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Abstract

In this article we thoroughly investigate the possibility of employing the exact
computation of the free rigid body motion as a component of splitting methods for
problems of rigid bodies subject to external forces. We review various matrix and
quaternion representations of the solution of the free rigid body equation, which
involve Jacobi ellipic functions and elliptic integrals, and are amenable to numerical
computations. We consider implementations which are exact, (= computed to ma-
chine precision), and semi–exact, (= approximated via quadrature formulas). We
perform a set of thorough numerical comparisons to state of the art geometrical
integrators for rigid bodies, such as the modified discrete Moser–Veselov method.
The numerical computations indicate that these techniques, combined with split-
ting methods, can be profitably applied to the numerical integration of torqued
rigid bodies.

1 Introduction

The accurate and efficient integration of the equations of motion of a rigid body
under the influence of conservative forces is of great interest in various fields, no-
ticeably mechanics and molecular dynamics (see e.g. [17]). Splitting algorithms are
frequently used: the Hamiltonian H = T + V , where T is the kinetic energy and V
is the potential energy, is written as the sum of integrable terms, whose individual
flows can be computed accurately and efficiently (see e.g. [11, 22] for background
on splitting methods).

If the body has two equal moments of inertia, then the flow of T , namely the
flow of the free rigid body, involves only trigonometric functions and splitting based
on the computations of the flows of T and of V are widely used, see e.g. [29, 8, 3].
If the body has three different moments of inertia, instead, it is common practice to
further split the flow of T in a number of simpler flows, each of which is computable in
terms of trigonometric functions, see [29, 20, 27, 8, 9]. However, it is a classical result
which dates back to Legendre and Jacobi [13] that, even in the case of three distinct
moments of inertia, the flow of the free rigid body can be explicitely integrated
in terms of special functions—Jacobi elliptic functions for the angular momentum
equation and elliptic integrals or theta functions for the attitude equation, see e.g.
[2, 32, 16, 14]. Hence, the flow of T is numerically computable and can be used
as a component of splitting algorithms. Because of this, recently, there has been a



renewal of interest in the exact integration of the free rigid body and in its use in
splitting methods, see particularly [6, 30, 31].

The aim of this article is to investigate the potentialities of this approach through
extended comparisons with other existing methods, particularly with those which
appear to be the state of the art for the integration of the free rigid body with distinct
moments of inertia, that is, a number of splitting algorithms [29, 21, 27, 8] and the
so called ‘modified discrete Moser–Veselov’ method of [12]. In this last approach by
applying the classical discrete Moser–Veselov algorithm [25] with modified values of
the moments of inertia, it is possible to compute high order approximations of the
solution of the free rigid body. The modified moments of inertia depend on the initial
conditions through the integrals of motion and are given by a series expansion in
powers of the time–step. Truncations of this series produce integrators of arbitrarily
high orders at a very moderate increase in computational cost. See also [23] for an
earlier version of this approach.

The rigid body motion can be described in a variety of ways, noticeably using Eu-
ler angles, rotation matrices and quaternions, and moreover a variety of expressions
of the solution of the equations of motion has been given in each case. In Section
2 we derive expressions of the solution amenable for numerical computations, using
both rotation matrices and quaternions, which are nowdays generally preferred in
numerical algorithms, and we discuss the link between them. Even though this is
of course nothing else than a revisitation of classical material, we add a unified and
mathematically precise treatment, discussing the relationship to other approaches
known in the literature [16, 15, 30].

We consider the implementation of two of these algorithms, one with rotation
matrices and one with quaternions, which both use the elliptic integral of the third
kind. To compute this function we consider two strategies. One is exact, that is,
computes the required functions to machine precision using the well known method
of Carlson [26]. The other, that we call semi-exact, uses Gaussian quadrature of
arbitrarily high order and produces high order approximations of the solution of the
free rigid body. At the price of making the error in the evaluation of the integral de-
pending on the step–size of integration, this allows a reduction of the computational
cost by a factor 2/3.

We perform two different sets of numerical comparisons of these methods with
other methods. First, in Section 3.2 we consider the free rigid body and compare
these exact and semi-exact methods with approximate methods based on splitting
of T and with the modified discrete Moser–Veselov method. In particular, we shall
investigate how the different methods perform for different choices of the moments of
inertia. It should be noted that, as far as the free rigid body is concerned, there is of
course an important difference between the two approaches, because exact methods
can be applied with any value of the time-step while approximate implicit methods
like those of [12] use fixed-point iteration, which might require small step-sizes to
converge. Both the methods of [12] and the semi-exact methods must be applied
with small enough time-steps in order to achieve a desired accuracy.

The performed numerical comparisons give some indication towards the use of
exact and semi-exact algorithms as components of splitting methods for forced rigid
bodies. In fact, these methods are more robust in their dependence on the size of the
time-step, with uniform errors, while approximate methods are much more sensitive
on it. In particular, exact and semi-exact methods perform better, compared to
others, when using large step-sizes.
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Next, in Sections 3.3 and 3.4 we numerically investigate the use of exact and
semi-exact methods as components of splitting methods for the integration of some
problems involving rigid bodies subject to external forces. Specifically, we consider
some sample cases with and without a fixed point and a case from molecular dy-
namics. In molecular dynamics situations, of course, the large number of particles
implies that most of the computation time is spent to evaluate the interacting forces,
so that an increase in the time spent to update the individual rigid molecules’ state
can be compensated by the advantage given by the use of larger step-sizes.

Altoghether, our conclusion is that the implementation of the exact solution of
the free rigid body is in general a competitive approach compared to other numerical
methods, which is worth of consideration.

2 The exact solution for the free rigid body

2.1 The equations of motion

The configuration of a rigid body with a fixed point is determined by the rotation
which transforms a chosen orthonormal frame {Es

1,E
s
2,E

s
3} fixed in space into a

chosen orthonormal frame {Eb
1,E

b
2,E

b
3} attached to the body, both having the origin

in the body’s fixed point. We assume that Eb
1,E

b
2,E

b
3 are principal axes of inertia

of the body. As is customary, we identify all vectors with their representatives in
the body base, that we denote with lowercase fonts (that is, v = (v1, v2, v3)T is
the body representative of V =

∑
i viE

b
i ) and denote by e1, e2, e3 the vectors of

the canonical basis of R3. The configuration of the body is thus determined by
the attitude matrix Q ∈ SO(3) which transforms body representives into spatial
representatives of vectors; in particular, Qesi = ei for i = 1, 2, 3.

If m = (m1,m2,m3)T is the body representative of the angular momentum
vector and I = diag(I1, I2, I3) is the inertia tensor, then the equations of motion
can be written as

ṁ = m× I−1m (1)

Q̇ = Q Î−1m (2)

where × denotes the vector product in R3 and the hat-map ̂ : R3 → so(3) is
defined as

v =

 v1

v2

v3

 7→ v̂ =

 0 −v3 v2

v3 0 −v1

−v2 v1 0


and satisfies v̂u = v × u for all u,v ∈ R3.

Equation (1) is Euler equation (written for the angular momentum rather than
for the angular velocity ω = I−1m) while (2) is sometimes called Arnold equation.
They are the left–trivialized Hamilton equations on T ∗SO(3) ≈ SO(3)×R3 3 (Q,m)
with the kinetic energy

T =
m2

1

2I1
+
m2

2

2I2
+
m2

3

2I3
as Hamiltonian. These equations form a completely integrable Hamiltonian system—
in fact, a superintegrable or noncommutatively integrable system since, besides the
kinetic energy, also the three components of the spatial angular momentum vector
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Qm are constants of motion (see e.g. [10] and references therein). In particular, the
norm

G = ‖m‖

of the body angular momentum is a constant of motion.
As we review in this section, equations (1) and (2) can be explicitely integrated

in terms of elliptic functions. The integration is done in two steps: First, Euler
equation is integrated to give m(t). Once this is done, Arnold equation becomes a
time dependent linear equation for Q(t), whose integration exploits in an essential
manner the constancy of the spatial angular momentum vector. We shall review
different representations of the solutions, including the use of quaternions instead of
rotation matrices.

