi
d ϑ

ϑ̇ . (1.8)

Equating both expressions (1.7) and (1.8), we obtain

d qi
d ϑ

=
d K̄

d pi
,

d pi
d ϑ

= −d K̄

d qi

With the rescaling (qi, pi) → (qi, c
√
GM pi) we arrive to the Hamiltonian

function (1.3), that is clearly 2π-periodic due to dependency of ϑ only by the
cosine function.

1.1.1 Hamiltonian vector field

It is known that the system defined by the Hamiltonian (1.3) has five equi-
librium points (the collinear L1, L2, L3 and the equilater L4, L5) and that
they are the same equilibrium points of the Circular Restricted case.
In this thesis we are interested in the study of the equilateral points, and,
due to their symmetry, we choose to study L4, which correspond to the point

L4 = (
1

2
− µ,

√
3

2
,−

√
3

2
,
1

2
− µ).

The Hamiltonian vector field relative to the Hamiltonian (1.3) is by definition
XH = E4 ∇H , so its linearization around L4 results in the form DXH =
E4H

′′, where H ′′ is the Hessian of H calculated in L4. Through a canonical
transformation it is possible to translate L4 in the origin, so the linearization
(DXH)|(0,0,0,0) can be write as

Aµ,e(ϑ) =










0 1 1 0
−1 0 0 1

− 1
4 (1+ e cos (ϑ))

− e cos (ϑ)
1+ e cos (ϑ)

− 3
√
3 (2µ−1)

4 (1+ e cos (ϑ))
0 1

− 3
√
3 (2µ−1)

4 (1+ e cos (ϑ))
5

4 (1+ e cos (ϑ))
− e cos (ϑ)

1+ e cos (ϑ)
−1 0











. (1.9)

Note that the matrix (1.9) depends on ϑ and that it is parametric through
µ and e.
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1.2 Extended phase space

For what we have just said, L4 is an equilibrium of a system of four periodic
ϑ-dependent differential equations, but we can read them as periodic solu-
tions of a system of five autonomous differential equations in the extended
phase space. Then, through the Poincaré theory, we can study the stability of
the periodic orbit as the stability of the associated fixed point on a Poincaré
map.
If we call P the Poincaré map and ȳ its fixed point, a version of the Lyapunov
spectral theorem establishes that if at least one of the eigenvalues of DP (ȳ)
is in absolute value greater than 1 then ȳ is instable, and if all the eigenva-
lues of DP (ȳ) are in absolute value smaller than 1 then ȳ is asymptotically
stable. So what we have to do now is to find how to get the spectrum of the
linearization of a Poincaré map.
To achieve our purpose we have first to define the monodromy matrix of a
periodic orbit and its connection with the Poincaré map.

Definition 1. Let us consider a hamiltonian vector field X, ΦX
t its flow at

time t, γ a 2π-periodic orbit and ȳ ∈ γ. The matrix

M = DΦX
2π(ȳ) (1.10)

is called the monodromy matrix of γ.

The matrix DΦX
t (y) satisfies, ∀y and ∀t, the variational equation

d

dt
DΦX

t (y) = DX(ΦX
t (y))DΦX

t (y)

with the initial condition DΦX
0 = I (because ΦX

0 is the identity function).
So the monodromy matrix M of a 2π-periodic orbit is the solution, evaluated
in 2π, of the differential equation

Ṁ = DX(ΦX
t (y))M , M(0) = I . (1.11)

The following Proposition give us the relation between the eigenvalues of the
monodromy matrix and the eigenvalues of the linearization of its correlated
Poincaré map.

Proposition 2. Let us consider an hamiltonian vector field X, ΦX
t its flow at

time t, γ a 2π-periodic orbit and ȳ ∈ γ. Let us also consider the monodromy
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matrix M and the linearization of the Poincaré map DP (ȳ). Then

σ(M) = σ(DP (ȳ)) ∪ {1} (1.12)

where σ(A) indicates the set of all eigenvalues of the matrix A.

Proof. Refer to [7].

