Paolo Podio-Guidugli Università di Roma TorVergata

Vita(, Morte) e Miracoli dello Spostamento Termico

"A Thermodynamics Day"
Padova, 5 giugno 2009

VITA

Thermal displacement, what the hell is that?

In principio erat HELMHOLTZ (1821-1894)

- H von H, Prinzipien der Statik monocyklischer Systeme (1884)
- H von H, Studien zur Statik monocyklischer Systeme (1884)

In fine (?) erat GAM

• C. Dascalu & GAM, The thermoelastic material-momentum equation. J. Elasticity 39, 201-212 (1995)

• ...

Given that in principio erat Helmholtz and in fine erat GAM,

Q1. Was there anything in medio?

Q2. What comes next?

Before we try and answer, ...

...back to H von H

Helmboltz

Photographyche Gefellfchaft in Berlin

with the help of Cornelius Lanczos* and of ...

* C. L., The Variational Principles of Mechanics, Dover, 1986

Louis de Broglie (1892-1987)

L de B, La Thermodynamique de la particule isolée (ou Thermodynamique cachée des particules), Gauthier-Villars, Paris (1964)

Helmholtz's Monocyclic Lagrangian Systems. 1

Consider a lagrangian where the n-th coordinate is missing:

$$L = L(q_1, \ldots, q_{n-1}, \not q_n; \dot q_1, \ldots, \dot q_n; t).$$

Then,

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_n} \right) = 0 \quad \Leftrightarrow \quad p_n = \frac{\partial L}{\partial \dot{q}_n} = c_n, \text{ a motion constant} \quad \Rightarrow$$

$$\dot{q}_n = f(q_1, \dots, q_{n-1}; \dot{q}_1, \dots, \dot{q}_{n-1}; c_n; t). \tag{*}$$

Strategy

- With the use of (*), obtain $t \mapsto (q_1(t), \dots, q_{n-1}(t))$, the time evolution of the 'slow' coordinates;
- having this information, revert to (*), and obtain the time evolution of the 'fast' coordinate q_n by quadrature.

Note A fast coordinate is not observable, its time rate is.

Helmholtz's Monocyclic Lagrangian Systems. 2

Require the action $A = \int_{t_1}^{t_2} L(q_1, \dots, q_{n-1}; \dot{q}_1, \dots, \dot{q}_n; t) dt$ be stationary under the constraint

$$\dot{q}_n = f(q_1, \dots, q_{n-1}; \dot{q}_1, \dots, \dot{q}_{n-1}; c_n; t).$$
 (*)

Formally,

$$\delta\left(\int_{t_1}^{t_2} \left(L(q_1,\ldots,q_{n-1};\dot{q}_1,\ldots,\dot{q}_n;t) + \lambda \dot{q}_n\right) dt\right) = 0$$

implies

$$\lambda = -\frac{\partial L}{\partial \dot{q}_n} = -p_n = -c_n$$
.

Accordingly, one can introduce the modified lagrangian

$$\overline{L}(q_1,\ldots,q_{n-1};\dot{q}_1,\ldots,\dot{q}_{n-1};c_n;t) =: L(q_1,\ldots,q_{n-1};\dot{q}_1,\ldots,\dot{q}_n;t) - c_n\dot{q}_n,$$

where (*) specifies \dot{q}_n .

Helmholtz's Monocyclic Lagrangian Systems. 3

Split L = K - U, with $U = U(q_1, q_2, \dots, q_{n-1}; t)$ the potential energy and

$$K = \frac{1}{2} \sum_{i=1}^{n-1} a_{ik} \dot{q}_i \dot{q}_k + \left(\sum_{i=1}^{n-1} a_{in} \dot{q}_i \right) \dot{q}_n + \frac{1}{2} a_{nn} \dot{q}_n^2$$

the kinetic energy. This implies that $\overline{L} = \overline{K} - \overline{U}$, with

$$\overline{K} := \frac{1}{2} \sum_{i=1}^{n-1} a_{ik} \dot{q}_i \dot{q}_k + \frac{1}{2} \left(\sum_{i=1}^{n-1} a_{in} \dot{q}_i \right)^2 + a_{nn}^{-1} c_n \sum_{i=1}^{n-1} a_{in} \dot{q}_i, \quad \overline{U} := U + \frac{1}{2} a_{nn}^{-1} c_n^2.$$

- If $a_{in} \neq 0$, then (i) *kinetic coupling* between fast variable q_n and slow variable q_i ; (ii) *gyroscopic term* $a_{in}\dot{q}_i$ in the kinetic energy.
- potential energy augmented by a positive contribution of kinetic origin, a manifestation of the 'ghost' variable q_n , the only manifestation in case of no kinetic coupling.