Note that, due to the obvious SO(3)–symmetry and scaling invariance of equa-
tions (1) and (2), we may restrict ourselves to describe their solutions with initial
conditions (Q0,m0) at t = t0 such that

Q0 = 1 , ‖m0‖ = 1 .

We shall indeed do so in order to keep the notational complexity to a minimum,
but we shall indicate the changes which give the general solutions. Depending on
notational convenience, we shall indifferently writem(t) ormt for the value at time t
of the solution of Euler equation, etc.

From now on, we tacitly assume that the three moments of inertia I1, I2, I3 are
pairwise distinct and we order them in ascending order, I1 < I2 < I3.

2.2 Solution of Euler equation

The integration of Euler equation (1) is a standard matter, and we restrict ourselves
to provide the result. As is well known, Euler equation can be viewed as a Hamilto-
nian system with respect to the Lie–Poisson structure on R3 ≈ so(3)∗ and has the
energy T and the norm G := ‖m‖ of the angular momentum as constants of motion.
For given G > 0, the phase portrait consists of the six equilibria ±Gej , j = 1, 2, 3,
of the four stable–unstable manifolds of the equilibria ±Ge2, which are given by
2TI2 = G2, and of periodic orbits which fill four disconnected regions of the sphere
G = const. The periodic orbits have either 2TI3 > G2 > 2TI2 or 2TI2 > G2 > 2TI1
and, for given T and G, there are two of them.

The expression of the periodic solutions involve the three Jacobi elliptic functions
sn, cn and dn, whose definition is recalled in the Appendix. As mentioned, we
consider only solutions with unit norm. Given T , define positive constants

Ijh = |Ij − Ih| , ∆j = |1− 2TIj | , Bjh =
(Ij∆h

Ijh

)1/2

for j, h = 1, 2, 3, j 6= h, and

k =
(∆1I32

∆3I21

)1/2

, λ1 =
(∆1I23

I1I2I3

)1/2

, λ3 =
(∆3I12

I1I2I3

)1/2

,

that we shall use without reference throughout this section.

Proposition 2.1. Let mt be a solution of Euler equation (1) with unit norm and
energy T .
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(i) If 2TI2 > 1 > 2TI1, then

mt =
(
σB13 dn(λt− ν, k) , −B21 sn(λt− ν, k) , B31 cn(λt− ν, k)

)T
(3)

with λ = σλ3, for some ν ∈ R and σ = ±1.

(ii) If 2TI2 < 1 < 2TI3, then

mt =
(
B13 cn(λt− ν, k−1) , −B23 sn(λt− ν, k−1) , σB31 dn(λt− ν, k−1)

)T
with λ = σλ1, for some ν ∈ R and σ = ±1.

(iii) If 2TI2 = 1 and mt is not an equilibrium solution, then

mt =
(
σ′B13 sech(λt− ν) , tanh(λt− ν) , σ′B31 sech(λt− ν)

)T
with λ = σλ3, for some ν ∈ R, σ = ±1 and σ′ = ±1.

The proof of these expressions reduces to differentiation, see e.g. [16]. Solutions
on the stable–unstable manifolds have been included mostly for completeness, as
their need in numerical computations is quite rare. Note that in the first two cases
the phase ν can be taken modulo the period of the Jacobi elliptic functions.

Remark: Solutions with norm G are obtained from the formulas of proposi-
tion 2.1 with the substitutions m 7→ Gm and T 7→ T/G2.

2.3 Integration of the rotation matrix

There are various derivations of the solution t 7→ Qt of equation (2) for the attitude
matrix. They all have in common the use of the constancy of the angular momentum
vector in space to reduce the determination of Qt to the determination of a planar
rotation which, thanks to the knowledge of the solution of Euler equation, reduces
to the evaluation of the integral of a known function. The procedure is more easily
explained in terms of space vectors, rather than of their body representatives.

Let M be the angular momentum vector, that as above we assume of unit
norm, Bs = {Es

1,E
s
2,E

s
3} the spatial frame and Bb = {Eb

1,E
b
2,E

b
3} the body frame.

M and Bs are fixed in space, while Bb changes with time. Consider any rotation Pt
which takes M into the position of Eb

3 at time t; this rotation depends on t and
its inverse transforms the body basis Bb into a certain orthonormal frame Bt =
{V t,W t,M}. Similarly, let R be a (time–independent) rotation which transforms
Es

3 into M , and hence the spatial basis Bs into a certain orthonormal frame B′ =
{V ′,W ′,M}. Since the frames B′ and Bt have the axis M in common, there is a
(time–dependent) rotation Yt of axis M which transforms the former into the latter.
Therefore, the rotation Qt = R ◦ Yt ◦ Pt transforms the spatial basis into the body
basis.

This procedure is not unique in that it depends on the choice of Pt and R but
has the advantage that, for each such choice, the determination of Qt reduces to
the determination of a rotation about a known axis, that is, of an angle. Note that,
if Qt equals the identity at a certain time t0, as we may and do assume, then it is
possible to choose R = P−1

t0 and, correspondingly, Yt0 = 1.
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Translated into body coordinates, this procedure leads to a representation of the
attitude matrix Qt as the product PTt0YtPt with Pt, Yt ∈ SO(3) such that

Ptmt = e3 and Yte3 = e3 ∀ t , Yt0 = 1 . (4)

We begin by giving an expression for the angle ψt of the rotation Yt as a function
of Pt. For shortness, we do it only in case (i) of proposition 2.1.

Here and in the following we denote by a dot the Euclidean scalar product in R3

(and later on also in R4). Moreover, we use the inner product

〈A,B〉 :=
1
2

tr (ATB)

on the space of 3× 3 skew–symmetric matrices, which satisfies 〈û, v̂〉 = u · v for all
u, v ∈ R3.

Proposition 2.2. Consider a solution mt of Euler equation with unit norm. Let
Pt, Yt ∈ SO(3) be smooth functions which satisfy (4) and write Yt = exp(ψtê3) for
some real function ψt. Then

Qt := PTt0YtPt (5)

is the solution of (2) with initial datum Qt0 = 1 if and only if

ψt =
∫ t

t0

(
2T + 〈ê3, PsṖ

T
s 〉
)
ds (mod2π) (6)

or equivalently, if vt and wt are the first two columns of PTt ,

ψt =
∫ t

t0

(
2T +ws · v̇s

)
ds (mod2π) . (7)

Proof. Let ωt = I−1mt be the angular velocity. Under hypotheses (4), the matrix
Qt as in (5) satisfies Qt0 = 1 if and only if ψt0 = 0. Thus, it suffices to prove that
Qt = PTt0YtPt satisfies Q̇t = Qtω̂t if and only if

ψ̇t = 2T + 〈ê3, PtṖ
T
t 〉 . (8)

For simplicity, we omit the indication of the dependency on t. Since Ẏ = ψ̇Y ê3,
differentiating equation (5) gives Q̇ = QPT (ψ̇ê3 + ṖPT )P . Hence, Q̇ = Qω̂ if and
ony if ω̂ = PT (ψ̇ê3 + ṖPT )P . Since P ûPT = P̂u for all P ∈ SO(3) and u ∈ R3,
this condition is equivalent to ψ̇ê3 = P̂ω − ṖPT , namely ψ̇ = 〈ê3, P̂ω + PṖT 〉
given that the matrices ê1, ê2, ê3 form an orthonormal set for the inner product
〈 , 〉 and ṖPT is skew–symmetric. The proof of (8) is concluded by observing that
〈ê3, P̂ω〉 = e3 · Pω = PTe3 · ω = m · ω = 2T .

Let us now prove (7). From PTe3 = m it follows that P = [v,w,m]T with
orthonormal vectors v,w,m and one computes PṖT = −w ·ṁê1+v ·ṁê2−v ·ẇê3.
Thus 〈ê3, P Ṗ

T 〉 = −v · ẇ = v̇ ·w.

