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Abstract

Given the system of ordinary differential equations (ODEs)

ẏ = f(y), y(0) = y0 ∈ Rn,

assume H : Rn → R is an invariant or the energy of the system, and that we have
f(y) = S∇H(y) with S a n× n, skew-symmetric matrix1.

To derive energy-preserving numerical integration methods for these problems one
can use discrete gradient techniques, [3], [4]. Such methods rely on appropriate ap-
proximations of ∇H(y) and S (in the case S depends on y), and in general can not
be expanded in a B-series. One surprising exception is the average vector field (AVF)
method, namely

yn+1 − yn = h

∫ 1

0
f((1− ξ)yn + ξyn+1) dξ, yn ≈ y(tn), n = 0, 1, . . . . (1)

Under the assumption that S is a constant matrix, this is both a B-series method and a
discrete gradient method, as recently observed by Quispel and McLaren [5].

Faou, Hairer and Pham, [2], and Chartier, Faou and Murua, [1], characterized pre-
cisely all energy preserving B-series for Hamiltonian problems (ẏ = S∇H(y), with S
the canonical symplectic matrix).

The recent work on (1) brings new possibilities for the construction of concrete
energy-preserving, B-series methods.

After a brief introduction of skew-gradient systems and B-series, we will discuss
possible extensions of (1) within the class of B-series methods. To illustrate the perfor-
mance of the methods some numerical experiments on partial differential equations will
be presented.

1This implies that the energy H is preserved along the solution of the ODE, that is

dH(y(t))

dt
= ∇H(y)T · f(y) = ∇H(y)T · S∇H(y) = 0.
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