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Francesco Fassò∗ Arturo Ramos† and Nicola Sansonetto‡

(October 16, 2007)

Abstract

We consider nonholonomic systems with linear, time–independent constraints subject to
positional conservative active forces. We identify a distribution on the configuration manifold,
that we call the reaction–annihilator distribution R

◦, the fibers of which are the annihilators
of the set of all values taken by the reaction forces on the fibers of the constraint distribution.
We show that this distribution, which can be effectively computed in specific cases, plays a
central role in the study of first integrals linear in the velocities of this class of nonholonomic
systems. In particular we prove that, if the Lagrangian is invariant under (the lift of) a
group action in the configuration manifold, then an infinitesimal generator of this action has
a conserved momentum if and only if it is a section of the distribution R

◦. Since the fibers
of R

◦ contain those of the constraint distribution, this version of the nonholonomic Noether
theorem accounts for more conserved momenta than what was known so far. Some examples
are given.

Keywords: Nonholonomic systems, First integrals, First integrals linear in the velocities, Symme-
tries of nonholonomic systems, Reaction forces, Noether theorem, Gauge momenta.

1 Introduction

An obstruction to extending Noether theorem to nonholonomic systems is related to the fact that,
in general, not all the components of the momentum map of a lifted action which preserves the
Lagrangian are conserved quantities. In this article we consider nonholonomic systems with linear,
time–independent constraints subject to positional conservative forces, so that the Lagrangian is
time independent and has the form kinetic energy minus potential energy. If the Lagrangian is
invariant under (the tangent lift of) a group action on the configuration manifold, then a stan-
dard formulation of a ‘nonholonomic Noether theorem’ states that those infinitesimal generators
of the group action which are sections of the constraint distribution D, namely the ‘horizontal
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symmetries’, have a conserved momentum [2, 20, 3, 8, 11, 14, 21, 7, 15]. Horizontality of the
infinitesimal generator is however only a sufficient condition. A necessary and sufficient condition
follows from the work of [13, 24]: a component of the momentum map is conserved if and only
if the tangent lift of the orthogonal projection of the infinitesimal generator onto the constraint
distribution preserves the Lagrangian. (Here ‘preserves’ means ‘infinitesimally preserves on the
constraint manifold’ and the orthogonality is relative to the kinetic energy metric). The aim of
this paper is that of providing a necessary and sufficient condition on the infinitesimal generator,
rather than on its projection onto the constraint distribution, and to show that, in nonholonomic
systems, the class of conserved components of the momentum map is not restricted to horizontal
symmetries but can be (even significantly) larger than that.

Specifically, we shall prove the following version of a ‘nonoholonomic Noether theorem for
lifted actions’: if the Lagrangian is invariant under a lifted group action, then an infinitesimal

generator has a conserved momentum if and only if it is a section of a certain distribution R
◦

on the configuration manifold. The fibers of the distribution R◦ are the annihilators of the sets
of all values taken by the reaction forces on the fibers of the constraint distribution, namely, on
all possible velocities compatible with the constraints. For this reason, we call R◦ the reaction–

annihilator distribution.
As it will appear from the forthcoming treatment, the distribution R◦ plays a key role in

the study of first integrals linear in the velocities of linear nonholonomic systems. In order to
understand the origin of this distribution, recall that d’Alembert principle postulates that the
reaction forces take values in the annihilator D

◦ of the constraint distribution D. However, all
that matters for the existence of a conserved quantity of the equations of motion are the values
that the reaction forces assume when evaluated on the velocities compatible with the constraints,
that is, on the fibers of D (see the proof of Proposition 2). These values form in general only a
subset of the annihilator of D, that we call the ‘reaction set’. Since the reaction forces are known
functions of position and velocities, there is an explicit expression for the reaction set.