Helmholtz's Heat Theorem. 1

Stripped-to-the-bones motion equations are:

$$\frac{\partial L}{\partial q_s} + \not \! g_s = 0, \quad -\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_f} \right) + g_f = 0 \quad \Leftrightarrow \quad -\dot{p}_f + g_f = 0$$

(one fast coordinate, one slow; $g_f \equiv$ only external force). The incremental working performed on the system is:

$$dQ = g_f dq_f = \dot{p}_f \dot{q}_f dt = \dot{q}_f dp_f \quad \Rightarrow \quad \frac{dQ}{2K} = d(\log p_f).$$

Formally, on setting

$$2K =: temperature \ T$$
 and $\log p_f := entropy \ S$,

we have:

$$\frac{dQ}{T} = dS,$$

with 'coldness' T^{-1} as the integrating factor. Note that this conclusion does not depend on the form of the potential energy.

Helmlholtz's Heat Theorem. 2

When generalized so as to apply to a *multidimensional ergodic system*, this result takes the form of the *heat theorem*:

$$\frac{dE + PdV}{T} = dS_{\Phi},\tag{1}$$

where S_{Φ} is the *volume entropy*:

$$S_{\Phi}(E) := \log \Phi(E), \quad \Phi(E) := \int_{P_h S_p} H(E - \mathcal{H}(\mathbb{Q}, \mathbb{P})) d\mathbb{Q} d\mathbb{P},$$

and
$$T := 2 < K >$$
, $E = K + U$, $P := \left\langle -\frac{\partial U}{\partial q} \right\rangle$.

Recall that

$$\Phi'(E) = \Omega(E) = \int_{P_h S_p} \delta(E - \mathcal{H}(\mathbb{Q}, \mathbb{P})) d\mathbb{Q}d\mathbb{P},$$

$$< F > (E) := \frac{1}{\Omega(E)} \int_{P_b S_n} F(\mathbb{Q}, \mathbb{P}) \, \delta(E - \mathcal{H}(\mathbb{Q}, \mathbb{P})) \, d\mathbb{Q} d\mathbb{P}.$$

LES GRANDS PROBLÈMES DES SCIENCES

ouvrages réunis par Mme P. Février

Nº 17

La Thermodynamique de la particule isolée

(ou Thermodynamique cachée des particules)

par Louis de Broglie de l'Académie française, Secrétaire perpétuel de l'Académie des Sciences

[from p. 63] "Le schéma canonique de la Thermodynamique de Helmholtz part essentiellement de l'introduction d'une variable α dont la température est la dérivée par rapport au temps, mais la signification de la variable α reste mysterieuse."

1964 GAUTHIER-VILLARS ÉDITEUR PARIS

Thermal displacement, additional references

(just to hint at what erat in medio)

References from the physical literature

- M. von Laue, Relativitätstheorie, Vol. 1, Braunschweig (1921).
- D. van Dantzig, On the phenomenological thermodynamics of moving matter. Physica 6, 673-704 (1939).

• ...

• V.E. Kuzmichev and V.V. Kuzmichev, Accelerating Quantum Universe. Acta Phys. Pol. B 39 (2008)

<u>NOTE!</u> For von L., thermacy = minus thermal displacement; van D. calls the thermal displ. thermasy, just as the authors to follow, who are in search of a hamiltonian structure for relativistic perfect fluids:

- D. Bao, J. Marsden, and R. Walton, The Hamiltonian Structure of General Relativistic Perfect Fluids. Comm. Math. Phys. (1985)
- J. Kijowski, A. Smólski, and A. Górnicka, Hamiltonian theory of self-gravitating perfect fluid ... Phys. Rev. D 41 (1990)

• ...

CM references, where authors are in search of

a Hamiltonian structure for nonrelativistic dissipative materials

- G.A. Maugin, Towards an analytical mechanics of dissipative materials. Rend. Sem. Mat. Univ. Pol. Torino 58 (2), 171-180 (2000).
- G.A. Maugin and V.K. Kalpakides, The slow march towards an analytical mechanics of dissipative materials. Tech. Mech. 22 (2), 98-103 (2002).
- G.A. Maugin and V.K. Kalpakides, A Hamiltonian formulation for elasticity and thermoelasticity. J. Phys. A: Math. Gen. 35, 10775-10788 (2002).