Returning to our problem, by using in (1.11) that ΦXH

t (ȳ) = L4 ∀t and
that (DXH)|L4

(ϑ) is the matrix defined in (1.9), the monodromy matrix of
the periodic orbit associated to L4 is the solution M(2π) of the system

Ṁ = Aµ,e(ϑ)M , M(0) = I4. (1.13)

As the system is Hamiltonian, it is known that the monodromy matrix is a
symplectic matrix, and therefore it is known that if λ is an eigenvalue of M
also 1

λ
,λ̄, 1

λ̄
are. Using this characterization of the spectrum of M together

with (1.12), for the previously mentioned Lyapunov spectral theorem we can
conlude that we have linear stability if all the eigenvalues of M are in absolute
value equal to 1.
Thus, to determine the region of linear stability of L4 we can apply the
following algorithm: µ̄ and ē are fixed on the parameter plane and then the
monodromy matrix is calculated numerically using (1.13); the couple (µ̄, ē) is
considerated to represent a parametric configuration of linear stability if all
the eigenvalues of M are in absolute value equal to 1. Iterating this algorithm
for different points on the parameter plane, the linear stability region for L4

in the ERTBP appears as the black dotted area in Figure 1.1.

1.3 Hamiltonian vector field with E-property

In this section we explain how to halve the integration period of (1.13). We
start defining a useful property for system of differential equations, called
the E-property, described by Hale in [3] and then we show how to take ad-
vantage of this property in our problem, retracing the work of Meire and
Vanderbauwhedein (see [6]).

Definition 2. A system of n differential equations Ẏ = A(t) Y is said to have
property E whith respect to S if there exists a symmetric, constant matrix S
of order n such that S2 = In and

A(−t) = −S A(t)S .
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0.00 0.01 0.02 0.03 0.04
Μ

0.2

0.4

0.6

0.8

1.0
e

Figure 1.1: graphic elaboration in Mathematica 8 of Fortran 90 numerical
results (see Chapter 3). The black dotted area indicates the linear stability
region for L4 in the ERTBP.

This property was described for systems of differential equations, and,
considering a system that is T -periodic, it can be improved as follows

Proposition 3. Let us consider a system of differential equation Ẏ = A(t) Y ,
where Y and A are n xn matrices and A is T -periodic and continuos in t,
and let us also assume that this system has the property E with respect a

matrix S for a fixed matrix S. Then

Y (t) = S Y (−t) S ∀ t ∈ R (1.14)

and

Y (T ) = S Y

(

T

2

)−1

S Y

(

T

2

)

(1.15)

where Y is a fundamental matrix of Ẏ = A(t) Y satisfying Y (0) = In.

Proof. Note first that if Y (t) is a solution of Ẏ = A(t) Y also S Y (−t) is:
˙(S Y (−t)) = −S Ẏ (−t) = −S (A(−t) Y (−t)) as so we have that Ẏ (−t) =

(−S−1)(−S A(−t) Y (−t)) = A(−t) Y (−t); with the same process it can be
shown that also S Y (−t)S is a solution of Ẏ = A(t) Y .
Since (S Y (−t)S)

∣

∣

t=0
= S In S = S2 = In and Y (t)

∣

∣

t=0
= In, we have prove

that Y (t) and S Y (−t)S are two solutions of the same equation with the
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same initial condition and so (1.14) is proved.
Setting t = −1

2
T in (1.14) and remembering, by the property of periodic

systems, that Y (t + T ) = Y (t) Y (T ), we obtain directly by substitution
(1.15).

The system in (1.13) does not have the E-property, but acting as ex-
plained below we can overcome this lack. The following Proposition, that
explains how achieve our purpose, presents the Hamiltonian version of the
Lagrangian transformation theorized by Szebehely in [8].

Proposition 4. Let us fix a ϕ such that it solves sin (2ϕ) =
√
3 (1−2µ) cos (2ϕ).