Note that any unit vector vt orthogonal to mt can be used to construct the
matrix Pt = [vt,wt,mt]T , where wt = mt × vt. Since ‖mt‖ = 1 implies that ṁt

is ortohogonal to mt, a possible choice is that of taking vt aligned with ṁt. We
specialize the expression of the angle ψt corresponding to this choice. For another
choice, see section 2.6. The expression of ψ uses the elliptic integral of the third kind,
Π, and the amplitude function am, whose definitions are recalled in the Appendix.
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Corollary 2.3. Consider a solution mt of Euler equation as in (3), with unit norm
and energy T such that 2TI2 > 1 > 2TI1. If, in proposition 2.2, vt = ‖ṁt‖−1ṁt

then

ψt = 2T (t− t0) +
∆2

λI2

[
Π
(
am(λt− ν), n, k

)
−Π

(
am(λt0 − ν), n, k

)]
(9)

with k, λ and ν as in (3) and n = B−1
23 .

Proof. The orthogonality of w = m × v and ṁ implies w · v̇ = w · m̈/‖ṁ‖ .
Since m̈ = d

dt (m × ω) = ṁ × ω +m × ω̇ and ω̇ = ‖ṁ‖I−1v, this gives w · v̇ =
v·I−1v−ω·m = v·I−1v−2T . But from proposition 2.2 we know that ψ̇ = 2T+w·v̇.
Hence ψ̇ = v · I−1v. Inserting ṁ = m× I−1m into v this becomes

ψ̇ =
I1(I23m2m3)2 + I2(I13m1m3)2 + I3(I12m1m2)2

(I1I23m2m3)2 + (I2I13m1m3)2 + (I3I12m1m2)2
.

Using the constancy of T and G2 (= 1) to express m2
1 and m2

3 in terms of T and m2
2,

and then using the expression of m2 from (3), this gives

ψ̇ = 2T − I2∆1∆2∆3

I2
2 ∆1∆3 − I12I23m2

2

= 2T +
∆2/I2

1−B−2
23 sn2(λt− ν)

.

The proof is concluded by integrating between t0 and t, taking into account equation
(36) of the Appendix.

This algorithm equals that of [16], except for the sign of ψ. A similar algorithm
is given in [7].

Remark: If 2TI3 > 1 > 2TI2 then ψt is as in (9) with k replaced by k−1, λ
and ν as in point (ii) of proposition 2.2, and n = B−1

21 .

2.4 The equations of motion in quaternionic form

We consider now the quaternionic formulation of the free rigid body. For general
references on quaternions, see e.g. [19]. Quaternions (of unit norm) are the points
of the three sphere S3 = {q ∈ R4 : ‖q‖ = 1} equipped with a certain Lie group
structure. As is customary, we write q = (q0, q) ∈ R × R3 and refer to q0 and
q = (q1, q2, q3) as to the scalar and vector parts of q. Then,

S3 = {q = (q0, q) ∈ R× R3 : q2
0 + ‖q‖2 = 1}

is a Lie group with product

(p0,p)(q0, q) := (p0q0 − p · q, p0q + q0p+ p× q). (10)

The identity element of S3 is e = (1,0) and the inverse of q = (q0, q) ∈ S3 is
q−1 = (q0,−q).

The ‘Euler–Rodriguez’ map E : S3 → SO(3) defined by

E(q) = 1 + 2q0q̂ + 2q̂2 (11)

is a 2 : 1 surjective submersion. It is not injective since E(q) = E(−q) and each
rotation matrix has two preimages. Hence, S3 is a double covering of SO(3). If
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E(q) is a rotation of angle ψ and axis e ∈ R3, ‖e‖ = 1, then q = (cos ψ2 ,±e sin ψ
2 ).

Moreover, the map E is a group homomorphism since

E(qp) = E(q)E(p) ∀q, p ∈ S3.

Thus, the quaternionic formulation of the equations of motion of the rigid body
is a formulation on a covering space. Each motion of the rigid body in SO(3)
corresponds to two (non–intersecting) motions in S3, and it is immaterial which one
is considered. The ‘equation of motion of the rigid body in quaternion form’ is the
differential equation on T ∗S3 which describes these motions. Analogously to the
case of SO(3), we give this equation in left–trivialized form.

The Lie algebra s3 = TeS3 of S3 can be identified with R3 equipped with the
cross product as commutator. It is convenient, however, to identify s3 with the
subspace {0} × R3 of R4 = R× R3,

s3 =
{
u = (0,u) : u ∈ R3

}
,

so as to be able to exploit the fact that the quaternion product (10) extends to R4.
Note that, if u = (0,u) and v = (0,v) are in s3, then uv = (−u · v,u× v) ∈ R×R3

need not be in s3. Instead, if u = (0,u) ∈ s3 and q ∈ S3, then quq−1 ∈ s3, see also
(14) below. We shall also use the Euclidean product of R4, that we denote by a dot.

A simple calculation shows that the derivative at the identity of the covering
map E : S3 → SO(3) is the map E∗ := TeE : s3 → so(3) given by

E∗(u) = 2û , u = (0,u) ∈ s3 . (12)

If qt ∈ S3 and Qt = E(qt), then q−1
t q̇t ∈ s3, QTt Q̇t ∈ so(3) and

E∗(q−1
t q̇t) = QTt Q̇t . (13)

By general facts about Lie groups and covering maps, the map E∗ is a Lie algebra
isomorphism and hence intertwines the two adjoint representations, that is

E∗(quq−1) = E(q)E(u)E(q)−1 ∀ q ∈ S3 , u ∈ s3.

Note that this identity (which, incidentally, can be easily verified by a direct com-
putation) can also be written as

E∗(quq−1) = 2Ê(q)u ∀ q ∈ S3 , u = (0,u) ∈ s3 . (14)

As a direct consequence of (13) and (14) we can now state the rigid body equations
of motion on S3:

Proposition 2.4. Assume that mt is a solution of Euler equation (1) and that
qt ∈ S3 is a smooth function. Then, Qt := E(qt) is a solution of Arnold equation (2)
if and only if

q̇t =
1
2
qtωt (15)

with ωt = (0, I−1mt).

Clearly, if qt is a solution of (15) for a certain mt, then so is −qt and they
project onto the same rigid body motion E(qt) on SO(3). The choice of the initial
condition qt0 unambiguously selects one of the two. Even though we need not using
this fact, we note for completeness that, written on s3, that is for mt = (0,mt),
Euler equation becomes ṁt = 1

2 (mtωt − ωtmt).
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2.5 Integration of the quaternion

Solutions of (15) can be searched in a factorized form qt = p−1
t0 ytpt analogous to that

of section 2.3. To this end, it is sufficient to determine pt and yt so that Pt := E(pt)
and Yt := E(yt) have properties (4).

Since E∗ is an isomorphism, equation (14) shows that if p ∈ S3, u = (0,u) ∈ s3

and v = (0,v) ∈ s3 then E(p)u = v if and only if pup−1 = v. Thus, if we write

mt = (0,mt) ∈ s3 , ej = (0, ej) ∈ s3 (j = 1, 2, 3) ,

we see that the analogues of conditions (4) are

ptmtp
−1
t = e3 and yte3y

−1
t = e3 ∀ t , yt0 = e . (16)

(Also yt0 = −e would be acceptable, but we make a choice). We can now state the
analogue of the first part of proposition 2.2:

Proposition 2.5. Consider a solution mt of Euler equation with unit norm. Let
pt, yt ∈ S3 be smooth functions which satisfy (16). Then,

qt := p−1
t0 ytpt

satisfies (15) and qt0 = e if and only if yt = (cos ψt

2 , e3 sin ψt

2 ) with

ψt =
∫ t

t0

(
2T + 2e3 · psṗ−1

s

)
ds (mod2π) . (17)

Proof. Define Pt := E(pt) and Yt := E(yt). The latter is a rotation with axis e3

if and only if yt = ±(cos ψt

2 , e3 sin ψt

2 ) for some ψt, but the plus sign has to be
selected in order to have yt0 = e. Since Yt = exp(ψtê3), recalling proposition 2.2
and observing that qt = p−1

t0 ytpt is a solution of (15) if and only if E(qt) = PTt0YtPt
is a solution of (2), we see that all we have to prove is that the expressions (17) and
(6) of the angle ψ coincide, namely that

2e3 · pṗ−1 = 〈ê3, P Ṗ
T 〉 .