CM references where authors are in search of an alternative formulation for thermomechanics

- A.E. Green and P.M. Naghdi, A re-examination of the basic postulates of thermomechanics. Proc. Royal Soc. London A432, 171-194 (1991).
- A.E. Green and P.M. Naghdi, A demonstration of consistency of an entropy balance with balance of energy. ZAMP 42, 159-168 (1991).
- A.E. Green and P.M. Naghdi, Thermoelasticity without energy dissipation. J. Elasticity 31, 189-208 (1993).
- V.K. Kalpakides and C. Dascalu, On the configurational force balance in thermomechanics. Proc. R. Soc. London. A458, 3023-3039 (2002).
- S. Bargmann and P. Steinmann, Theoretical and computational aspects of non-classical thermoelasticity. Comp. Meth. Appl. Mech. Eng. 196, 516-527 (2006).

MIRACOLI

A Virtual-Working Format for Thermomechanics*

* P. P-G, Continuum Mechanics and Thermodynamics, Volume 20 (8), pp. 479-487 (2009)

building upon an idea sketched in

P. P-G and A. Tiero, Un formato tipo lavori virtuali per la termodinamica dei processi omogenei. Proc. XIV Congr. Naz. Meccanica Teor. Appl. (Como, Italy - October 1999)

The Standard Mechanical & Thermal Structures

- mechanical body structure based on
 - Virtual Working Principle

$$\int_{\mathcal{P}} oldsymbol{S} \cdot
abla oldsymbol{v} = \int_{\mathcal{P}} oldsymbol{d} \cdot oldsymbol{v} + \int_{\partial \mathcal{P}} oldsymbol{c} \cdot oldsymbol{v} \,, \quad oldsymbol{v} \in \mathcal{V}, \ \ \mathcal{P} \subset \mathcal{B} \,,$$

implying force balance;

- thermal body structure based on
 - energy balance

$$\dot{\varepsilon} = -\mathbf{div}\,\mathbf{q} + r$$
,

entropy imbalance

$$\dot{\eta} \ge -\mathbf{div}\,\boldsymbol{h} + s$$
, with $\boldsymbol{h} = \vartheta^{-1}\boldsymbol{q}$, $s = \vartheta^{-1}r$.

Body as a Composition of Mechanical & Thermal Structures. i. Kinetics

- kinetic variables are
 - mechanical displacement u, with

$$v = \dot{u} \equiv \text{velocity},$$

– thermal displacement α , with

$$\vartheta = \dot{\alpha} \equiv \text{temperature},$$

defined over *space-time cylinder* $\mathcal{B} \times (0, T)$

- process $(x,t)\mapsto \big(\boldsymbol{u}(x,t),\alpha(x,t)\big)$, with $\big(\boldsymbol{v}(x,t),\vartheta(x,t)\big)\equiv$ realizable velocity pair
- $(\delta u(x,t), \delta \alpha(x,t)) \equiv$ virtual velocity pair

Body as a Composition of Mechanical & Thermal Structures. ii. Dynamics

For \mathcal{P} a subbody of \mathcal{B} , and $I = (t_i, t_f)$ a subinterval of (0, T), dynamics specified by

(i) internal virtual working

$$\delta \mathcal{W}^{(i)} = \int_{\mathcal{P} imes I} (m{s} \cdot \delta m{u} + m{S} \cdot
abla \delta m{u} + h \, \delta lpha + m{h} \cdot
abla \delta lpha) \, ,$$

where

- s and $S \equiv 0$ —th and 1—st order mechanical interactions
- h and $h \equiv 0$ —th and 1—st order thermal interactions

Note

Treatments of mechanical and thermal entities should be kept as parallel as possible. Parallelism broken by

• invariance requirements in a galilean observer change,

$$\boldsymbol{v} \mapsto \boldsymbol{v}^+ = \boldsymbol{v} + \boldsymbol{t}, \quad \dot{\alpha} \mapsto \dot{\alpha}^+ = \dot{\alpha}.$$

Thus, translational invariance of $\delta W^{(i)}$ implies a symmetry-breaking conclusion:

the 0th order stress s is null.

• habit habitual entropy flux = minus the 1-st order thermal interaction h.