If the reaction set has positive codimension in D◦, then the fibers of its annihilator R◦ are larger
than those of D, and may host more infinitesimal generators of the group action than D. This is why
the consideration of the reaction–annihilator distribution may produce more conserved components
of the momentum map than what has been known so far. We shall illustrate this mechanism on
a number of sample cases in Section 5, but for illustrative purposes we note here that the most
striking example is that of a nonholonomic system for which the reaction forces identically vanish
(for example a sphere which rolls without slipping on a horizontal plane). In this case, the fibers
of R◦ consist of the entire tangent spaces to the configuration manifold and the momentum map
of any lifted action which leaves the Lagrangian invariant is conserved. However, the fibers of R◦

may be strictly larger than those of D also in other, less obvious cases. Noticeably, this mechanism
can in principle produce conserved momenta in cases which, like Chaplygin systems [19, 8, 10, 12],
have no horizontal symmetries at all.

There is also another fact which leads to the emergence of the distribution R◦. As is well
known, and we shall recall in Propostion 1, the generator of a first integral of a nonholonomic
system which is linear in the velocities is only determined up to its component orthogonal (in the
kinetic energy metric) to the fibers of the constraint distribution [17, 18, 13, 24]. Therefore, it is
possible to consider generators which are sections of any distribution whose fibers contain those
of D. From this point of view, the distribution R◦ emerges as the answer to the natural question
“which generators of a first integral linear in the velocities preserve the Lagrangian?”. This is the
content of Proposition 2, which plays a key role in the entire argument.1 Among its consequences
are the use of the distribution R◦ to characterize the first integrals of a holonomic system which
persist under the addition of nonholonomic constraints (Corollary 2) and the above mentioned

1Proposition 2 as well can be regarded as a ‘nonholonomic Noether theorem’. In fact, in the literature, Noether

theorem is presented either as a statement on the conservation of momentum maps of symmetry groups, or as a

statement on vector fields which generate conserved momenta.
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version of the nonoholonomic Noether theorem for lifted actions (Corollary 3).
Here is an outline of the content of this paper. Section 2 is devoted to the reaction–annihilator

distribution. Section 3 to first integrals linear in the velocities. Section 4 to the nonholonomic
Noether theorem. Section 5 to some examples. A short section of Conclusions follows.

2 The reaction–annihilator distribution

In this Section we introduce the central object of this article, the reaction–annihilator distribu-
tion R◦. We use the Lagrangian description of nonholonomic systems since it is fully adequate
for the treatment of lifted actions, to which we restrict our analysis. For simplicity, we resort to
a coordinate description wherever possible and adequate. For general references on nonholonomic
systems see [22, 9, 12, 7].

As a starting point, consider a holonomic mechanical system with n-dimensional configuration
manifold Q and smooth Lagrangian L = T − V , with kinetic energy T (q, q̇) = 1

2 q̇ · A(q)q̇ and
potential energy V (q). Here, (q, q̇) are bundle coordinates on TQ and the kinetic matrix A is
symmetric and positive definite. A linear nonholonomic constraint of rank r, where 1 ≤ r < n,
is a non–integrable distribution D on Q of constant rank r. This distribution, which is called the
constraint distribution, can be locally defined by annihilation of k = n − r linearly independent
differential 1–forms on Q. Using local coordinates, the fibers Dq of the constraint distribution can
be described as the kernel of a k × n matrix S(q), which depends smoothly on q and has rank k
everywhere, namely

Dq = {q̇ ∈ TqQ : S(q)q̇ = 0 } . (2.1)

The constraint distribution can be also thought of as a sub–bundle D of TQ of dimension 2n− k,
which is called the constraint manifold.

As usual, we assume the validity of d’Alembert’s principle on ‘ideal’ or ‘perfect’ constraints,
namely, that the reaction forces annihilate (an appropriate jet extension of) D. As is well known,
this leads to a dynamical system on the constraint manifold D ⊂ TQ. The derivation of the
equations of motion is performed with a standard technique, which is based on the introduction of
Lagrange multipliers. Eliminating the multipliers give the reaction forces as a function

R : D → D◦ :=
⋃

q∈Q

D
◦
q ,

where D◦
q ⊂ T ∗

q Q is the annihilator of the fiber Dq. In local coordinates the resulting equations
have the form

d

dt

∂L

∂q̇
−

∂L

∂q
= R . (2.2)

Their restriction to D defines a vector field on D which gives the dynamics of the nonholonomic
system. We call this vector field the nonholonomic system (L, Q, D).