Performing on (1.3) the canonical transformation
{

q̃ = Aq

p̃ = A−T p
where A =

(

cos (ϕ) − sin (ϕ)
sin (ϕ) cos (ϕ)

)

.

the vector field of the Hamiltonian function that is obtained, linearized
around L̃4 (that is the equivalent of L4 in the new coordinate system) is
represented by the matrix

Bµ,e(ϑ) =












0 1 1 0
−1 0 0 1

−2 e cos(ϑ)+3
√

3(µ−1)µ+1−1

2 e cos(ϑ)+2
0 0 1

0 −2 e cos(ϑ)−3
√

3(µ−1)µ+1−1

2 e cos(ϑ)+2
−1 0













. (1.16)

Matrices (1.16) and (1.9) represent the linearization of two Hamiltonian
functions related by a canonical transformation, so we can use (1.16) instead
of (1.9) fot the calculation of the monodromy matrix, and the relation (1.13)
becomes

Ṁ = Bµ,e(ϑ)M , M(0) = I4. (1.17)

The advantage of (1.16) is that it has the property E with respect to

S =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1









, (1.18)

and this allow us to integrate the equation (1.17) untill π instead of 2π, and to
derive the monodromy matrix simply via (1.15), halving the computational
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time. We come back numerically on this point in Chapter 3.
The region of linear stability for L4 which is delineated by using the E-

property-way is obviously the same as found in the preceding section (and
shown in Figure 1.1).



Chapter 2

Bounding the stability region

In this chapter we analyze an alternative less-known approach to our problem,
starting from the Lagrangian1 formulation of the ERTBP. In the first part
we retrace the work of Tschauner (see ([9])) showing how to separate the
Lagrangian fourth-order system in two independent second-order systems.
In the second part we exploit this separation theory together with the E-

property, presented in the previous chapter, in order to define some boun-
daries for the stability region of L4 on the parameter plane µ-e, as shown by
Meire in [5].

2.1 Separation of the fourth-order system

As mentioned, we start from the Lagrangian formulation of the problem. By
making with a Lagrangian approach what we have done in the Hamiltonian
case in the first Chapter, the linearization in L4 of the Lagrangian vector
field that derives is

(

q̇
v̇

)

=

(

O2 I2

r(ϑ)C 2E2

)(

q
v

)

, (2.1)

where C =

(

c1 0
0 c2

)

has components c1 = 3
2

(

1 +
√

3(µ− 1)µ+ 1
)

and

c2 =
3
2

(

1−
√

3(µ− 1)µ+ 1
)

, and r(t) = 1
1+e cos (ϑ)

.

1We also tried to recreate all the theories presented in this chapter from the Hamiltonian
point of view, but without success, because of their strong Lagrangian foundation. This
does not mean that it is impossible to overcome this difficulty.
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Proposition 5. Assume

g(µ, e) =
e4

3(µ− 1)µ+ 1
+ 2e2 + 27(µ− 1)µ+ 1 > 0 . (2.2)

Performing the θ-dependent transformation

(

q
v

)

=

(

I2 I2

P+
µ,e(ϑ) P−

µ,e(ϑ)

)(

η
ξ

)

, (2.3)

where

P±
µ,e(ϑ) = r(ϑ)

(

p11 p±12
p±21 p22

)

(2.4)

with
p11 = − e

2
sin (ϑ)− 3 e2

4 (c2−c1)
sin (2ϑ)

p±12 =
(

h±
2 + e cos (ϑ)− 3 e2

4 (c2−c1)
cos (2ϑ)

)

p±21 = −
(

h±
1 + e cos (ϑ) + 3 e2

4 (c2−c1)
cos (2ϑ)

)

p22 = − e
2
sin (ϑ) + 3 e2

4 (c2−c1)
sin (2ϑ)

c1 and c2 defined as in (2.1) and h±
i = 1

4
(2 ci+1+∓

√

g(µ, e)), (2.1) becomes

(

η̇

ξ̇

)

=

(

P+
µ,e(ϑ) O2

O2 P−
µ,e(ϑ)

)(

η
ξ

)

(2.5)

Note: to make the notation easier to follow, henceforth in this Chapter
we use P±(ϑ) instead of P±

µ,e(ϑ). This does not remove the fact that the
matrices P±(ϑ) are still parametric.