(ii) external virtual working

$$\delta \mathcal{W}^{(e)} = \int_{\mathcal{P} \times I} (\boldsymbol{d} \cdot \delta \boldsymbol{u} + \boldsymbol{p} \cdot \overline{\delta \boldsymbol{u}} + s \, \delta \alpha + \eta \, \overline{\delta \alpha})$$

$$+ \int_{\partial \mathcal{P} \times I} (\boldsymbol{c} \cdot \delta \boldsymbol{u} + c \, \delta \alpha) + \int_{\mathcal{P} \times \partial I} [\![\boldsymbol{p} \cdot \delta \boldsymbol{u} + \eta \, \delta \alpha]\!]$$

- (d, c) & $(s, c) \equiv mech$. & therm. (distance, contact) interactions;
- $p \equiv \text{momentum}$, $(Sn \equiv \text{momentum flux})$ $d \equiv \text{momentum source} \equiv (noninertial \text{ distance force});$
- $\eta \equiv \text{entropy}$, $(h \cdot n \equiv \text{entropy flux})$ $s \equiv \text{entropy source}$;
- $c \equiv \text{contact force}, c \equiv \text{contact heating};$
- $p_f, \ldots, \eta_i \equiv$ mechanical & thermal external <u>actions</u>, at time boundaries of $\mathcal{P} \times I$:

$$\int_{\partial I} [\![\boldsymbol{p} \cdot \delta \boldsymbol{u} + \eta \, \delta \alpha]\!] := \boldsymbol{p}_f(x) \cdot \delta \boldsymbol{u}(x, t_f) + \eta_f(x) \, \delta \alpha(x, t_f) + \boldsymbol{p}_i(x) \cdot \delta \boldsymbol{u}(x, t_i) + \eta_i(x) \, \delta \alpha(x, t_i).$$

Notes

- Just as α called *thermal displacement* to allude to role analogy with mechanical displacement u, why not to regard η as the *thermal momentum*, by analogy with the mechanical momentum p?
- Just as p thought of as measuring reluctance to quiet, why not to think of η as measuring reluctance to order?

The Virtual Working Axiom

(VW) The internal and the external working should be equal:

$$\delta \mathcal{W}^{(i)} = \delta \mathcal{W}^{(e)},$$

for each virtual velocity pair defined over the closure of any subcylinder $\mathcal{P} \times I$ of $\mathcal{B} \times (0,T)$ and such as to vanish at the end of I itself.

Implications of VW Axiom

• momentum and entropy balances:

$$\dot{p} = \text{Div } S - s + d, \quad \dot{\eta} = \text{Div } h - h + s \quad \text{in } \mathcal{P} \times I$$

• initial conditions:

$$\boldsymbol{p}(x,t_i) = \boldsymbol{p}_i(x), \quad \eta(x,t_i) = \eta_i(x) \quad \text{for } x \in \mathcal{P}$$

• boundary conditions on $\partial \mathcal{P} \times I$:

$$Sn = c$$
 \equiv balance of contact forces: $c + S(-n) = 0$;

 $h \cdot n = c \equiv \text{continuity cnd. on contact heating: } c = (-h) \cdot (-n)$ establishing -h as a measure of specific *entropy influx* at a point

of an oriented surface of normal n.

Conservation of Internal Action. Preliminaries

An integral consequence of momentum and entropy balances is:

$$W(\mathcal{P}) + H(\mathcal{P}) = \frac{d}{dt} \Big(\int_{\mathcal{P}} (\boldsymbol{p} \cdot \boldsymbol{v} + \eta \, \vartheta) \Big) + \int_{\mathcal{P}} stuff,$$

where

• noninertial working
$$W(P) := \int_{P} d \cdot v + \int_{\partial P} c \cdot v$$
,

• heating
$$H(\mathcal{P}) := \int_{\mathcal{P}} s \, \vartheta + \int_{\partial \mathcal{P}} c \, \vartheta$$
,

•

$$\int_{\mathcal{P}} stuff = \frac{d}{dt} \Phi(\mathcal{P}), \text{ where } internal \ action } \Phi(\mathcal{P}) := \int_{\mathcal{P}} \varphi,$$

whence

$$stuff = s \cdot v + S \cdot \nabla v - p \cdot \dot{v} + h \vartheta + h \cdot \nabla \vartheta - \eta \dot{\vartheta} := \dot{\varphi}.$$

The Axiom of Conservation of Internal Action

(CIA) In a cycle, the <u>noninertial working</u> plus the <u>heating</u> supplied to or extracted from \mathcal{P} sum to null:

$$\oint (W(\mathcal{P}) + H(\mathcal{P})) = 0.$$

Equivalently,

(CIA)' In a cycle, the <u>internal action</u> is conserved:

$$\oint \Phi(\mathcal{P}) = 0.$$

Implications of CIA Axiom. The 1st Law

For $\tau \equiv \text{specific } total \ energy:$

$$au := \varphi + \boldsymbol{p} \cdot \boldsymbol{v} + \eta \, \vartheta, \quad T(\mathcal{P}) := \int_{\mathcal{P}} \tau,$$

we have:

$$\dot{T}(\mathcal{P}) = W(\mathcal{P}) + H(\mathcal{P}),$$
 the First Law of TD.