The expression of the map R : D → D◦ can be easily worked out in bundle coordinates (q, q̇),
see [2]: if the constraint distribution is described as in (2.1), then

R(q, q̇) = S(q)T
[

S(q)A(q)−1S(q)T
]−1

[

S(q)A(q)−1
(

β(q, q̇) + V ′(q)
)

− γ(q, q̇)
]

(2.3)

where β(q, q̇) ∈ R
n, V ′(q) ∈ R

n and γ(q, q̇) ∈ R
k have components

βi(q, q̇) =

(

∂Aij

∂qh

(q) −
1

2

∂Ajh

∂qi

(q)

)

q̇j q̇h , V ′
i (q) =

∂V

∂qi

(q) , γa(q, q̇) =
∂Saj

∂qh

(q)q̇j q̇h

(i = 1, . . . , n, a = 1, . . . , k).
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By construction, the restriction of the map R to each fiber Dq of the constraint distribution
takes values in the annihilator D◦

q . However, the image under R of each such fiber, namely the set

Rq :=
⋃

q̇∈Dq

R(q, q̇) ,

may be only a proper subset of D
◦
q . Correspondingly, the image under R of the constraint mani-

fold D may be a proper subset of the annihilator of the constraint manifold:

R :=
⋃

q∈Q

Rq ⊆ D◦ .

We call R the reaction set. (This name is not standard; in the literature, it is D◦ which is sometimes
called ‘reaction bundle’.)

Since the restriction of R to each fiber of D is a nonlinear map, the sets Rq need not be linear
or affine subspaces of T ∗

q Q. Nevertheless, the annhilators R◦
q ⊂ TqQ of these sets are linear spaces

and are thus the fibers of a distribution R◦ on Q, possibly of non–constant rank and non–smooth.
Since the space R◦

q contains all tangent vectors q̇ ∈ TqQ which annihilate all possible values of the
reaction forces on constraint motions through q, we call R◦ the reaction–annihilator distribution.

(Another possible name might be ‘zero–reaction–work distribution’)
Clearly

R
◦
q ⊇ Dq , q ∈ Q ,

with equality if and only if Rq contains an open subset of D◦
q . A simple dimension count indicates

that Dq is always a proper subspace of R◦
q if dim Dq < codimDq, which happens whenever n ≥ 4

and k > n/2. An extreme case is when the reaction forces vanish identically, as for instance for a
homogeneous ball rolling on a plane, when R◦ = TQ.

As we shall see, and has already been explained in the Introduction, the fact that D is a
(possibly proper) subset of R

◦ is relevant to a number of questions related to first integrals. Of
course, the determination of R◦ is more involved than that of D, but the first step towards it,
namely, the determination of the reaction force R (or of some equivalent quantity), has to be done
in order to write down the equations of motion. The determination of R as given in (2.3) can be
easily automated using any symbolic computation software, even though the resulting expression
may be rather cumbersome.

3 First integrals linear in the velocities

From now on, we use the following notation. If ξQ is a smooth vector field on Q, we denote by
ξTQ its tangent lift, namely the vector field on TQ which, in bundle coordinates (q, q̇), is given by

ξTQ =
∑

i

ξQ
qi

∂qi
+

∑

i

q̇j

∂ξQ
qi

∂qj

∂q̇i
.

Moreover, thinking of the Lagrangian L as given, we denote by p(q, q̇) := ∂L
∂q̇

(q, q̇) the momenta.