Let PṖT = â with a ∈ R3. Then, equations (12) and (13) together show that
pṗ−1 = (0, 1

2a). Hence 2e3 · pṗ−1 = e3 · a = 〈ê3, â〉.

In order to make the previous result applicable, we need first to give conditions
on the quaternion pt which ensure that it satisfies ptmtp

−1
t = e3 and then to express

the angle ψt in terms of the components of pt. This is the content of the following
Lemma:

Lemma 2.6. Consider a solution m = (m1,m2,m3)T : R → R3 of Euler equation
with unit norm and m3(t) 6= −1 for all t. Then, four smooth functions p0, p1, p2, p3 :
R→ R are the components of a function p : R→ S3 which satisfies (16) if and only if

p1 =
p3m1 + p0m2

1 +m3
, p2 =

p3m2 − p0m1

1 +m3
(18)

p2
0 + p2

3 =
1 +m3

2
. (19)

In that case

2T + 2e3 · pṗ−1 =
2T + I−1

3 m3

1 +m3
+ 4

p3ṗ0 − p0ṗ3

1 +m3
. (20)
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Proof. A computation shows that the four components of pm = (−p ·m, p0m+p×
m) equal those of e3p = (−p ·e3, p0e3−p×e3) if and only p0, p1, p2, p3 satisfy (18);
condition (19) then ensures that (p0, p1, p2, p3) has norm one. Next, using (18) one
computes

e3 · pṗ−1 = (p3ṗ0 − p0ṗ3) + (p2ṗ1 − p1ṗ2) = 2
p3ṗ0 − p0ṗ3

1 +m3
− m1ṁ2 −m2ṁ1

2(1 +m3)

and the conclusion follows observing that m1ṁ2 − m2ṁ1 = e3 ·m × (m × ω) =
2Tm3 − ω3, where as usual ω is the angular velocity.

Thus, any choice of p0 and p3 which satisfy (19) leads to a quaternionic imple-
mentation of the free rigid body motion. For instance, taking p0 = c0

√
1 +m3 and

p3 = c3
√

1 +m3 with constants c0 and c3 such that c20 + c23 = 1
2 leads to a partic-

ularly simple expression for ψ̇. Taking for instance c0 = 1√
2

and c3 = 0 gives the
following:

Corollary 2.7. Consider a solution m(t) of Euler equations as in (3), with unit
norm and energy T such that 2TI2 > 1 > 2TI1. Then, quaternions p(t) and y(t) =(

cos ψ(t)
2 , e3 sin ψ(t)

2

)
as in proposition 2.5 are given by

p(t) =
1√
2

(√
1 +m3(t) ,

m2(t)√
1 +m3(t)

, − m1(t)√
1 +m3(t)

, 0

)

ψ(t) =
t− t0
I3

+
I31

I1I3λ

[
Π (ϕ(t), n, k) + f(t)−Π (ϕ(t0), n, k)− f(t0)

]
where ϕ(s) = am(λs − ν, k) with λ, k and ν as in (3), n = −(B31/B13)2 and
f(s) = B−1

21 B13B31 arctan
(
B−1

13 B21 sd(λs− ν, k)
)
.

Proof. If 2TI2 > 1 > 2TI1 then m3 > −1 for all times. With the given choice of p0

and p3 the right hand side of (20) reduces to 2T+m3/I3
1+m3

, namely 1
I3

+ ∆3/I3
1+m3

. From

(3), m3 = acn(λt− ν, k) with a = B31. Since 0 < a < 1, n := a2

a2−1 < 0 and thus [5,
page 215] ∫

du

1 + acn(u, k)
=

1
1− a2

[
Π
(
am(u, k), n, k

)
− af1(u)

]
with f1(u) = C−1 tan−1(Csd(u, k)), C =

[
(1− a2)/(k2 + (1− k2)a2)

]1/2. The proof
is concluded with a little bit of algebra.

This is a rescaled version of the algorithm presented by Kosenko in [15]. This is
the algorithm we use in the numerical work of the next section.

2.6 Relation between quaternion and matrix algorithm

We discuss now very shortly how to translate into quaternionic form q = p−1
t0 ytpt

a given representation Qt = PTt0YtPt of the attitude matrix as in proposition 2.2.
This clearly reduces to determining a quaternion pt such that Pt = E(pt). This
operation involves ‘inverting’ a two–to–one map and can of course be done only up
to the overall sign of p, but this is immaterial in the present context given that the
product p−1

t0 ytpt is independent of the sign of p.

10



As usual, we assume ‖m‖ = 1 and 2TI2 > 1 > 2TI1. Thus m3 6= ±1 and we
can invoke lemma 2.6, which implies that a quaternion p such that E(p) = P is
determined, up to the sign, once p2

3 and the relative signs of p0 and p3 are known.
If p = (p0, p1, p2, p3) then, from (11),

E(p) =

 1− 2(p2
2 + p2

3) −2p0p3 + 2p1p2 2p0p2 + 2p1p3

2p0p3 + 2p1p2 1− 2(p2
1 + p2

3) −2p0p1 + 2p2p3

−2p0p2 + 2p1p3 2p0p1 + 2p2p3 1− 2(p2
1 + p2

2)

 .

Equating the three diagonals entries of this matrix to those of P = [v,w,m]T gives
4p2

1 = 1 + v1 − w2 −m3, 4p2
2 = 1− v1 + w2 −m3 and

4p2
3 = 1− v1 − w2 +m3 (21)

If p0 and p3 are both nonzero, then their relative sign is determined by the equality

4p0p3 = v2 − w1,

which is obtained by equating entries (1, 2) and (2, 1) of the two matrices E(p) and P .
As an example, the algorithm of corollary 2.3 has v = ‖ṁ‖−1ṁ = ‖ṁ‖−1m×I−1m
and hence w = m× v = ‖ṁ‖−1(2Tm− I−1m). Thus, (21) gives

p2
3 =

1 +m3

4
+

I32m2

4I2I3‖ṁ‖
(
m3 −B32

)
.

The other components of the quaternion p are computed as just explained and
the angle ψ is as in corollary 2.3. As another example, take v = m×e3

‖m×e3‖ . Then
v1 = (1−m3)−1/2m2, w2 = (1−m3)−1/2m2m3 and

p2
3 =

1 +m3

4
− m2(1 +m3)

4
√

1−m2
3

.

This produces a quaternion version of the algorithm based on rotation matrices
recently considered by van Zon and Schofield [30]. The rotation angle is

ψ =
∫ t

t0

2TI3 −m2
3

I3(1−m2
3)
ds =

t− t0
I3

+
I31

λI3I1

(
Π(am(λt− ν), n, k)−Π(am(λt0 − ν, n, k)

)
with n = −B−2

31 B
−2
13 .

Remark: There is another possibility for constructing a quaternion p such that
pmp−1 = e3, which is used in [15]. This is based on the fact that, given any three
orthonormal vectors v1,v2,v3 ∈ R3 and a vector m ∈ R3 with unit norm, one has

pmp−1 = v3 with p =
v2 + v1m

‖v2 + v1m‖
(22)

where, as usual vi = (0,vi) and n = (0,m). Reference [15] uses v3 = e3, v1 =
γ1e1 + γ2e2 and v2 = γ2e1 − γ1e2 with γ1, γ2 ∈ R. It is elementary to verify (22)
with a direct computation if vi = ei, i = 1, 2, 3. Otherwise, there is a quaternion
s ∈ S3 such that E(s)ei = vi, i = 1, 2, 3. Then, p = k(se2s

−1 + se2s
−1m) with

k = ‖se2s
−1 + se2s

−1m‖−1 and a simple computation shows that v3p − pm =
s
[
e3(e2 + e1n) − (e2 + e1n)n

]
s−1 for n = sms−1. Here, the term between square

brackets vanishes by virtue of the previous observation.
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3 Numerical experiments

3.1 Numerical implementation

The exact algorithms described in this paper require the computation of elliptic
integrals of the first and third kind. Elliptic integrals of the first kind are computed
very fast by using standard algorithms like AGM (arithmetic geometric mean) and
ascending/descending Landen trasformations [1]. These can be used also for the
elliptic integral of the third kind, but their performance is not so uniform and other
algorithms are preferred instead. In [30] the authors use a method based on theta
functions. Our implementation makes use of Carlson’s algorithms rf, rj, rc, that
have been acclaimed to produce accurate values for large sets of parameters. These
methods are described in details in [26] and are the most common routines in several
scientific libraries.

