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Prologue

In the paper: L.M. Martyushev-V.D. Seleznev ”Maximum entropy
production principle in physics, chemistry and biology” Phys. Rep.
2006 reference is made to the paper A.A. Filyukov - V. Ya. Karpov
” Method of the most probable path of evolution in the theory of
stationary irreversible processes” Phys. Eng. J. 1967

... the paper did not attracted attention at their time but the
method has much in common with approaches which were
advanced much later1 and evoked great interest...

1R.C. Dewar ”Maximum entropy production and the fluctuation theorem”
J. Phys. A (2005)
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Starting from equilibrium statistical thermodynamics ....

We consider a discretization of phase space Γ into n cells
χ = {1, . . . , n} (finite state space)

We limit ourselves to some macroscopic properties of a
generic trajectory of the dynamical system such as
Prob(χ = i) proportional to time spent in cell i

From experience: loss of information about microscopic
dynamics does not impare reproductibility of macroscopic
behaviour

Problem: Assign Prob(χ = i) without relying on ergodicity
hypothesis (top-down approach)
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... to compute frequencies q in N independent trials

χ = {1, . . . , n} discrete state space, assign p prior probability

ω = (i1, i2, . . . , iN) ∈ ΩN = χN discretized trajectory

Hyp: χi i.i.d. random variables χi ∼ p

p(ω) = p(i1)p(i2) . . . p(iN)

Define type of ω (frequency vector)

X (ω) = (
N1(ω)

N
, . . . ,

Nn(ω)

N
) =: (q1, . . . , qn)

it gives macroscopic description of dynamics independent of initial
conditions. Probability of a trajectory depends only on type of ω

p(ω) =
n∏

i=1

p
NXi (ω)
i = eN

P
i Xi (ω) ln pi
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Enter entropy, relative entropy and cross entropy

To compute the probability of a trajectory

p(ω) =
n∏

i=1

p
NXi (ω)
i = eN

P
i Xi (ω) ln pi

use identity: cross entropy = entropy + relative entropy

−
∑

i

qi ln pi = −
∑

i

qi ln qi +
∑

i

qi ln
qi

pi

H(q; p) = H(q) + D(q‖p)

and get
p(ω) = e−N[H(X (ω))+D(X (ω)‖p)]

max for X (ω) = p !
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counting frequencies in N independent trials

Let us compute probability of type q

Prob(X (ω) = q) =
N!∏n

i=1(Nqi )!
e−N[H(q)+D(q‖p)]

using Stirling approx ln n! ∼ (N + 1
2 ) ln N − N + 1

2 ln 2π

Prob(X (ω) = q) ∼ e−ND(q‖p)

N
n−1

2

1√∏
i qi

max for q = p

Problems:
1. Prob(X (ω) = p)→ 0 for N →∞
2. Granted that q with minimal relative entropy has a favorite
status, how quickly are other p.d. q′ ruled out?
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Problem 1: Entropy and L.L.N. (Shannon Thm)

Theorem (weak L.L.N. )

For every ε > 0, if N is sufficiently large

Prob({ω ∈ ΩN : |X (ω)− p| < ε})→ 1

p(ω) = e−N[H(q)+D(q‖p)] ∼ e−NH(p), for a.e. ω

(ω typical sequences, asymptotic equipartition property).
If we introduce the joint entropy of N r.v. χi

H(χ1, χ2, . . . , χN) =
∑
ω∈ΩN

p(ω) ln p(ω)

then H(p) coincides with the entropy rate of the i.i.d. ∼ p process

H(p) = lim
N→+∞

1

N
H(χ1, χ2, . . . , χN)

entropy rate = thermodynamic limit of the entropy of χ
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If constraints on empirical frequencies q are known

Theorem ( l.l.n. with linear constraints, O.A. Vasicek, 1980)

∀ε > 0 there exists δε > 0 such that ∀δ ∈ (0, δε]

Prob({ω ∈ ΩN : |X (ω)− q| ≤ ε & |AX (ω)− c | < δ})→ 1

as N →∞, where q minimizes D(q‖p) on the constraint.