If E is a distribution on Q, then Γ(E) denotes the space of sections of E.
A first integral of a nonholonomic system (L, Q, D) is a smooth function F : D → R which

is constant along the solutions of (2.2). Using bundle coordinates and denoting by a dot the
inner product in R

n, a first integral which is linear in the velocities can be written as F (q, q̇) =
ξQ(q) ·p(q, q̇) for some smooth vector field ξQ on Q, that we call a generator of F ; we also say that
F is generated by ξQ. In the sequel, we will say for short linear first integral instead of first integral
linear in the velocities. There are several studies of the conditions under which a function which
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is linear in the velocities is a first integral of a nonholonomic system, see particularly [2, 17, 18].
Here we adopt a somewhat different point of view, focussing on the role of the reaction–annihilator
distribution R◦.

The first fact to be mentioned is that, because of the restriction to the constraint manifold D,
the generator of a linear first integral is never unique, even though it can be chosen in a unique way
by the requirement that it is a section of D. To our knowledge, this fact was proven by Iliev and
Semerdzhiev [17, 18], but see also [2, 13] and, for a generalization to nonlinear first integrals and
nonlinear constraints, [24]. In order to state this fact let us denote by A the Riemannian metric
on Q given by the kinetic energy of the holonomic system and by D⊥ the distribution whose fibers
D⊥

q are the A–orthogonal complements of the fibers Dq of D. Moreover, given a distribution E

on Q, we denote by E ∩ D⊥ the distribution with fibers Eq ∩ D⊥
q . The result of [17, 18] can be

rephrased, and formalized, as follows:

Proposition 1 Let F be a linear first integral of a nonholonomic system (L, Q, D). Consider

any regular distribution E on Q with fibers Eq such that

Dq ⊆ Eq

for all q ∈ Q. Then, there is a smooth generator ξQ
E
∈ Γ(E) of F and the set of all generators of F

which are sections of E is ξQ
E

+ Γ(E ∩ D⊥). In particular, F has a unique generator in Γ(D).

Proof. Let ξQ be a generator of F . Define ξQ
E

as the A–orthogonal projection of ξQ onto E. Since E

is a smooth distribution, ξQ
E

is a smooth section of E. That ξQ
E

is a generator of F follows from

observing that (ξQ − ξQ
E

) · p|D = (ξQ − ξQ
E

) · Aq̇|D = 0 because, for each q ∈ Q, ξQ(q) − ξQ
E

(q) is
A–orthogonal to any q̇ ∈ Eq and hence to any q̇ ∈ Dq. This same observation proves that a section

of E is a generator of F if and only if it is of the form ξQ
E

+ v with v a section of E and of D⊥.

Generators in Γ(D) have been extensively considered in connection with symmetries, see [2, 20,
3, 8, 24, 11, 14, 21, 15]. In this article we point out that, even though there is always a generator
in Γ(D), there may be reasons to consider generators which are sections of R◦.

The next proposition characterizes generators in R◦:

Proposition 2 Given a nonholonomic system (L, Q, D) and a smooth vector field ξQ on Q, any

two of the following three conditions imply the third:

C1. ξQ is a section of R◦

C2. ξTQ(L) = 0 in D

C3. ξQ is the generator of a linear first integral of (L, Q, D).

Proof. Write F = p · ξQ. Denoting by a dot the derivative along the flow of equations (2.2), we

have Ḟ = ṗ · ξQ + p · ξ̇Q =
(

∂L
∂q

+ R
)

· ξQ + ∂L
∂q̇

· ξTQ
q̇ , namely Ḟ = ξTQ(L) + R · ξQ. Thus, at

each point q ∈ Q, the vanishing in all of Dq of any two among Ḟ , ξTQ(L) and R · ξQ implies the
vanishing in all of Dq of the third. Since Rq = R(q, Dq), the vanishing of R(q, q̇) · ξQ(q) on Dq

amounts to ξQ(q) ∈ R◦
q .