To see this,

• set entropy inflow (-h, s) proportional to energy inflow (-q, r) through coldness:

$$\boldsymbol{h} = \vartheta^{-1} \boldsymbol{q}, \ \ s = \vartheta^{-1} r;$$

• accept standard notion of specific *kinetic energy* κ :

$$\kappa := \frac{1}{2} \, \boldsymbol{p} \cdot \boldsymbol{v}, \quad \text{with} \ \ \dot{\boldsymbol{p}} \cdot \boldsymbol{v} = \boldsymbol{p} \cdot \dot{\boldsymbol{v}}, \ \ (\text{so that} \ \ \dot{\kappa} + (-\dot{\boldsymbol{p}}) \cdot \boldsymbol{v} = 0) \, .$$

• set

$$\varepsilon := \tau - \kappa, \quad \varphi := \psi - \kappa,$$

and interpret

- $-\varepsilon \equiv \text{specific } internal \ energy$
- $\psi \equiv \text{specific } \textit{Helmholtz free energy} = \varepsilon \eta \, \vartheta$,

whence the interpretations for both the *total energy* τ and the *internal action* φ .

The Dissipation Axiom

(D) Whatever the process $(x,t) \mapsto (u(x,t), \alpha(x,t)),$

 $h \dot{\alpha} < 0$

over the space-time cylinder $\mathcal{B} \times (0,T)$.

Implications of D Axiom. The 2nd Law

• Main implication is the generalized *dissipation inequality*:

$$\dot{\psi} \leq -\eta \, \dot{\vartheta} + \boldsymbol{h} \cdot \nabla \vartheta + \boldsymbol{s} \cdot \boldsymbol{v} + \boldsymbol{S} \cdot \nabla \boldsymbol{v}$$
.

• If $\vartheta \ge 0$ (an <u>unnecessary</u> assumption so far), then *entropy balance & D axiom imply*:

$$\dot{\eta} \ge \operatorname{div} h + s \quad (entropy inbalance \equiv \text{ the } \underline{\operatorname{Second Law}} \text{ of } \operatorname{TD}).$$

• Standard dissipation inequality & entropy imbalance follow for

$$\boldsymbol{h} = -\vartheta^{-1}\boldsymbol{q}, \quad s = \vartheta^{-1}r; \quad \boldsymbol{s} = \boldsymbol{0}.$$

Thermal displacement, what the hell is that?

Is there a statistical notion of thermal displacement?

Listening to Green & Naghdi (1991):

"The temperature T (on the macroscopic scale) is generally regarded as representing (on the molecular scale) some 'mean' velocity magnitude or 'mean' (kinetic energy) $^{1/2}$. With this in mind, we introduce a scalar $\alpha = \alpha(X, \tau)$ through an integral of the form

$$\alpha = \int_{t_0}^t T(X, \tau) d\tau + \alpha_0, \tag{7.3}$$

where t_0 denotes some reference time and the constant α_0 is the initial value of α at time t_0 . In view of the above interpretation associated with T and the physical dimension of the quantity defined by (7.3), the variable α may justifiably be called thermal displacement magnitude or simply thermal displacement. Alternatively, we may regard the scalar α (on the macroscopic scale) as representing a 'mean' displacement magnitude on the molecular scale [italics are mine] and then $T = \dot{\alpha}$."

Listening to Kalpakides & Dascalu (2002):

"Taking the view of Green & Naghdi, we consider that $\alpha(X,t)$ represents a second motion of the continuum, taking place at a different scale from the macroscopic motion y(X,t). This could be a continuous representation of the lattice vibration, a phenomenon of quantum-mechanical origin. [my italics] This justifies us to postulate complete independence in the corresponding observers of the two motions, hence to introduce two kind[s] of observer changes ..."

Summing up:

- (Green & Naghdi)
 - primary variable: either temperature or thermal displacement;
 - both variables should be given a statistical interpretation as some ensemble average.
- (Kalpakides & Dascalu)
 - thermal displacement as primary variable;
 - reference to lattice vibration appropriate only when thinking of a lattice is;
 - use of microscopic observer changes:

$$\boldsymbol{v} \mapsto \boldsymbol{v}^+ = \boldsymbol{v}, \quad \dot{\alpha} \mapsto \dot{\alpha}^+ = \dot{\alpha} + \beta, \quad \beta = \text{an arbitrary scalar},$$

has equivalent consequences to my use of virtual velocities $\delta \alpha$.

(Recall: galilean o. c.,
$$v \mapsto v^+ = v + t$$
, $\dot{\alpha} \mapsto \dot{\alpha}^+ = \dot{\alpha}$.)