Rem: if p = 1/n then H(q, 1/n) = H(q) + D(q‖1/n) = ln n
Problem : Granted that q with min rel entropy has a favorite
status, how quickly are other p.d. q′ ruled out?
Answer (Large deviation theory, E.C.T., Sanov Theorem)

Prob(q′ : D(q′‖q) > δ) = 1− F (Nδ) = 1−
∫ Nδ

0
pχ2

n−k−1

Maximum enormously sharp for ’large’ N.
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Maximum entropy or minimum relative entropy principle

p : prior information, F (q) ∈ C : subsequent information

In the asymptotic N limit, probability distribution with max H(q)
[resp. min D(q‖p)] are enormously favoured with respect to all
other p.d. satisfying constraints F (q) ∈ C

Max Ent is a consequence of large system dimensionality and scale
separation
Credits:

L. Boltzmann ∼ 1870

J.W. Gibbs Elementary Principles of Statistical mechanics 1902

C. Shannon A mathematical theory of communication 1948

E.T. Jaynes Information theory and Statistical Mechanics 1957
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Doing the same thing in the Markov chain setting

χ{1, . . . , n} state space,

χi , i ∈ N not i.i.d. r.v. but satisfying Markov property

p(ω) = Prob(χ1 = i1, . . . , χN = iN) = p(i1)p(i2|i1)p(i3|i2i1) . . .

= p(i1)p(i2|i1) . . . p(iN |iN−1) = piPi1i2 . . .PiN−1iN

P stochastic matrix of conditional probabilities

Definition: a p.d. π is stationary for P if Ptπ = π

at time step k , χk is described by π(k) = πPk
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Law of large numbers for ergodic Markov processes

Let π be stationary p.d. for P. Consider stationary Markov process

p(ω) = π(i1)Pi1i2 . . .PiN−1iN = π(i1)
n∏

k,l=1

P
Nkl (ω)
kl

if we define conditional frequencies Xkl(ω) = Nkl(ω)/Nk(ω) then

p(ω) = π(i1)e−N
P

kl Xk (ω)Xkl ln Pkl

As before: cross entropy = entropy + relative entropy

−
∑
kl

qkQkl ln Pkl = −
∑
kl

qkQkl ln Qkl +
∑
kl

qkQkl ln
Qkl

Pkl

Hq(Q; P) = H(q,Q) + D(Q‖P)
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From l.l.n.

Xi (ω) ∼ πi Xkl(ω) =
Nkl(ω)

Nk(ω)
∼ Pkl ∀k , l

hence, for a.e. ω

p(ω) = πie
−N[H(q,Q)+D(Q‖P)] ∼ e−NH(π,P)

this is asymptotic equipartition property for M.C. expressed in
terms of the entropy of the Markov chain

H(π,P) = −
∑
kl

πkPkl ln Pkl

As before the entropy of χ is the thermodynamic limit : for a.e. ω

lim
N

1

N
H(χ1, . . . , χN) = lim

N

1

N

∑
ω∈ΩN

p(ω) ln p(ω) = H(π,P)
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a version of the ergodic theorem for Markov chains

Theorem

Let Pij > 0 ∀i , j . Then there exists a unique p.d. π such that
Ptπ = π (stationary for P) and

lim
N→∞

(PN)ij = πj

where PN = PP . . .P (N times). π is the equilibrium distribution

Strong ergodicity : setting ||µ− ν|| =
∑

i |µi − νi |

lim
N→∞

||µPN − π|| = 0 ∀µ

asymptotic loss of memory of initial conditions
Remark: P determines equilibrium state π, converse implication is
false.
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M.E.P. for stationary Markov chains

Let the equilibrium probability distribution π be given. Then
we select stochastic matrix P which has π as stationary
distribution, fulfills macroscopic constraints on the equilibrium
state and has maximum entropy H(π,P).