This Proposition is the core of our analysis. It implies that, among all the generators of a
linear first integral, those which are sections of R◦ are exactly those which satisfy the invariance
condition C2. It also implies that any section of R

◦ which satisfies condition C2 is the generator of

a linear first integral of (L, Q, D). This statement is a generalization of a standard, very well known
result which has been obtained several times and is often regarded as a nonholonomic version of
Noether theorem: Any smooth section ξQ of D which satisfies condition C2 is the generator of a
linear first integral of (L, Q, D) [2, 20, 3, 13, 8, 11, 14, 21, 15]. In this regard we note that any
linear first integral has a generator with this property, a fact which also follows from [13, 24]. In
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fact, by Proposition 1, any linear first integral has a generator which is a section of D; since this
vector field satisfies conditions C1 and C3, Proposition 2 implies the following

Corollary 1 Let F be any linear first integral of a nonholonomic system (L, Q, D). Then, the

generator of F which is a section of D satisfies condition C2.

The consideration of generators in Γ(R◦) becomes particularly significant when linear first
integrals of the holonomic system (L, Q) are concerned. Since the generator of any linear first
integral of a holonomic system is uniquely determined, the characterization of those among these
integrals which are also first integrals of a nonholonomic system (L, Q, D) leads to the appearence
of the reaction–annihilator distribution R◦. Proposition 2 has indeed the following consequence:

Corollary 2 Consider a nonholonomic system (L, Q, D) and assume that F = ξQ · p is a first

integral of the holonomic system (L, Q). Then, F |D is a first integral of (L, Q, D) if and only if

ξQ is a section of R◦.

Proof. F is a first integral of the holonomic system (L, Q) if and only if ξTQ(L) = 0. Under this
hypothesis, C1 and C3 are equivalent.

An analytic characterization of the conditions under which a linear first integral of the holo-
nomic system is a first integral of the nonholonomic one was given by Iliev [17], without however
considering the role of the distribution R◦. Note that, in the context of Corollary 2, F |D also has
a generator in Γ(D), which is obtained by projection onto D, even when the generator ξQ of F
belongs to Γ(R◦) but not to Γ(D).

Example: Chaplygin’s sphere is a non–homogeneous sphere with the center of mass located
in the geometric center and three distinct moments of inertia relative to the center, which is
constrained to rotate without slipping on a horizontal plane, see particularly [15] and references
therein. Since the nonholonomic reaction force acts on the point of the sphere which is in contact
with the plane, the angular momentum M relative to the contact point is a conserved quantity
(even though the point itself moves). This is an instance of a ‘Chaplygin integral’ or ‘generalized
angular momentum integral’ [22]. The restriction to the constraint manifold of the components
of M are first integrals which are linear in the velocities. The vertical component of M is a first
integral of the holonomic system, so by Corollary 2 its (uniquely determined) generator is a section
of R◦. In fact, a computation (using e.g. Euler angles as local coordinates on SO(3) to write down
the Lagrangian, the constraints and the reaction forces) shows that it is a section of D. However,
the two horizontal components of M are not first integrals of the holonomic system. Computing
their generators from the expression of the angular momentum on TQ gives vector fields which, as
can be verified with a somewhat lengthy computation, are neither sections of D nor of R◦. Hence,
according to Proposition 2, they do no infinitesimally preserve the Lagrangian in D. Nevertheless,
by Propositions 1 and 2, generators which infinitesimally preserve the Lagrangian in D can be
obtained by projection onto D (or onto R

◦, or onto any distribution whose fibers are contained
between those of D and those of R◦).

4 The nonholonomic Noether theorem for lifted actions

We apply now the results of the previous section to nonholonomic systems with symmetry, specif-
ically to the conservation of the components of the momentum map of a lifted action.

Assume that a Lie group G acts on Q and denote by ηQ the infinitesimal generator corresponding
to a Lie algebra vector η ∈ g. If L is a G–invariant Lagrangian, that is ηTQ(L) = 0 for all η ∈ g,
then the momentum map J : TQ → g

∗ is a conserved quantity of the holonomic system (L, Q).
Equivalently, for any η ∈ g, the momentum

Jη := ηQ · p
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is a first integral of (L, Q). (The momentum map is in fact defined by 〈J(q, q̇), η〉 = Jη(q, q̇) for all
η ∈ g, see [4, 1]). Hence, Corollary 2 gives

Corollary 3 (The nonholonomic Noether theorem for lifted actions) Assume that a Lie group G
acts on Q and that the Lagrangian L is G–invariant. Then, for any η ∈ g, Jη|D is a first integral

of (L, Q, D) if and only if ηQ ∈ Γ(R◦).