Proof. First of all we have to verify that the transformation (2.3) is invertible,
that is

det

(

I2 I2

P+(ϑ) P−(ϑ)

)

6= 0

i.e. the four columns of the matrix








1 0 1 0
0 1 0 1

r(ϑ) p11 r(ϑ) p+12 r(ϑ) p11 r(ϑ) p−12
r(ϑ) p+21 r(ϑ) p22 r(ϑ) p−21 r(ϑ) p22









must be linearly independent. This is equivalent to impose

r2(ϑ) det

(

p11 p11
p+21 p−21

)

and r2(ϑ) det

(

p+12 p−12
p22 p22

)
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and the condition that results is g(µ, e) 6= 0, as assumed.
Applying the transformation (2.3) to (2.1) we obtain the system

(

η̇

ξ̇

)

= (P+ − P−)
−1

(

W11 W12

W21 W22

)(

η
ξ

)

(2.6)

where
W11 = 2E2P+ − P−P+ + r(ϑ)C − P ′

+

W12 = −P 2
− + 2E2P− + r(ϑ)C − P ′

−
W21 = P 2

+ − 2E2P+ − r(ϑ)C + P ′
+

W22 = −2E2P− + P+P− − r(ϑ)C + P ′
− .

Requiring that the anti-diagonal elements of the 4x4 matrix in (2.6) are the
null 2x2 matrix, i.e. imposing W12 = O2 and W21 = O2, we obtain

{

P ′
− = −P 2

− + 2EP− + r(ϑ)C

P ′
+ = −P 2

+ + 2EP+ + r(ϑ)C
(2.7)

and, using these conditions in order to simplify W11 and W22, (2.6) becomes

(

η̇

ξ̇

)

= (P+ − P−)
−1

(

P 2
+ + P−P+ O2

O2 P−P+ − P 2
−

)(

η
ξ

)

that is claerly equivalent to (2.5).
Now it remains to be proved that P±(ϑ), as defined in (2.4), are solutions of
the Riccati equations (2.7), but it is easy to verify by substitution.

Note that we have just shown that the transformation (2.3), with P±(ϑ)
as in (2.4), realizes (2.5), but not the reason why (2.4) should be in that
form: for a constructive proof of P±(ϑ) refer to [9].

So we can split the 4x4 system (2.1) in two independent 2x2 systems

η̇ = P+(ϑ) η ξ̇ = P−(ϑ) ξ (2.8)

where P±(ϑ) are defined as in (2.4).
It is easy to verified that both systems in (2.8) are 2π-periodic and that they

have the property E with respect to S, with S =

(

1 0
0 −1

)

.

Now it is clearly possible to perform Floquet theory, similar to what we did in
the previous Chapter with the Hamiltonian vector field, separately on both
systems in (2.8). What we do instead, is to explore a different approach to
the investigation of the stability region of L4, which is tied directly to the
separation theory just discussed.
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2.2 Transition curves

In this section we discuss the existence of the transition curves, where with
‘transition curve’ we mean a curve that separates the region of linear stability
from the region of instability of L4 on the plane µ-e.
As can be seen in Figure 2.1, in the parametric region of which we are inte-

a HΜ, eL

b HΜ, eL
g HΜ, eL

0.00 0.01 0.02 0.03 0.04 0.05
Μ0.0

0.2

0.4

0.6

0.8

1.0
e

Figure 2.1: transition curves on the parameter plane.

rested we can note three different transition curves, and we call them a(µ, e),
b(µ, e) and g(µ, e). As said by Tschauner in [9], g(µ, e) is the only analitical
transition curve we can find on the parameter plane, and its existence is
directly related to the separation theory presented in the previous section:
g(µ, e), in fact, is the curve already defined in (2.2). What interests us
is that many other transition curves, including a(µ, e) and b(µ, e), can be
found numerically following the theory proposed by Meire (refer to [5]), and
so what we do now is to retrace his work.
Note that in this section, for our convenience, we base all the discussion on
the system

Ẏ = P+(ϑ) Y , Y (0) = I2 (2.9)

but everything we say holds true for Ẏ = P−(ϑ) Y .
We start considering the following Lemma, that there will soon be useful.