As mentioned in the Introduction, an alternative to the exact computation of the
elliptic integral of the third kind is the approximation by a quadrature method. We
will refer to the methods obtained in this manner as semi-exact methods. These,
by construction, integrate the angular momentum exactly. They also preserve Qm
(because of the properties of the matrix P in Prop. 2.2). Moreover, they will be
time-symmetric if the underlying quadrature formula is symmetric.

In [31], the integral ∫ u

u0

ds

1− n sn2 s

is approximated by a quadrature based on Hermite interpolation, as the function sn
and its derivative can be easily computed at the endpoints of the interval. Instead,
we prefer to write the same integral in the Legendre form,∫ am(u)

am(u0)

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
. (23)

In our opinion, this format is more suitable to approximation by quadrature formulae
because it requires tabulating the sine function in the quadrature nodes instead of
sn(λ(t− ν)). Thus, (23) can be approximated as∫ am(u)

am(u0)

f(θ)dθ ≈
p∑
i=1

bif(ϕ0 + ai∆ϕ),

where ∆ϕ = am(u)− am(u0) and bi, ai are weights and nodes of a quadrature for-
mula respectively. We use Gaussian quadrature (i.e. quadrature based on orthogonal
polynomials), because of its high order. In particular, Gauss–Legendre quadrature
with p points attains the maximal quadrature order, 2p. The coefficients and weights
for Gaussian–Legendre quadrature method of order 10 (5 nodes) used in this pa-
per are reported in the Appendix. Our numerical experiments indicate that this
approximation is very effective. For instance, the 5 point Gauss–Legendre quadra-
ture (order 10) gives very accurate results even for moderately large step-sizes, and
reduces the overall cost of the methods by 2/3.

3.2 Free rigid body

In this section we compare the algorithms discussed in this paper with the modified
Rattle/discrete Moser–Veselov of Hairer et al. [12]. The latter are, in our opinion,

12



the state-of-the-art approximation methods insofar the rigid body is concerned. The
comparison is done using FORTRAN routines. The methods we compare are: dmv6,
dmv8, dmv10, the methods based on the modified Rattle algorithms of order 6, 8 and
10, respectively, the two exact methods with the rotation matrix of Section 2.3 and
the rotation quaternion of Section 2.5 along with their semi-exact variants in which
the elliptic integral is approximated by Gauss–Legendre quadrature formulae of
order 6, 8 and 10. As explained in the Introduction, in order to do these comparison,
we integrate the flow of the free rigid body in a time interval [0, Tfin] by repeated
application of the time-h algorithms.

In the first experiment, see Figure 1 top plot, we display

averageI,m0
log10 ||Qreference(Tfin; I,m0)−Qcomputed(Tfin|h; I,m0)||∞, (24)

(or the analogous quantity of the quaternion) against the cpu-time averages of the
different methods when Tfin = 10, with twenty different step sizes h ranging from
about 0.4 down to 0.01. The absolute value of the indicator (24) corresponds to the
average number of significant digits of the attitude matrix with step size h at time
Tfin.1 The set of initial parameters, shared by all the methods, is determined as
follows. We choose a random inertia tensor, normalized so that I1 < I2 < I3 = 1,
thereafter a random initial normalized angular moment in the first quadrant. This
is not a restriction, as both scaling the inertia tensor and the angular momentum are
equivalent to a time reparametrization. The initial condition for the attitude matrix
is the identity matrix that, for quaternions, is (1, 0, 0, 0). The reference solution is
computed with Matlab’s ode45 routine, setting both relative and absolute error to
machine precision. The average cpu is computed as the mean of 100 runs.

Figure 1 indicates that the exact methods are clearly more expensive, but they
always converge (against 75 successes for the methods dmv6, dmv8, dmv10, that are
depending on a step size “small enough” for the fixed point iterations to converge).
The diverging runs of the dmv methods are not taken into account when computing
averages. Good behaviour is displayed also by the semi-exact methods. Their cost
is about 1/3 of the methods using the exact elliptic integral (and this is reasonable,
because the exact routines compute 3 elliptic integrals of the third kind: the complete
one between 0 and π/2, and two incomplete ones between 0 and φ, where 0 ≤
φ ≤ π/2). The bottom plot in Figure 1 displays the relative cost of the methods,
computed as

average cost of method X
minall methods aver. cost of method X

,

so that the bottom line equals to one by definition. The dmv are the cheapest
methods and their cost is practically the same. We see that the relative cost of
the exact and semi-exact methods is higher for small step sizes and lower for large
step sizes. This indicates that the exact and semi-exact methods are of interest
in numerical simulations that use large step sizes, for which the dmv might have
problems in converging.

The exact and semi-exact methods discussed in this paper reveal a worse accu-
mulation of roundoff error for small step-sizes (see Figure 1, top plot). This can

1Our methods compute exactly the angular momentum, while the dmv methods do not. However both
classes of methods preserve exactly the kinetic energy, the norm of the angular momentum, the spatial
angular momentum Qm, are time-reversible and Lie–Poisson integrators for the angular momentum.
The dmv methods are not symplectic.
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Figure 1: Top: Average log of error versus average cpu times in the attitude rotation (100
runs) for random initial conditions and random moments of inertia. Bottom: Relative
cost (with respect to the cheapest method) versus step-size. The methods computing
the exact solutions are more expensive then the approximated ones, but their relative
cost rate improves for large time–steps. The dvm methods converge 75 out of the 100
runs. The failures are not taken into account when computing the averages.

be partly explained by the fact that the routines for the attitude rotation make
repeated use of the exact solution of the angular momentum. However, given to
the exact nature of the method, it is not necessary to perform many tiny steps for
integrating to the final time: a single time–stepping is enough, and this avoids the
problems related to the accumulation of roundoff error. In general, when these exact
methods are applied within a splitting method, the value of the parameters (angular
momentum, attitude, energy) will change before and after one free rigid body step,
hence we do not foresee problems of roundoff accumulation.

What about the accuracy of the exact methods using matrices or quaternions?
Numerical experiments reveal that the accuracy of the two exact methods is very
comparable and also their cost. Methods using quaternion to accomplish rotations
are usually faster than their matrix counterpart, but here the computational time
is dominated by the evaluation of the elliptic integrals.

Our extensive numerical experiments revealed that the performance of the semi-
exact and the dmv methods depended heavily on the matrix of inertia I and the
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initial condition m0 for the angular momentum. To understand this dependence,
we have followed a procedure similar to the one used in [9]. Since normalizing the
matrix of inertia is equivalent to a time reparametrization, it is sufficient to consider
values of the form I1/I3 < I2/I3 < 1. This reduces to considering two parameters,
say x = I1/I3 and y = I2/I3. As Ii + Ij ≥ Ik, the problem is reduced to considering
values of x and y in the triangle

T = {(x, y) ∈ R2 : 0 < 1− y ≤ x < y < 1},

(see Figure 2).

Figure 2: Parametrization domain for the matrix of inertia. x-axis: I1/I3, y-axis: I2/I3.

We construct a discretization of this triangle by superimposing a rectangular grid
(100 points in the x direction and 50 in the y direction). For each point (x, y) in
the interior of the triangle, we solve 20 initial value problems with initial condition
m0 in the first octant. This set of initial parameters is identical for all the methods.
Thereafter, we compute the average (24) for each method (non converging runs
for the dmv methods are discarded). The results of the experiments are shown in
Figures 3, 4(a), 4(c) and 4(e), computed with integration step-size h = 0.4, and
Figures 4(b), 4(d) and 4(f) computed with integration step-size h = 0.04.

