
Local Thermodynamic Equilibrium
Dynamics? Ensembles?

Fluctuation relations
Discussion

Deterministic thermostats:
temperature and fluctuation relations

Lamberto Rondoni – Politecnico di Torino

A Thermodynamics Day - Padova - 5 June 2009

http://www.rarenoise.lnl.infn.it/

Lamberto Rondoni – Politecnico di Torino Deterministic thermostats



Local Thermodynamic Equilibrium
Dynamics? Ensembles?

Fluctuation relations
Discussion

Outline

1 Local Thermodynamic Equilibrium

2 Dynamics? Ensembles?

3 Fluctuation relations

4 Discussion

Lamberto Rondoni – Politecnico di Torino Deterministic thermostats



Local Thermodynamic Equilibrium
Dynamics? Ensembles?

Fluctuation relations
Discussion

Nonequilibrium phenomena
Microscopic picture
Away from LTE?
Anomalous transport

Local Thermodynamic Equilibrium

Variety of nonequilbrium phenomena. As in equilibrium, 3 levels:
• Microscopic (mechanical; reversible);
• Mesoscopic (stochastic/kinetic; fluctuating-irreversible);
• Macroscopic (hydro-thermodynamic; deterministic-irreversible).

Somewhat unified under hypothesis of

Local Thermodynamic Equilibrium.
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Local Thermodynamic Equilibrium: needs vast separation of length
and time scales, hence N � 1 and interactions are prerequisites:

`� δL� L , τ � δt � t

` = mean free path; τ = mean free time;
δL3 contains thermodynamic system (P,T , ρ), infnitesimal for L;
δt enough to reach equilibrium state in δL3;
L = typical system size;
t = typical macroscopic observation time.

· · ·

LTE: mesoscopic cells reach equilibrium in δt, infinitesimal for t.
Sufficiently fast correlations decay.
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LTE: after local relaxation, large N makes irrelevant granularity of
matter: uniformly distributed, it appears as a
continuum, with continuously varying properties.

Thus, local balances are valid:

Corresponding macroscopic description
is based on linear equations, like
Fick’s law for tracer diffusion or Ohm’s low for electric current

Jn(x , t) = −D
∂n

∂x
(x , t) , Je(x , t) = κE

with entropy sources

σs(x , t) =
D

n(x , t)

[
∂n

∂x
(x , t)

]2

, σs(x , t) =
JE

k
B

T

Nonlinear generalizations, still in LTE.
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In LTE, hydrodynamic laws hold; container shape does NOT
matter (only boundary conditions).

In macroscopic world, very hard to break LTE and continuum
mechanics reigns (transport, pattern formation, turbulence, etc.)

Beyond LTE, Boltzmann’s Kinetic theory of (rarefied) gases.
Works well even in extreme situations, like neutron transport.

Rests on stosszahl-ansatz, and `� L.

Walls are still merely boundary conditions.

Further away from equilibrium? In meso- and micro-scopic
media, walls play significant role in determining transport laws:
inter-particle and particle-wall interactions count the same.
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Rarefied conditions, ` ∼ L.
Highly confined (almost 1-D).
High gradients (reduced chaos).
Correlations destroy LTE,
produce anomalous transport
e.g. of matter (membranes)
and heat (nanowires).

Dynamics succeeds
in many circumstances.

Possible starting point for
comprehensive theory of
nonequilibrium phenomena.
Which nonequilibrium dynamics?
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How does transition from dynamics to thermodynamics take
place?

What if it does not take place (e.g. in bio- nano-systems)?

Introduce Transport Exponent γ as:
〈
r2(t)

〉
∼ t2ν

Inter-particle interactions have stronger influence on transition
than defocussing particle-wall interactions: not bound to occur at
fixed positions, efficiently break correlations.

Chaos neither sufficient nor necessary.

How should linear response theory be modified?