This amount to choose the process that has an overwhelming
number of possible realizations.

As a consequence, we select the dynamics for the approach to
equilibrium that has quickest loss of information about initial
conditions

Maximum entropy principle for Markov chain used in
communication theory, reliability theory, seismic risk analysis
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A model for a discrete system in S.NE.S.

χ = {1, . . . , n} system, A, B environments
Hyp: the system is alternatively on contact with A, B.

Introduce a time-dependent Markov chain with matrices
A > 0,B > 0

Pt =

{
A t = 2m,
B t = 2m + 1.

Start the chain with given arbitrary p.d. π. Then
(A∗ = transposed matrix of A)

π(0) = π, π(1) = A∗π, π(2) = (AB)∗π, π(3) = (ABA)∗π, . . .

Prob(χ0 = i , χ1 = j , χ2 = k , χ3 = l) = πiAijBjkAkl

let E = (E1, . . . ,En) be the energy of χ, Eπ(E ) is a
macroscopic observable
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imposing macroscopic constraints on A, B

A · 1 = B · 1 = 1 (normalization of A and B)

Energy is conserved in microscopic transitions i → j

∆Eχ
ij = Ej − Ei = −∆EA

then average energy transfer in the contact with A is

(∆Eχ)av =
∑
ij

πiAij∆Eχ
ij = EA∗π(E )− Eπ(E ) = −(∆EA)av

an energy q = q̇τ ≥ 0 enters from A and is transferred on B

EA∗π(E )− Eπ(E ) = q, (specify energy inflow)

after contact with A&B the system χ is unchanged

E(AB)∗π(E )− Eπ(E ) = 0, (outflow = inflow)

we set this last constraint in the form

(AB)∗π = π (stationarity of π for AB)
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Computing the entropy

If π is stationary for AB and A it is stationary also for B. This
implies A = B, q = 0; the system is in a equilibrium state.

If π is stationary for AB but not for A, the chain is weakly but
not strongly ergodic. The system switches between

π, A∗π, π, A∗π, π, . . .

However its entropy is defined. We can compute the entropy
of χ

p(ω) = πi1Ai1i2Bi2i3Ai3i4 . . .

due to the stationarity condition (AB)∗π = π

H = lim
N

1

N
H(χ1, χ2, . . . , χN) =

1

2
[H(π,A) + H(A∗π,B)]

We want to determine matrices A, B fulfilling constraints and
maximizing H(A,B).
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M.E. solution

Suppose that equilibrium p.d. is determined by additional
constraint

Eπ(E ) = e.

Then the maximum entropy solution for stochastic matrices A and
B on the basis of the macroscopic constraints on e, average
system energy, and q, average energy flux , is

Aij = π′j =
e−β

′Ej

Z (β′)
, Bij = πj =

e−βEj

Z (β)

where β′ = 1/T ′ and β = 1/T are determined by

e + q = − ∂

∂β′
ln Z (β′), e = − ∂

∂β
ln Z (β)

The system switches between p.d. π and π′

π(e)
A→ π′(e + q)

B→ π(e)
A→ π(e + q) . . .
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Entropy of χ

The entropy of χ is

H(e, q) =
1

2
[H(π,A) + H(π′,B)] =

1

2
[H(π) + H(π′)]

=
1

2
[ln Z (β) + βe + ln Z (β′) + β′(e + q)]

If the energy flux q is small, we can expand H(e, q) in powers of q

H(e, q) = ln Z (β) + βe +
1

2

q

T
+O(q2)

the entropy of the open system χ has a source and flux term.
Moreover, up to O(q2)

q =
∂e

∂β
(β)dβ = −∂

2 ln Z (β)

∂β2
dβ = −T 2Cv d(

1

T
) = Cv dT .
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The case of m synchronous fluxes