Lemma 1. Let us consider the system (2.9), then its monodromy matrix is
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in the form

M =

(

α β
γ α

)

. (2.10)

Proof. Calling Y (ϑ) the fundamental matrix of (2.9), we define the mo-

nodromy matrix as M = Y (2 π) =

(

α1 β
γ α2

)

. As already said, (2.9) has

the E-property with respect to S =

(

1 0
0 −1

)

and so, using (1.15) with

Y (π) =

(

y11 y12
y21 y22

)

, (2.11)

we have to solve

(

α1 β
γ α2

)

=

(

1 0
0 −1

) (

y11 y12
y21 y22

)−1 (
1 0
0 −1

) (

y11 y12
y21 y22

)

. (2.12)

What results is

α1 = α2 =
y11 y22 + y12 y21
y11 y22 − y12 y21

(2.13)

β =
2 y22 y12

y11 y22 − y12 y21
(2.14)

γ =
2 y11 y21

y11 y22 − y12 y21
(2.15)

and calling α = α1 = α2 we obtain (2.10).

As said by Meire in [5], along the transition curves the eigenvalues of M
are both equal to 1 or −1, and using this property, together with the previous
Lemma, we get to state the following Proposition.

Proposition 6. Let us consider the systems in (2.9) with Y (ϑ) as fundamen-
tal matrix. If the matrix P+(ϑ), defined as in (2.4), takes parameter values
on a transition curve, then at least one of the components of Y (π) is equal
to zero.

Proof. Knowing that det(Y (2 π)) = 1 and that along the transition curves
σ(Y (2 π)) = ±{1, 1}, we get to set the system

{

α2 − β γ = 1

(α± 1)2 − β γ = 0
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that give us the condition β γ = 0. Using the definition of β and γ as in
(2.14) and (2.15), impose β γ = 0 means

4 y22 y12 y11 y21
(y11 y22 − y12 y21)2

= 0 (2.16)

which is clearly equivalent to ask that at least one of the components of Y (π)
is zero.
Now if we impose y11 = 0 in (2.16), by (2.13), (2.14) and (2.15) we obtain
that the monodromy matrix is in the form

(

−1 β
0 −1

)

with two eigenvalues −1

and by imposing y22 = 0 we obtain

(

−1 0
γ −1

)

still with two eigenvalues −1.

In the same way, by imposing y12 = 0 or y21 = 0 we obtain

(

1 β
0 1

)

or

(

1 0
γ 1

)

, both matrices with two eigenvalues 1.

So, the choice of which component to make 0 in (2.16) identifies a different
transition curve on the parameter plane µ-e.

What we have to do now is, therefore, to find which particular compo-
nents of (2.11) are associated to the transition curves of our interest a(µ, e)
and b(µ, e): for this refer to the Subsection 3.2.1 of the next Chapter.
The numerical advantage of this approach is obvious: it allows us to investi-
gate the parametric stability of L4 simply integrating untill π both systems
in (2.8) and searching for the zeros among the components of their solutions,
without computing eigenvalues as done with the previous methods.



Chapter 3

Numerical results

In the two previous Chapters we discussed theoretically different approaches
to the investigation of the stability of L4, all applicants the integration of
some differential equations. In this final part we want to present and discuss
some of our main numerical results and compare them with those that were
obtained from Danby and Meire (see [2] and [5]).

3.1 Algorithms

The main numerical operation to be performed is certainly the integration
of matrix differential equations in the form

Ẏ = Rµ,e(ϑ) Y , Y (0) = I4, (3.1)

where the 4x4 parametric matrix Rµ,e(ϑ) corresponds to:

• Aµ,e(ϑ) as in (1.13), associated to the Hamiltonian vector field, or

• Bµ,e(ϑ) as in (1.17), associated to the Hamiltonian vector field with the
E-property, or

• Pµ,e(ϑ) as in (2.5), the block diagonal matrix which derives from Tschauner’s
theory presented in the second Chapter.

The first numerical result that we want to achieve is, of course, the de-
termination of the linear stability of L4 on the parameters plane µ-e; to do
this we must first decide which algorithm to work, which integration step to
use and which error tolerance to esteem.
We consider the explicit Runge-Kutta algorithms of order 4, 8 and 12 and

21
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we map the subset of the parameter plane defined by [0, 0.05]x[0, 1]1 with a
grid of 100 equispaced points: we search for an integration step for which the
error made (compared to the maximum modulus of the components of the
solution) is ∼ 10−8. By implementing those three algorithms in Fortran 90

we obtain the results shown in Table 3.1.