For the largest step-size, h = 0.4, the exact methods described in this paper
perform very similarly and show a uniform accuracy. We compare then the semi-
exact methods of order 6, 8, and 10 and the dmv ones of the same order. It should
be mentioned that the pictures corresponding to semi-exact methods using matrix
rotations or quaternions are virtually indistinguishable from each order, for this
reason we only show one of the two. Both the semi-exact and the dmv methods
reveal a worse approximation in the proximity of the top left corner

0 ≈ x =
I1
I3
� y =

I2
I3
≈ 1 =

I3
I3
, (25)

namely when the smallest moment of inertia is much smaller than the two others.
This behaviour of the numerical methods is due to the fact that when I1 goes to
zero, one of the periods of the free rigid body motion tends to zero. To resolve
these motions accurately, numerical integrators must use small step sizes. The dmv
methods have in average less accuracy and they failed to converge for several initial
conditions.

For the next value of the step-size (h = 0.04) the exact methods reveal a worse
accumulation of roundoff error (not shown), already observed in Figure 1. This
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accumulation disappears if the integration in [0, Tfin] is performed with a single
time–step. The dmv, in particular dmv10, perform very well in the whole triangle,
except for the top left corner.

The conclusion is that exact and semi-exact methods are of interest for large
step-sizes, and in particular for values of the moments of inertia in the region (25).
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Figure 3: Average log10 error for the various values of the matrix of inertia with step-size
h = 0.4. Comparison of exact methods. Top: Matrix case. Bottom: Quaternion case.

3.3 Torqued systems and perturbations of free rigid body
motions

In this section we consider systems of the form

H(m, Q) = T (m) + V (Q), (26)

where T is the kinetic energy of the free rigid body and the potential energy V
describes some external torque. As mentioned in the introduction, a standard ap-
proach to solve this problem is to split it into a free rigid body motion coming from
the kinetic part,

S1 =

{
ṁ = m× I−1m,

Q̇ = Q Î−1m,
(27)

plus a torqued motion, namely

S2 =

{
ṁ = f(Q),

Q̇ = 0,
(28)
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Figure 4: Average log10 error for the various values of the matrix of inertia with step-size
h = 0.4, left, and h = 0.04, right:
(a) and (b) order 6. Top: semi-exact with quadrature order 6. Bottom: dmv6.
(c) and (d) order 8. Top: semi-exact with quadrature order 8. Bottom: dmv8.
(e) and (f) order 10. Top: semi-exact with quadrature order 10. Bottom: dmv10.
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where f(Q) = −rot(QT ∂V∂Q ). Here, rot-function maps matrices to vectors, first by
associating to a matrix a skew-symmetric one, and then identifying the latter with
a vector,

rot(A) = skew−1(A−AT ),

where skew(v) = v̂, see also [27].
Thereafter, the flows of the S1 and S2 systems are composed by means of a

splitting method [22].
The most commonly used is the symplectic second order Störmer/Verlet scheme

(m, Q)(j+1) = ϕ
[S2]
h/2 ◦ ϕ

[S1]
h ◦ ϕ[S2]

h/2((m, Q)(j)), j = 0, 1, . . . ,

where ϕ[S1]
h and ϕ

[S2]
h represent the flows of S1 and S2, respectively. Some higher

order splitting schemes are presented in the appendix. These are state-of-the-art
optimized schemes with very small leading error, [4]. We will use these methods
for the remaining experiments. All the remaining experiments are performed in
MATLAB. For the rigid body part, we use the rotation-matrix exact method of
Section 2.3, which we will call RB for reference.

One of the most popular methods for approximating the free rigid body system
(27) is a second-order method designed by McLachlan and Reich (see [8]). This
method, that we will call MR, is time-reversible and preserves the Poisson structure
of the system. In brief, the MR method is based on a splitting of the Hamiltonian
(26) into four parts,

H̃1 =
m2

1

2I1
, H̃2 =

m2
2

2I2
, H̃3 =

m2
3

2I3
, H̃4 = V (Q).

Each of the corresponding Hamiltonian vector fields can be integrated exactly (H̃1,
H̃2, H̃3 correspond to the vector field (27)), the symmetric composition of the flows
gives rise to the approximation scheme,

(m, Q)(j+1) = ΦMR((m, Q)(j)),

where
ΦMR = ϕ4,h/2 ◦ ΦT,h ◦ ϕ4,h/2.

Here
ΦT,h = ϕ1,h/2 ◦ ϕ2,h/2 ◦ ϕ3,h ◦ ϕ2,h/2 ◦ ϕ1,h/2

is the contribution from the kinetic parts, H̃1, H̃2 and H̃3, where the flows of the
kinetic parts corresponds to elementary rotations in R3.

3.3.1 The heavy top

As a first study case, we consider a nearly integrable situation, the rigid body with
a fixed point in a small constant-gravity field. The Hamiltonian is

H = T + εV (Q), 0 < ε� 1, (29)

with
V (Q) = eT3 Q

Tu0,
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for a constant vector u0. The vector u = QTu0 describes the position of the center
of mass times the (normalized) acceleration of gravity. This potential V corresponds
to f(Q) = (u2,−u1, 0)T , where u1 and u2 are components of u.

A symplectic splitting method of order p that treats the free rigid body part
exactly would typically have a nearby Hamiltonian of the form

H̃ = H + εV +O(εhp),

hence, if the step size of integration is small enough, the numerical error remains
smaller with respect to the perturbation parameter, see e.g. [3]. If the rigid body
part is resolved by a symplectic method of order r, typically r ≥ p, the nearby
Hamiltonian has the form

H̃ = H + εV +O(hr) +O(εhp),

thus, in order to have an error that goes to zero as ε goes to zero, one has to take
smaller step sizes h.

This behaviour is displayed in Figure 5 for two values of ε (left plot: ε = 10−3,
right plot: ε = 10−6). We compare different splitting schemes of various order for
the system S1 + S2. Moreover, we compare the same splitting techniques using an
exact method or a further MR splitting for the free rigid body motion. As the MR
method has order two only, we boost its order to p (the same as the underlying
splitting scheme) using Yoshida’s technique [33].

The initial conditions, identical for all the methods, are chosen as follows. Having
fixed a value of ε, we choose a random inertia tensor, normalized so that I1 = 1.
Having chosen the first two components of m0 randomly, the remaining one is
determined to match T0 = 1. The vector u0 is taken equal to e3 and Q0 is the
identity matrix.

Several splitting methods are compared, each timing and relative Hamiltonian
error is averaged (mean value) over 20 different initial conditions (each with new
I,m0). The methods are implemented so that all the splitting schemes perform the
same number force f evaluations. This is done as follows: start with the following
basic time–steps: h ∈ {8, 5, 4, 2, 1.75, 1.5, 1.25, 1, 0.5}. For a splitting method with
s stages (s is the number of evaluations of the force), we use hs = csh = s

10h. For
instance, for the 6th order 10-stages method S610, cs = 1, for the Störmer-Verlet
splitting (V2), cs = 1

10 . The integration is performed in the interval [0, 20].
Figure 5 indicates that, the more we boost the order of the MR scheme, the more

the cost of the splitting method becomes similar to the one using the exact solution
of the rigid body. This is evident especially for schemes that have a large number of
stages (S610, RKN6a14). Moreover, it is also evident that composing MR to a higher
order scheme using Yoshida’s technique yields methods with high leading error, and
we do not see any longer the good error properties of the underlying optimized
splitting schemes. Finally, note that only the methods using the exact integrator
produce an error that is smaller than ε even for very large choices of the step size.
This is evident for ε = 10−3 but in particular for ε = 10−6. The conclusion is
that the use of the exact algorithm for the rigid body is definitively of interest in
integration of perturbed systems (see also [3], [6]).
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Figure 5: Average relative energy errors versus computational time, perturbed rigid
body, ε = 10−3 (left plot) and ε = 10−6 (right plot). Initial kinetic energy T0 = 1.
Solid lines: splitting methods using RB. Dash-dotted lines: splitting methods using MR
approximation for the rigid body motion boosted to the same order of the splitting
scheme.
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3.3.2 Satellite simulation