If the system is in a S.NE.S. with m fluxes qα related to m
macroscopic observables Xα other than the energy, and the
equilibrium state is defined by m averages cα, then the system
switches between Gibbs states

π(c1, . . . , cm) =
e−

P
i βαXα

Z (β1, . . . , βm)
, π′(c1 + q1, . . . , cm + qm)

satisfying Onsager’ reciprocal relations

∂cα
∂βγ

=
∂cγ
∂βα
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An example with 2 asynchronous fluxes

Suppose that the system returns (relaxes) to equilibrium with
respect to observable X in a two step cycle

A→ B C → D

while, with respect to observable Y relaxes to equilibrium in a full
(four step) cycle

A→ B → C → D

Can we infer average values of slow quantity Y at intermediate
states B, C from knowlege of average values of fast observable X ?
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Constraints and entropy

A · 1 = B · 1 = C · 1 = D · 1 = 1 (normalization)

EA∗π(X )− Eπ(X ) = q, (specify inflow of X in A)

E(AB)∗π(X )− Eπ(X ) = 0, (specify outflow of X in AB)

E(ABC)∗π(X )− Eπ(X ) = q, (specify inflow of X in ABC )

E(AB)∗π(Y )− Eπ(Y ) = r , (specify inflow of Y in AB)

(ABCD)∗π = π, (stationarity of π for ABCD).

H =
1

4
[H(π,A) + H(A∗π,B) + H((AB)∗π,C ) + H((ABC )∗π,D)]
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M.E. solution

If equilibrium state is defined by e = Eπ(X ) and u = Eπ(Y ) then
system switches between three Gibbsian states

π(e, u)
A→ π(e + q)

B→ π(e + q, u + r)
C→ π(e + q)

D→ π(e, u)

Then, the inferred average value of Y at intermediate states is

(Y )av = Eπ(e+q)[Y ]

Also
d(Y )av

dq
dq = −

Covπ(e+q)(X ,Y )

Covπ(e+q)(X ,X )
dq
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Entropy production in closed system A ∪ χ ∪ B

Let A and B be thermostats at temperatures TA = T ′ > T = TB .

The entropy production in a π
A→ π′

B→ π cycle is (χ is unchanged
by AB)

Spr = dSA + dSB =
−q

T ′
+

q

T
= q(β − β′)

It turns out that the entropy production of the overall, closed
system A ∪ χ ∪ B is equal to the divergence (symmetrized relative
entropy) between the probability distribution describing the two
states assumed by χ

Spr (e, q) = q(β − β′) = [D(π‖π′) + D(π′‖π)] = ∆(π, π′) ≥ 0.
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interpretation of divergence ∆

Let χ : Ω→ {1, . . . , n} be the r.v. describing the microscopic
state. Consider hypotheses: χ is described by π [resp. by π′].
Given observation χ = i , by Bayes’ Thm

P(π|i) = P(π)
P(i |π)

P(i)
= P(π)

πi

P(i)

ln
P(π|i)
P(π′|i)

− ln
P(π)

P(π′)
= ln

πi

π′i
gain of information in i

D(π‖π′) is the average gain of information to discriminate between
π and π′ when χ is described by π

D(π‖π′) =
n∑

i=1

πi ln
πi

π′i
≥ 0

symmetrize

∆(π;π′) = D(π‖π′) + D(π′‖π) =
n∑

i=1

(πi − π′i ) ln
πi

π′i
= Spr
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conclusion

When a system is in a stationary nonequilibrium state described by
a flux of energy q between two thermostats at different
temperatures T ′(e + q) > T (e), the entropy production

Spr = dSA + dSB =
−q

T ′
+

q

T
= q

T ′ − T

TT ′
= ∆

is a measure of the information available through observations to
determine in which state π or π′ the system is (divergence between
π and π′)

Spr = ∆ high → easy to discriminate

Spr = ∆ low → difficult to discriminate
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