Ẏ = Rµ,e(ϑ) Y , Y (0) = I4

integrating untill 2π integrating untill π (with property E )
Rµ,e(ϑ) = Aµ,e(ϑ) Rµ,e(ϑ) = Bµ,e(ϑ) Rµ,e(ϑ) = Pµ,e(ϑ)

RK4 RK8 RK12 RK4 RK8 RK12 RK4 RK8 RK12
2π
5000

2π
200

2π
40

2π
3900

2π
128

2π
32

2π
530

2π
25

2π
12

698s 123s 42s 223s 31s 14s 293s 40s 26s

Table 3.1: comparison of algorithms on the three different differential systems
in study. The second last row shows the integration step that should be used
for each system and each algorithm for having an mean error on the matrix
∼ 10−8. The last row shows the computational time that was needed for 100
points in each case by running the algorithms on an Intel Pentium Dual

Core E2160 (1.8 GHz).

As we expected, we can immediately see that, whatever the algorithm
used, the integration of (3.1) with (1.17) untill π requires less computational
time compared to integrating with (1.13) untill 2π; however, what was less
expected according to the theory, is that the saving time is greater than
50%: this is due to the fact that, in addition to integrate over one half
period, we can use a less-fine discretization. Regarding the integration with
(2.5) we can say that it would be convenient because of its convergence for
lager integration steps, except that the higher number of evaluations of the
parameters to be carried out worsens the computational time.

3.2 Stability region in the µ-e plane

So, according to the results presented in Table 3.1, we decide to integrate the
system (3.1) with Rµ,e(ϑ) = Bµ,e(ϑ) using the explicit Runge-Kutta of order

1It is known (see for example [2]) that the stability region for L4 in the ERTBP is
certainly for values of µ in the range 0 ≤ µ ≤ 0.05, so there is no interest in investigating
out of these intervals.
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12. The results of this numerical work has already been shown in Figure 1.1.

3.2.1 Numerical and analytical boundaries

Now we treat the alternative approach set out in the second Chapter: we show
how the curve g(µ, e) = 0 (as defined in (2.2)) appears to be a transition curve

0.00 0.01 0.02 0.03 0.04 0.05

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.1: graphic elaboration in Mathematica 8 of Fortran 90 numerical
results. The black dotted area indicates the linear stability region for L4 in
the ERTBP, the shaded area represents the subset of the plane µ-e for which
the condition (2.2) is satisfied.

and we illustrate the numerical results obtained by the implementation of the
algorithm for the search of other transition curves, as explained in Section
2.2.
In Figure 3.1 is indicated, as a shaded area, the subset of the plane of the
parameters that satisfies the condition g(µ, e) > 0 (as requested in (2.2)) and
from this we can deduce that the condition g(µ, e) = 0 is a right edge for the
area of stability. Due to our interest for values of µ and e in [0, 0.05]x[0, 1],
we can explicit the condition g(µ, e) = 0 as a function of µ, satisying

e(µ) =

√

−3µ2 + 2
√
6
√

−3µ4 + 6µ3 − 4µ2 + µ+ 3µ− 1 . (3.2)

We can perform a simple test for verifying the goodness of this result: in-
tersecting e(µ) with the axis e = 0 we find the point (0.0385209, 0) that
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corresponds to the well-known Routh value, i.e. the point (µRouth, 0) that
represents the upper bound for the linear stability region of L4 in the Circu-
lar Restricted Three-Body Problem.
Remembering that (3.2) is the only analytical transition curve that we can
find, for the detection of other transition curves we operate as done by Meire
([5]): we integrate untill π the system

Ẏ = P+
µ,e(ϑ) Y , Y (0) = I2 (3.3)

with P+
µ,e(ϑ) as defined in (2.4), and look for what values of µ and e it results

that y11 or y22 (components of the matrix Y (π) as in (2.11)) is equal to zero.
Of course, we should also investigate what happens using P−

µ,e(ϑ) and see
what kind of curves are generated imposing y12 = 0 and/or y21 = 0, but a

0.00 0.01 0.02 0.03 0.04 0.05
Μ0.0

0.2

0.4

0.6

0.8

1.0
e

0.00 0.01 0.02 0.03 0.04 0.05
Μ0.0

0.2

0.4

0.6

0.8

1.0
e

Figure 3.2: points on the parametric plane for which the component y11
(figure on the left) and y22 (figure on the right) of the solution of (3.3) are
0 with a numerical tolerance ∼ 10−7. It is clearly seen that using these two
curves together with (3.2) we define the same stability region of Figure 1.1.

posteriori it is seen that all the information we need for circumscribing the
stability region are related to P+

µ,e(ϑ). A graphic justification of what we
have just said is given in Figure 3.2.