Need models to test various hypothesis.
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Given that

Dii = lim
t→∞

〈(xi (t)− xi (0))2〉
2t

=

∫ ∞
0

Cii (t) dt , Cii (t) = 〈vi (t)vi (0)〉

super-diffusion occurs if

variance of velocity is not finite (〈v 2〉 =∞)

correlations persist (Cii (t) ∼ t−β, β < 1)

FDR relates mean velocity and position responses to an external
perturbing force F, to the velocity autocorrelation:

〈v(t)〉
F
∝
∫ t

0
Cv (t ′)dt ′

〈x(t)〉
F

=

∫ t

0
〈v(t ′)〉

F
dt ′ ∝

∫ t

0

∫ t

0
Cv (t ′ − t ′′)dt ′dt ′′ = 〈x(t)2〉

0
∼ t2ν

Not rigorous; theoretically, numerically, experimentally confirmed in
some subdiffusive case [MBK99,GSGWS96,VPV08].
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Various works show that transient anomalous diffusion is often
realized, even when asymptotically normal diffusion sets in. It is
then to be seen whether the asymptotic regime is experimentally
relevant.

Many reports on fast diffusion, e.g. of water in carbon natubes.

Well known slow transport in single-file diffusion.
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Dynamics? Ensembles?

Equilibrium: Hamiltonian dynamics and Ergodic Hypothesis:

Γ̇ = G (Γ) in M with solution SτΓ.

Observable O, time average of appropriate microscopic quantity Q,
equals phase space average, with proper probability distribution
(ensembles) µ:

O = lim
t→∞

1

t

∫ t

0
Q(SτΓ)dτ =

∫
M
Q(Γ)dµ(Γ) a.e. Γ

Why it works, is a long story (mathematical ergodic theory: too
much and too little), but classical ensembles work very well.

Which nonequilibrium ensembles?
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What about nonequilibrium ensembles? Need model.

Ideally, infinite reservoirs must be given. How to represent them?

Algorithms to compute transport coefficients etc.?

Need dynamical models to test various hypothesis and develop
theory, in particular far from LTE.

Deterministic Thermostats devised to efficiently compute
transport coefficients.
Idea: details of heat removal irrelevant for phenomenon of interest.
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Molecular dynamics computes properties of systems by simulation
of microscopic particle dynamics:

q̇i = pi/m; ṗi = Fi ; i = 1, ...,N
and use of statistical mechanical relations.
To reach nonequilibrium steady state, energy pumped in system by
external drivings must be passed to reservoirs.

Nonequilibrium molecular dynamics achives goal replacing:

boundary or bulk drivings + reservoirs

by

mechanical forces + p.b.c. + fictitious thermostatting forces
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Thermostatting term added to equations of motion, introduced
through appropriate constraints, dissipates excess energy. Simplest
case:

Gauss’ principle of least constraint (1829). Consider N point
particles of mass mi , subjected to frictionless bilateral constraints
Φi and external forces Fi . Of all motions allowed by the
constraints, the natural one minimizes the “curvature”

C =
N∑

i=1

mi

(
q̈i −

Fi

mi

)2

=
N∑

i=1

1

mi
Φ2

i .

According to Gauss, the “Curvature” C is minimized by the
accelerations of real motions or, equivalently, real motions
minimize the action of the constraints.

Lamberto Rondoni – Politecnico di Torino Deterministic thermostats



Local Thermodynamic Equilibrium
Dynamics? Ensembles?

Fluctuation relations
Discussion

Deterministic thermostats
Configurational thermostats

In case of holonomic constraints, consistent with least action
principle (Hamiltonian eqs).