As we already noticed in the Introduction, this characterization of the Lie algebra elements
which produce conserved momenta generalizes a very well known sufficient condition: if L is G–
invariant and ηQ ∈ Γ(D) then Jη|D is a first integral of (L, Q, D) [3, 8, 11, 14, 21]. If ηQ ∈
Γ(D), then η and ηQ are often called ‘horizontal symmetries’. We thus introduce the following
terminology, where we also relax the invariance condition on L to infinitesimal invariance on D:

Definition 1 Consider a nonholonomic system (L, Q, D), a Lie group G which acts on Q and a

vector η ∈ g.

i. If ηQ ∈ Γ(R◦), then η and ηQ are called R
◦–symmetries. A horizontal symmetry is a R

◦–

symmetry η such that ηQ ∈ Γ(D).

ii. An R◦–momentum is a linear first integral of (L, Q, D) generated by an R◦–symmetry. A

horizontal momentum is an R◦–momentum generated by a horizontal symmetry.

The fact that, if η ∈ g is an R◦–symmetry, then the R◦–momentum Jη|D is a first integral of
the nonholonomic system follows from Proposition 2. But in fact, Proposition 2 implies a stronger
statement: Given a nonholomic system (L, Q, D), a group G which acts on Q and a vector η ∈ g,

any two of the following conditions imply the third: ηTQ(L)|D = 0, ηQ is an R◦–symmetry, Jη|D
is a first integral.

The advantage of the formulation of Corollary 3 over the traditional one is that, since the fibers
of R◦ can properly contain those of D, a nonholonomic system with a G–invariant Lagrangian may
have more R

◦–momenta than horizontal momenta. We will give some examples in the next Section.
Note however that horizontal symmetries mantain an interest, because the ‘horizontality’ of η ∈ g

is a necessary condition for the flow of ηQ to leave the constraint manifold D invariant and hence
allow reduction of the nonholonomic system (see [6, 8, 24, 11, 14, 21, 12]). Thus, when establishing
which infinitesimal generators of a given group action allow reduction one should focus on horizontal
symmetries, but when judging which infinitesimal generators produce conserved momenta one
should consider R◦–symmetries.

Remark: The term ‘R◦–momentum’ is in a way redundant. By Corollary 3, an R◦–momentum
is nothing else than a ‘conserved component of the momentum map’ or ‘conserved momentum’.
Nevertheless, we think it might be preferable to use here this term for greater clarity.

5 Examples

We provide now a few simple examples of systems which have R◦–momenta which are not horizontal
momenta. The distribution R◦ could be easily determined in all cases, but its determination is not
always necessary, particularly on account of Corollary 2.

A. Hamiltonian subsystems and the sphere rolling on a plane. There are certain non-
holonomic systems for which the reaction forces identically vanish and the equations of motion are
the restriction to the constraint manifold D of the Lagrange equations for the holonomic system. In
these cases, D is an invariant submanifold of the holonomic Lagrange equations, the nonholonomic
system is a subsystem of the holonomic one, and the reaction–annihilator distribution R◦ coincides
with the tangent bundle TQ. In particular, the nonholonomic system has all the first integrals of
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the holonomic system (even though some of them might be trivial, being constant on D). Even
though very special, this case is encountered sometimes.