We consider a simplified model describing the motion of a satellite in a circular
orbit of radius r around the earth [18]. Denote µ = gM , where g is the gravitational
constant and M is the mass of the Earth. The potential energy of this system is
given by

V (Q) = 3
µ

2r3
(QTe3) · IQTe3, (30)

where I is the inertia tensor and e3 is the canonical vector (0, 0, 1)T in R3. The
torque associated to this potential becomes

f(Q) = 3
µ

r3
(QTe3)× I(QTe3). (31)

We simulate the motion of the satellite using the same parameters as in [24], namely

I1 = 1.7× 104, I2 = 3.7× 104, I3 = 5.4× 104,

with
µ = 3.986× 1014, r = 1.5× 105,

in the interval [0, 400]. The initial angular velocity is ω0 = (15,−15, 15)T , corre-
sponding to an angular momentumm0 = Iω0. The initial attitude Q0 is the identity
matrix. The system has an energy H0 = 1.21595664 × 107, which is conserved in
time. This experiment was also considered in [6]. The splitting method based on the
exact approximation of the rigid body is very accurate. The motion of the center
of mass (left column) and the relative error on the energy H0 (right column) for
the splitting method RKN6a14 employing our exact solution, are shown in Figure 7.
The integration is performed in the interval [0, 400] with step-size h = 0.1 (top) and
h = 0.05 (bottom). The relative error on the energy (see Figure 7), which is of the
order of 10−7 for h = 0.1 and 10−10 for h = 0.05, indicates that H0 is preserved to
7 and 10 digits respectively. The corresponding plots for the evaluation of the flow
of T with the MR splitting method are shown in Figure (6).

3.4 Molecular dynamics simulation: Soft dipolar spheres

We consider a molecular dynamics simulation, where molecules are modeled as dipo-
lar soft spheres. This model is of interest because it can be used to study water and
aqueous solutions, as water molecules can be described as small dipoles. We con-
sider the system described in example b in Appendix A of [8] which we recall here
for completeness. Denote by mi the total mass of the ith body, by qi the position
of its center of mass, by pi its linear momentum, by Qi its orientation and, finally,
by mi its angular momentum in body frame. The system has Hamiltonian

H(q,p,m,Q) = T (p,m) + V (q,Q), (32)

where T refers to the total kinetic energy,

T (p,m) =
∑
i

(T trans
i (pi) + T rot

i (mi)),

consisting of the sum of the translational and rotational kinetic energies of each
body,

T trans
i (pi) =

‖pi‖2

2
, T rot

i (mi) =
1
2
mi · (I−1

i mi),
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Figure 6: Satellite simulation. Left column: Center of mass (QTe3) by the splitting
method MR with step-size h = 0.1 (top) and h = 0.05 (bottom). Right: Relative error
on the energy corresponding to the same step-sizes. See text for details.

where Ii = diag(I1, I2, I3) is the inertia tensor of the ith body, while V is the
potential energy, describing the interaction between dipoles, that is assumed to
depend on the position and orientation only. Furthermore, V =

∑
j>i Vi,j , where

Vi,j describes the interaction between dipole i and dipole j. We suppose

Vi,j(qi,Qi,qj ,Qj) = V short
i,j + V dip

i,j ,

where

V short
i,j = 4ε

(
σ

ri,j

)12

, ri,j = qi − qj , ri,j = ‖ri,j‖,

describes the short range interaction between particles i and j, while

V dip
i,j =

1
r3
i,j

µi · µj −
3
r5
i,j

(µi · ri,j)(µj · ri,j),

is the term modeling the dipole interaction, where µi being the orientation of the
ith dipole vector. If µ̄i is an initial fixed reference orientation for the dipole, then
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Figure 7: Satellite simulation. Left column: Center of mass (QTe3) by the splitting
method RKN6a

14 with step-size h = 0.1 (top) and h = 0.05 (bottom). Right: Relative
error on the energy corresponding to the same step-sizes. See text for details.

µi = Qiµ̄i.
The Hamiltonian (32) is separable, as the potential does not depend on the

position or on the angular momenta. As before, we split the system as H = T + V ,
yielding

q̇i = pi

mi
,

ṗi = 0,
ṁi = mi × (I−1

i mi),

Q̇i = Qi
̂(I−1
i mi),

(33)

and
q̇i = 0,
ṗi = − ∂V

∂qi
,

ṁi = −rot(Q>i
∂V
∂Qi

)
Q̇i = 0.

(34)
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We approximate the original system with full Hamiltonian (32) by a composi-
tion of the flows of (33) and (34), using some of the optimized splitting schemes
introduced earlier. In [31] the authors use a similar approach. The main differ-
ence is in the the choice of the splitting schemes (Störmer-Verlet and a fourth-order
Forest-Ruth like scheme) and the implementation of the RB method. One of the
standard methods, used in several packages for molecular dynamics simulations, for
instance the ORIENT package [28], is that described in [8]. The method consists of
a Störmer-Verlet splitting plus a further splitting of the rigid body kinetic energy
(a.k.a. the MR method described earlier in 3.3). Here, we will denote the same
method by V2+MR.

It is important to stress that, for a sufficiently large number of particles, ap-
proximating the rigid body equations by a inexpensive method, like MR, or a more
expensive one, like the exact RB, is irrelevant, as the cost of this part grows only
linearly with the number of particles. The computationally most demanding part
in this simulation, that dominates the cost of the simulation, is the solution of
(34), namely the computation of the potential, which grows quadratically with the
number of particles.

This appears clearly in our first example: we compare different splitting methods
for a system of 100 particles, for a relatively short time integration (Tfin = 1). All
the methods use fixed step size, appropriately scaled for each splitting scheme, to
require the same number of function evaluations. For the reference method, the
V2+MR, we use step size h = 10−1 × 1/2i, for i = 0, . . . , 7, i.e. for the largest
step-size h = 0.1 one has 10 potential evaluations, thus the x-axis in Figure 8 can
be interpreted as number of function evaluations as well. Similarly, the sixth-order
splitting method S610+RB, with 10 internal stages requiring potential evaluations,
is implemented with step-size h = 1. The results of the simulation are displayed
in Figure 8. The methods are implemented using the RB method (solid line) and
using the MR method (dash-dotted line). Coalescence of stages is exploited for all
methods.

The initial conditions for the experiment were taken as follows: the masses mi

are chosen to be 1, qi = N × randn(3, 1), N = 100 being the number of particles,
and randn(3, 1) a vector with random components (gaussian distribution) between
−1 and 1; pi = 0,mi = 0, Qi random orthogonal matrix, µi = (0, 1, 1)T , σ = ε = 1,
with a resulting energy H0 = 0.14134185611814. The moments of inertia are those
of water (I1 = 1, I2 = 1.88, I3 = 2.88).

In the next numerical example (Figure 9), we test the same methods for different
energies. The initial conditions are chosen as follows: we take 125 particles that we
position on a lattice of dimension 5×5×5. The initial positions are then perturbed by
1% (Gaussian normal distribution). The initial orientations are random orthogonal
matrices. With these parameters, we compute the initial energy and then we change
the linear momentum of the particles in positions q1 = (1, 1, 1)T and q125 = (5, 5, 5)T

to achieve the target energy H0. For each step-size h = 1, 1/2, 1/4, 1/8 of the basic
method SR610, we perform 100 simulations (choosing every time a different initial
condition), and we average the error and the computational time (arithmetic mean).

Finally, having observed that Nyström schemes behave very well for this class of
problems, the method RKN4b6 is compared to RKN6a14 in Figure 10. The number
of function evaluations for the two methods is the same. The initial conditions as
before, except for the number of averages (which is 1), and the time of integration,
with Tfin = 10.
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Figure 8: Error in the Hamiltoninan versus computational time for 100 particles. Several
splitting methods are compared. See text for details.