Non holonomic constraints result in non Hamiltonian eqs.
N-particles with external field Fext

i , interactions Fint
i (q):{

q̇i = pi/m
ṗi = Fint

i (q) + Fext
i (q)− α(Γ)pi

Simple constraints: isokinetic fixes K =
∑

i p2
i /2m;

isoenergetic fixes H0 = K + Φint

αIK (Γ) =
1

2K

N∑
i=1

q̇i ·
(
Fint

i + Fext
i

)
= βΦ̇int(q) + β

N∑
i=1

q̇i · Fext
i

αIE (Γ) =
1

2K

N∑
i=1

q̇i · Fext
i
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As phase space contraction rate χ = −div Γ̇ ∝ −α

σ
IE
∝ χ

IE

σ
IK
∝ χ

IK
− extra (conservative) term

α(Γ)pi makes dynamics dissipative, hence system reaches steady
state, but time reversal invariant.

S t :M→M evolution operator,
t ∈ IR ; S tΓ phase after time t.
i :M→M time reversal
involution (i2 =Id).
Time reversal invariant if

iS tΓ = S−t iΓ ,∀Γ ∈M
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Nosè-Hoover thermostat

Defined by following transformations of momenta and time
variables:

p̃i =
pi

s
; t̃ =

∫ t

0

dτ

s

dqi

dt̃
=

p̃i

m
;

d p̃i

dt̃
= Fi−ζp̃i ;

dζ

dt̃
=

1

τ2

(
K (p̃)

K0
− 1

)
;

ds

dt
= ζs .

K0 = value chosen for the time average of kinetic energy K (p̃),
τ = relaxation time.

In the small τ limit, Nosè-Hoover dynamics approximate Gaussian
IK dynamics.

In equilibrium, Hamiltonian and reproduces canonical ensemble:
equilibrium at fixed T instead of fixed E ; closed system.
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Dynamics dissipative, but time reversal invariant.

Successful in calculation of transport coefficients, defects in
crystals, friction of surfaces, atomic clusters, biological
macromolecules, etc. Difficulties only if:

interatomic forces too complicated;

number of simulated particles must be too large;

simulation must be times too long.

Otherwise, commonly used to understand results of experiments;
in place of (expensive or practically impossible) experiments:
fracture fronts inside solids,
nuclear fuel pellets
thermal dilation etc.
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One may use deterministic thermostats also to fix the
Configurational Temperature T . In microcanonical ensemble,

eS(E) =

∫
Σ(E)

m(dΣ)

‖∇H‖
,

1

T (E )
=

dS

dE

implies

k
B

T ≡ lim
t→∞

1

t

∫ t

0

∇H · B
∇ · B

, ∇ =
∂

∂Γ
(2.1)

B = (0,p) yields usual kinetic temperature, B = (F, 0) purely
configurational.
Useful when kinetic T makes no sense (nonequilibirum fluids of
large flexible polymers).

Mimic Nosé-Hoover to obtain eqs. of motion:

dq

dt
=

p

m
− ξF ;

dp

dt
= F ;

dξ

dt
=

1

Q
(F · F− kT∇ · F)
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Liouville eq. in phase space (q,p, ξ):

df

dt
= f ξ∇ · F

implies canonical distribution is preserved by dynamics: closed.

Existence of average value of ξ implies that:

ξ̇ = 0 =
1

Q

(
F · F− kT∇ · F

)
⇒ kT =

F · F
∇ · F

i.e. system T ≡ configurational T .

F has no component ⊥ to bond lengths or other holonomic
constraints, so these constraints not broken by dynamics.
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Temperature for Gaussian isokinetic dynamics: Coordinate
transform leads to Hamiltonian version of IK dynamics. One
particle. Replace p with π= p exp (−φ/2R), φ = φext + φint

R = parameter.