A simple case is that of a homogeneous sphere which rolls without slipping on a horizontal
plane under no active force but gravity. The derivation of the equations of motion is elementary
and shows that the reaction forces vanish identically, see e.g. [23, 22]. Therefore, the nonholonomic
system is a subsystem of the holonomic system in which the sphere is constrained to touch the
plane. Thus, the sphere rotates with constant angular velocity, its center of mass moves at constant
speed on a straight line and the system has five first integrals which are linear in the velocities—two
components of the linear momentum parallel to the plane and three components of the angular
momentum relative to the center of the sphere. Since the components parallel to the plane of
the angular momentum and of the linear momentum are related by the no–slipping constraint,
only three of these five first integrals of the nonholonomic system are functionally independent,
say the two components px and py of the linear momentum parallel to the plane and the vertical
component mz of the angular momentum. As in the case of the Chaplygin sphere of Section 3, the
generator of mz is a section of D. (The angular momentum of the Chaplygin sphere was relative to
the contact point, not to the center of the sphere, but the vertical component is the same). Instead,
the generators of px and py are obviously not sections of D, because translating the sphere does
not respect the constraint. However, they are sections of R◦ = TQ.

Let us now introduce a symmetry group. The holonomic system is invariant under translation
of the center of mass and under spatial rotations of the sphere. (There is also another SO(3)–
invariance, namely particle relabelling, which fully accounts for the integrability of the system, but
we do not consider it here). The momentum map of this R

2×SO(3) action has the linear momentum
and the angular momentum as its components. Their restriction to D gives the three independent
first integrals of the nonholonomic system. Among them, mz is a horizontal momentum. The
other two, px and py, are R◦–momenta but not horizontal momenta.

Remark: The fact that this nonholonomic system has the same linear first integrals of the
associated holonomic system was analytically proven in [17] without reference to the reaction forces
and to the fact that the nonholonomic system is a subsystem of the holonomic one.

B. The vertical coin. Let us now consider a disk which is constrained to roll without slipping
on a horizontal plane while standing vertically, see e.g. [8]. At first, assume there are no active
forces (except gravity, which plays no role). The holonomic system (the disk stands vertically and
touches the plane) has configuration manifold Q = R

2 × S1 × S1 3 (x, y, ϕ, θ), where (x, y) ∈ R
2

are cartesian coordinates of the point of contact C, ϕ is the angle between the x–axis and the
projection of the disk on the plane, and θ is the angle between a fixed radius of the disk and the
vertical. The Lagrangian is given by the kinetic energy which, assuming that the disk has unit
mass, is T = 1

2

(

ẋ2 + ẏ2
)

+ 1
2Jϕ̇2 + 1

2Iθ̇2, where J and I are the pertinent moments of inertia. All
four velocities are first integrals of the holonomic system.

The nonholonomic constraint of rolling without slipping consists of the fact that the point of
contact has zero velocity. Thus the rank–two constraint distribution has fibers

D(x,y,ϕ,θ) = span
R

{

cosϕ∂x + sin ϕ∂y + ∂θ , ∂ϕ

}

.

The constraint manifold D is six–dimensional and can be globally parametrized with the coordi-
nates (x, y, ϕ, θ, ϕ̇, θ̇). The equations of motion are

ẋ = θ̇ cosϕ , ẏ = θ̇ sin ϕ , ϕ̈ = 0 , θ̈ = 0 .

Thus, the velocities ϕ̇ and θ̇ are first integrals. Consequently, Corollary 2 ensures that the gener-
ators ∂ϕ and ∂θ of pϕ = Jϕ̇ and pθ = Iθ̇ are sections of R◦. However, only one of them, namely
∂ϕ, is a section of D.
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Let us now introduce a symmetry group. The Lagrangian T is invariant under an obvious
action of SE(2) × S1, where the first factor is rotation–translations of the disk and the second
factor is rotations of the disk around its axis, namely translations of θ, see [8]. As remarked in [8],
neither ∂ϕ nor ∂θ are horizontal symmetries. In fact, ∂ϕ is a section of D but is not an infinitesimal
generator of the action, while ∂θ is an infinitesimal generator of the action but is not a section
of D. However, since ∂θ is a section of R◦, pθ|D is an R◦–momentum.