These experiments reveal that it is absolutely of interest the use of the exact RB
integrator, as a building block for higher order splitting schemes also for molecular
dynamics simulations. We did not see huge pros, but neither contros. Our experi-
ments indicated that the use of an exact RB integrator is favourable for simulations
where higher precision is required (for instance low energy). For higher energies, the
leading error terms come from V short, and the effect of having an exact integrator
for the RB part appears to be is less relevant unless other techniques are used. This
seems consistent with conclusions on the water simulations in [31]. Nevertheless, is
should be stressed that both the approaches (with either exact or approximate rigid
body solutions) require the same computational efforts because of the dominating
cost of the force evaluations.

4 Conclusions

The main purpose of this paper has been to understand whether and when meth-
ods employing the exact solution of the free rigid body equations could compete
with state of the art geometric integrators. As the exact solution of the momen-
tum equations has been discussed in the literature before, we have focussed on the
computation of the attitude rotation. We have presented two concrete approaches,
based on rotation matrices and quaternions, and we have shown how other formu-
lations of the solution fit into our framework. Thereafter, we have considered the
implementation of the exact and semi-exact methods discussed in this paper and we
have tested them thoroughly for several problems.

We have found out that the exact methods, though more expensive, are very
robust and behave uniformly well for all choices of the principal moments of inertia
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Figure 9: Average errors for different values of the energy H0, 100 runs per each of the
step-sizes 1, 1/2, 1/4, 1/8. Number of particles N = 125. For small energy values, the
splitting methods based on the exact RB integrator perform better than those with the
MR splitting. For higher values of the energy, the error of due to the splitting is much
higher than the error for the RB-part and it dominates the total error.

and initial conditions, independently of the step-size of integration.
If cost is an issue, semi-exact methods are a good compromise. They are much

cheaper than the exact ones, while sharing all the geometric properties and being
robust for large step-sizes and arbitrary values of the principal moments of inertia.
This is an advantage with respect to implicit methods using fixed-point iteration,
that might require small step-sizes to converge.

Our conclusion is that the implementation of the exact solution of the free rigid
body is competitive as a numerical approach.

The numerical exact solution of the free rigid body equations is of interest as
it can be used as a building block for splitting methods of high order. The main
argument is that one would like to use step-sizes as large as possible to reduce
the number of force evaluations. This property is appealing in several important
applications, like molecular dynamics simulations, where other aspects (like force
evaluations) are the computationally heavy part of the problem.
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Appendices

Jacobi elliptic functions

We collect here a few facts about the elliptic functions we use in the article. Given
0 ≤ k < 1, the function

ϕ 7→ F (ϕ, k) :=
∫ ϕ

0

dθ√
1− k2 sin2 θ

(35)

is called (incomplete) elliptic integral of the first type with modulus k and is a
diffeomorphism R→ R. Its inverse F ( · , k) is an odd function

am( · , k) : R→
(
− π

2
,
π

2

)
which is called amplitude of modulus k. The Jacobi elliptic functions sn and cn of
modulus k are the functions R→ [−1, 1] defined as

sn(u, k) = sin(am(u, k)) , cn(u, k) = cos(am(u, k))

and are periodic of period 4K(k), where K(k) = F (π2 , k) (the so called complete
elliptic integral of the first type of modulus k). By means of them, one defines the
functions

dn(u, k) =
√

1− k2sn(u, k)2 , sd(u, k) =
sn(u, k)
dn(u, k)

as well as several other functions that we need not consider. For given k, the u–
derivatives of these functions satisfy sn′ = cn dn, cn′ = −sn dn and dn′ = −k2sn cn.

The (incomplete) elliptic integral of the third kind with modulus 0 < k ≤ 1 and
parameter n ∈ R is the function Π( · , n, k) : (−π2 ,

π
2 )→ R defined by

Π(ϕ, n, k) :=
∫ ϕ

0

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
(36)

namely

Π(ϕ, n, k) =
∫ F (ϕ,k)

0

ds

1− n sn(s, k)2
.

Coefficients of the Gauss quadrature

For completeness, we report the coefficients of the Gaussian quadrature of order 10
shifted to the interval [0, 1].

a1 = 0.04691007703067 b1 = 0.11846344252809
a2 = 0.23076534494716 b2 = 0.23931433524968
a3 = 0.5 b3 = 0.28444444444444
a4 = 0.76923465505284 b4 = b2
a5 = 0.95308992296933 b5 = b1.

(37)
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For the qudrature of order 6 and 8 the coefficients have closed form and can be
found for instace in [1].

Coefficients of the splitting schemes

Given the differential equation

y′ = F (y) = A(y) +B(y),

denote by ϕ
[F ]
τ the flow of the vector-field F from time t to time t + τ . Given a

numerical approximations y(j) ≈ y(tj), we consider symmetric splitting schemes of
the type

y(j+1) = ϕ
[A]
a1h
◦ ϕ[B]

b1h
◦ ϕ[A]

a2h
◦ · · · ◦ ϕ[A]

am+1h
◦ · · ·ϕ[B]

b1h
◦ ϕ[A]

a1h
y(j),

where h = tj+1 − tj . A typical splitting is obtained separating the contributions
arising from the from kinetic (A) and potential (B) energy of the system. For this
reason, (twice) the number s of the coefficients bi is called the stage number of the
splitting method. The effective error is defined as Ef = s p

√
||c||2, where c is the

vector of coefficients of the elementary differentials of the leading error term and p
is the order of the method. We refer to [4, 22] for background and notation.

For completeness, we report the coefficients of the methods used in this paper.
Störmer–Verlet scheme (V2):

a1 = 1/2, b1 = 1, (38)

(order 2, one stage).
S610 method (order 6, 10 stages, effective error Ef = 1.12):

a1 = 0.0502627644003922, b1 = 0.148816447901042,
a2 = 0.413514300428344, b2 = −0.132385865767784,
a3 = 0.0450798897943977, b3 = 0.067307604692185,
a4 = −0.188054853819569, b4 = 0.432666402578175,
a5 = 0.541960678450780, b5 = 1/2− (b1 + · · ·+ b4),
a6 = 1− 2(a1 + · · ·+ a5).

(39)

S46 (order 4, 6 stages, effective error Ef = 0.56):

a1 = 0.07920369643119565, b1 = 0.209515106613362,
a2 = 0.353172906049774, b2 = 0.143851773179818,
a3 = −0.04206508035771952, b3 = 1/2− (b1 + b2),
a4 = 1− 2(a1 + a2 + a3).

(40)

The splitting above are generic in the sense that the A and B part are inter-
changeable. This is not the case for the next methods, which are based on Nyström
schemes for separable Hamiltonians.
RKN4b6 (order 4, (7)6 stages, effective error Ef = 0.28):

b1 = 0.0829844064174052, a1 = 0.245298957184271,
b2 = 0.396309801498368, a2 = 0.604872665711080,
b3 = −0.0390563049223486, a3 = 1/2− (a1 + a2),
b4 = 1− 2(b1 + b2 + b3)

(41)
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RKN6a14 (order 6, 14 stages, effective error Ef = 0.63):

a1 = 0.0378593198406116, b1 = 0.09171915262446165,
a2 = 0.102635633102435, b2 = 0.183983170005006,
a3 = −0.0258678882665587, b3 = −0.05653436583288827,
a4 = 0.314241403071477, b4 = 0.004914688774712854,
a5 = −0.130144459517415, b5 = 0.143761127168358,
a6 = 0.106417700369543, b6 = 0.328567693746804,
a7 = −0.00879424312851058, b7 = 1/2− (b1 + · · ·+ b6)
a8 = 1− 2(a1 + · · ·+ a7)

(42)
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Figure 10: Comparison of two RKN splittings of order 4 and 6, on the interval [0,10],
125 particles, for some initial conditions. The sharp increase of the error for the 6th
order method is due to the fact that the step-size is too large. The green method is the
same as in Figure 9.
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