H(q,π) =
eφ/2R

2m
π2 − R e−φ/2R , (2.2)

leads to:

q̇ =
p

m
, ṗ =

dp

dπ

dπ

dt
= Fext + Fint − (Fext + Fint) · p

p2
p . (2.3)

the IK equations for a 1-particle system.
T approaches T⊥ =

∑N
i=1 p2

i ,⊥/dNm, in large N limit, pi ,⊥
component of pi orthogonal to Fext . T⊥ may be good temperature
for simple liquids.
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Fluctuation relations

Which probability distributions describe steady states
of NEMD models? If Φ is one observable

〈Φ〉 = lim
T→∞

1

t

∫
Φ(S tx)dt =

∫
Ω

Φ(x)µ(dx)

〈Φ〉 ≈
∑

i

Φ(xi )P(Ci )
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Theorem (Sinai, 1968): Every transitive Anosov system
admits Markov partitions.

Attribute weights to cells of a Markov partition of Ω;
limit of finer and finer partitions: SRB measure.

Weight of Ci is:

Λ−1
wi ,u,τ

= 1/|Jacobian of dynamics restricted to W u|,
wi = {S txi}

τ/2
t=−τ/2, large τ , xi ∈ Ci .

w ’s can be periodic: ⇒ Λ−1
w ,u = exp(−τ

∑+
l λw ,l),∑+ summation over positive λw ,i
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For one NEMD model of isoenergetic shear, Evans-Cohen-Morriss
(1993) proposed and tested this Fluctuation Relation:

Prob.
(
E τ = A

)
Prob.

(
E τ = −A

) = exp [Aτ ]

E τ = average entropy production rate in long time interval τ .

Obtained from theory of chaotic dynamical systems.
Related to ergodic theory by Gallavotti and Cohen (1995) who
formulated the Chaotic Hypothesis.

Quantifies second law.

Step towards comprehensive theory of nonequilibrium phenomena:
extends thermodynamic relations far from equilibrium.
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Fluctuations not observed in macroscopic systems, but observable
in microscopic ones, such as nano-tech and bio-physical systems.
Gibbs free energy of proteins, via Jarzynski Equality: equilibrium
properties from nonequilibrium experiments, canonical ensemble〈

e−βW
〉

A→B
= e−β[F (B)−F (A)]

F (B)− F (A) = free energy difference
between equilibrium with λ = A,

and equilibrium with λ = B.
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Γ̇ = G (Γ) in phase space M, Γ = (q,p), reversible.
S tΓ =solution with i.c. Γ. i =time reversal operation.

Dissipation function:

Ωt,t+τ (Γ) =
1

τ
Ω0,τ (Γ) ≡ 1

τ

∫ t+τ

t
Ω(S sΓ)ds

=
1

τ

[
ln

f (S tΓ)

f (S t+τΓ)
−
∫ t+τ

t
Λ(S sΓ)ds

]

f = phase space probability density [even for i : f (iΓ) = f (Γ)]

Λ = phase space volume variation rate = ∇ · Γ̇
Ω = dissipation rate = FeJ/k

B
T (for properly chosen f , as in

equilibrium, as in Jarzynski)
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Let A+
δ = (A− δ,A + δ)

A−δ = (−A− δ,−A + δ)

Consider

Prob(A+
δ )

Prob(A−δ )
=

∫
{Ω0,τ∈A+

δ }
f (Γ)dΓ∫

{Ω0,τ∈A−δ }
f (Γ)dΓ

≡
µ({Ω0,τ ∈ A+

δ })
µ({Ω0,τ ∈ A−δ })

Observe that

{Γ : Ω0,τ ∈ A−δ } = iSτ{Γ : Ω0,τ ∈ A+
δ }

Γ

ΓΓ

S
τ

S
τ

i

Introduce Γ = iSτX and its jacobian

J0,τ =

∣∣∣∣ dΓ

dX

∣∣∣∣ = exp

(∫ τ

0
Λ(S sX )ds

)
≡ exp (Λ0,τ )
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Prob(A−δ ) =

∫
{Ω0,τ∈A−δ }

f (Γ)dΓ =

∫
{Ω0,τ∈A+

δ }
f (iSτX ) eΛ0,τ (X )dX

=

∫
{Ω0,τ∈A+

δ }
f (X ) e−Ω0,τ (X )dX = e−[A+ε(δ,τ)]τ

∫
{Ω0,τ∈A+

δ }
f (X )dX

which leads to

Prob(A+
δ )

Prob(A−δ )
= exp {τ [A + ε(δ, τ)]} ε ≤ δ

Called transient fluctuation relation: concerns initial state f and
not steady state (invariant measure). Holds for all τ .
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The transient relation describes the statisitcs of an ensemble of
experiments, all beginning in the same initial state f .