Remarks: (i) Incidentally, the fact that ∂ϕ and ∂θ are sections of R◦ is easy to verify: the

equations of motion show that the reaction force is R(x, y, ϕ, θ, ϕ̇, θ̇) = ϕ̇θ̇(− cosϕ , sinϕ , 0 , 0).
Hence R◦

(x,y,ϕ,θ) = span
R
{cosϕ∂x + sin ϕ∂y , ∂ϕ , ∂θ}. Also, note that R◦ has rank three while D

has rank 2.
(ii) Even though ∂ϕ is not a horizontal symmetry for the above action of SE(2) × S1, it is a

horizontal symmetry for the abelian action of R
2 × S1 × S1 3 (λ, µ, α, β) given by (x, y, ϕ, θ) 7→

(x + λ, y + µ, ϕ + α, θ + β).

C. A symmetrically torqued vertical coin. We apply now a conservative force field to the
disk of the previous example, with potential energy V (ϕ). The Lagrangian is L = T − V , where
the kinetic energy T is as above. The equations of motion become

ẋ = θ̇ cosϕ , ẏ = θ̇ sin ϕ , θ̈ = 0 , ϕ̈ = −V ′(ϕ) .

Thus, pθ|D is still a first integral. As we know from the previous example, ∂θ is not a section
of D. However, it is a section of R◦ because pθ is also a first integral of the holonomic system with
Lagrangian L = T − V .

The Lagrangian L = T − V is invariant under the action of G = R
2 × S1 3 (λ, µ, β) given

by (x, y, ϕ, θ) 7→ (x + λ, y + µ, ϕ, θ + β). The first integral pθ|D is an R
◦–momentum but not a

horizontal momentum for this action.

D. The same torqued vertical coin, but a symmetry subgroup. An interesting class of
examples in which R◦–symmetries are likely to play an important role are those where the con-
straint distribution has trivial intersection with the tangent spaces to the group orbits, particularly
Chaplygin systems [19, 8, 12]. Systems of this class do not possess horizontal momenta, but may
have R◦–momenta.

A very simple example is given by the torqued vertical disk of subsection C together with the
action of the (sub)group S1 3 β given by (x, y, ϕ, θ) 7→ (x, y, ϕ, θ + β). The tangent spaces to the
group orbits intersect the fibers of the constraint distributions in the zero vector. Hence, pθ|D is
is still a R◦–momentum.

6 Conclusions

In this article we have pointed out the role of a distribution on the configuration space, the reaction–
annihilator distribution R◦, in the study of first integrals linear in the velocities of nonholonomic
systems with linear, time–independent constraints and natural Lagrangian given by kinetic energy
minus potential energy. This point of view has led to a new formulation of the nonholonomic
Noether theorem for lifted actions, where the infinitesimal generators of the group action which
produce conserved momenta have been shown to be exactly those which are sections of R◦.

As illustrated in a few simple examples, the passage from horizontal symmetries to sections
of R◦ leads to an actual enlargement in the class of conserved momenta of nonholonomic systems.
Moreover, the clarification of the theoretical framework obtained with the introduction of the
reaction–annihilator distribution seems to us to be substantial. Proposition 2 shows that it is
only for vector fields which are sections of R◦ that the property of infinitesimally preserving the
Lagrangian in D is equivalent to generating a linear first integral.
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Various questions remain to be studied further. First, one should explore more (and more
complex) examples. Second, to our knowledge the properties of the reaction set R have never been
studied and it might be of some interest to have some information on its structure. Finally, various
generalizations are necessary. Among them, the generalization to Lagrangians with potential
depending linearly in the velocities and to affine costraints should be a standard matter. The
generalization to non–lifted actions might be based on the work of [24].

But foremost, what has been excluded from the present analysis is the consideration of first
integrals linear in the velocities which are related in a ‘gauge–like’ way to the group action [5]
(see also [21, 25] for related considerations). On the one hand, several of the R◦–momenta of
the examples of Section 5 can be viewed as gauge–momenta as well. On the other hand, the
consideration of the reaction–annihilator distribution might open up new perspectives on this
very interesting class of first integrals. We shall therefore return on this topic in a forthcoming
paper [16].

Acknowledgments: We would like to thank Larry Bates, Richard Cushman and Andrea Gia-
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