3.2.2 Right limit point

The stability region of L4, as shown in Figure 1.1, presents, in addition
to the two intersections with the axis µ = 0, three limit points: calling
them Γ, Σ and Λ, they are identified in Figure 3.3. It is evident that the
points Γ and Σ are related to the Circular Restricted problem, while point
Λ is a peculiarity of the elliptical version. One who studied the stability,
using his words, “in the sarp and thin cusp”, was Danby (see [2]) that has
come to state the approximation Λ = (0.04698, 0.3143): what we would do
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in this part is just to improve this approximation. We can see Λ as the
only point of intersection between the analitical curve e(µ) (defined as in
(3.2)) and the numerical transition curve of the eigenvalues −1 (that is the
one shown in Figure 3.2.2). In other words, we can define Λ as the only
point on the analitical curve for which the monodromy matrix of the system
Ẏ = P+

µ,e(µ)(ϑ) Y has both the eigenvalues equal to −1. By implementing
this searching algorithm in Fortran 90, with arbitrary precision, we arrived
in estimating Λ as the point

0.04699080701821065361786925 , 0.3145071597549351412371152.

Note that in this case we integrated with a Runge-Kutta of order 4, because
it is pointless to use higher order algorithms since to the slow convergence
that all our three algorithms considered show in a neighborhood of Λ.

3.3 Reduced integration

L

SG

0.025 0.030 0.035 0.040 0.045
Μ0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
e

Figure 3.3: identification of the points
of intersection between two of the tran-
sition curves and the analytical one.

Assuming that the transition curves
useful for limiting the region of
stability are related exclusively to
the matrix P+

µ,e(ϑ) (as said in Sub-
section 3.2.1), we can reasonably
believe that the region of stabi-
lity itself is some way linked to
P+
µ,e(ϑ). So we integrate the sys-

tem (3.3) first with P+
µ,e(ϑ) and then

with P−
µ,e(ϑ), and finally we com-

pare the stability areas that their
monodromy matrices define. What
it results is shown in Figure 3.4 and
confirms our expectations, and so
we can affirm that the stability re-

gion defined integrating the fourth-order system

Ẏ =

(

P+
µ,e(ϑ) O2

O2 P−
µ,e(ϑ)

)

Y , Y (0) = I4 (3.4)

is the same that can be found integrating the second-order system

Ẏ = P+
µ,e(ϑ) Y , Y (0) = I2. (3.5)

The advantage of this is clearly evident, in particular as regards the compu-
tational time, and Table 3.2 is an explanation of this.
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Figure 3.4: Every black dotted point represent a parametric configuration
for which the monodromy matrix of (3.3) (generated with P+

µ,e(ϑ), in the left
figure, and with P−

µ,e(ϑ) in the right one) has all eigenvalues in norm equal
to 1. The curve drawn in both figures is the function (3.2).

System (3.4) System (3.5)
integrating untill π

RK4 RK8 RK12 RK4 RK8 RK12
∼ 10−9 ∼ 10−14 ∼ 10−15 ∼ 10−9 ∼ 10−14 ∼ 10−15

229s 927s 1504s 118s 502s 843s

Table 3.2: comparison of algorithms on a grid of 100 equispaced points on
the parameter plane. The second last row shows the mean error made for
each algorithm (compared to the maximum modulus of the components of the
solution) using 2π

1200
as integration step. The last row shows the computational

time that was needed in each case.

It is not difficult to verify (numerically) that what has been said about
P+
µ,e(ϑ) applies on the whole parameters plane and not only in the region

[0, 0.05]x[0, 1] of which we have discussed.
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