Just a coordinate transformation, for time reversal invariant
dynamics.

Can be experimentally verified. E.g. optical tweezers and colloidal
particles (Evans et al. PRL 2002).

What about steady state fluctuation relations?

What about the statistics of fluctuations along a single, but long,
evolution?
Wants to move from statistics of initial ensemble µ to statistics of
steady state µ∞, provided it exists.
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Let averaging start at time t

1

τ
ln
µ({Ωt,t+τ ∈ A+

δ })
µ({Ωt,t+τ ∈ A−δ })

Use conservation of phase space
probabilities to move evolution
from sets to probabilities:

µt(S tE ) = µ(E )

which yields

1

τ
ln
µt({Ω0,τ ∈ A+

δ })
µt({Ω0,τ ∈ A−δ })

time

X

t t+ 2t+0

Y W
Z

iX

iYiW

=iZ

Split trajectory as t + τ + t.

{Γ : Ωt,t+τ (Γ) ∈ A−δ } = iS t+τ+t{X : Ωt,t+τ (X ) ∈ A+
δ }
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Change coordinates: Γ = iS t+τ+tX∣∣∣∣ dΓ

dX

∣∣∣∣ = eΛ0,t(X ) · eΛt,t+τ (X ) · eΛt+τ,2t+τ (X )

1

τ
ln
µt({Ω0,τ ∈ A+

δ })
µt({Ω0,τ ∈ A−δ })

= A + ε(δ, t,A, τ) +

−1

τ
ln
〈

e−Ω0,t · e−Ωt+τ,2t+τ

〉
Ωt,t+τ∈A+

δ

Large τ kills strange term. t →∞ implies µt → µ∞.

Trouble: t →∞ before τ , hence Ω0,t =
∫ t

0 Ωdt may diverge.

But this can be controlled, thanks to some correlations decay.
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Similarly, one obtains other relations

Transient φ-FR.
P(φ0,τ ∈ A+

δ )

P(φ0,τ ∈ A−δ )
=

1

〈e−Ω0,τ 〉φ0,τ∈A+
δ

Steady State φ-FR. For any γ, sufficiently large τ yields

1

τ
ln

P∞(φt,t+τ ∈ A+
δ )

P∞(φt,t+τ ∈ A−δ )
= −1

τ
ln〈e−Ωt,t+τ 〉φt,t+τ∈A+

δ
+ γ

Dissipation relation. 〈O(t)〉 =

∫ t

0
ds〈Ω(0)O(s)〉

Where φ is any time-odd observable, and O any observable, e.g.
the current and the thermal dilation.
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Truly unobservable in macroscopic systems?

RareNoise

Problems in

Detection of

Gravitational

Waves

ERC funded project to understand nonequilibrium fluctuations in
macroscopic objects, such gravitational antennas.

http://www.rarenoise.lnl.infn.it/
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Discussion

Nonequilibrium phenomena are most common in nature

Current understanding closely related to understanding of
equilibrium phenomena, via response theory, Fluctuation
Dissipation Theorem and Flcutuation Relations

Flcutuation Relations quantify 2nd law, extend well beyond
LTE, and may then suggest a comprehensive theory of
nonequilibrium phenomena

Flcutuation Relations useful in understanding states of matter
at the mesoscopic scale (nano-tech and bio-physical systems),
where LTE fails, and perhaps more...

Deterministic dynamics allows operational definitions
microscopic of temperature when this concept not fully clear.
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