The Impact of Disorder in the Critical Dynamics of Mean Field Models

Francesca Collet joint work with Paolo Dai Pra

Dipartimento di Matematica Pura ed Applicata Università degli Studi di Padova

11th June 2010, A Thermodynamics Day

Outline

Outline

2) The Curie-Weiss Model

- Mean Field Interacting *N*-Particle System evolving as a CTMC on its state space for *t* ∈ [0, *T*], *T* fixed
- Order parameter: it is a function of the empirical measure

$$ho_N := rac{1}{N} \sum_{j=1}^N \delta_{j\text{-th state variable}} \, ,$$

whose evolution is Markovian. A given system may admit or not a finite dimensional order parameter.

- Mean Field Interacting *N*-Particle System evolving as a CTMC on its state space for *t* ∈ [0, *T*], *T* fixed
- Dynamics of the system +++> Dynamics of its order parameter
- Order parameter: it is a function of the empirical measure

$$\rho_N := \frac{1}{N} \sum_{j=1}^N \delta_{j\text{-th state variable}} ,$$

whose evolution is Markovian. A given system may admit or not a finite dimensional order parameter.

- Mean Field Interacting *N*-Particle System evolving as a CTMC on its state space for *t* ∈ [0, *T*], *T* fixed
- Dynamics of the system +++> Dynamics of its order parameter
- Order parameter: it is a function of the empirical measure

$$\rho_{N} := \frac{1}{N} \sum_{j=1}^{N} \delta_{j\text{-th state variable}} \,,$$

whose evolution is Markovian. A given system may admit or not a finite dimensional order parameter.

- Mean Field Interacting *N*-Particle System evolving as a CTMC on its state space for *t* ∈ [0, *T*], *T* fixed
- Dynamics of the system +++> Dynamics of its order parameter
- Order parameter: it is a function of the empirical measure

$$\rho_{N} := \frac{1}{N} \sum_{j=1}^{N} \delta_{j\text{-th state variable}} \,,$$

whose evolution is Markovian. A given system may admit or not a finite dimensional order parameter.

We consider the fluctuations of the order parameter around its limiting dynamics.

Theorem

For $t \in [0, T]$, with T fixed, a Central Limit Theorem holds true for the order parameter; in other words, the fluctuations of the order parameter converge to a Gaussian process.

- Supercritical Regime: Metastability
- Output: Subcritical Regime: Central Limit Theorem continues to hold
- Oritical Regime: Critical Dynamics

We consider the fluctuations of the order parameter around its limiting dynamics.

Theorem

For $t \in [0, T]$, with T fixed, a Central Limit Theorem holds true for the order parameter; in other words, the fluctuations of the order parameter converge to a Gaussian process.

- Supercritical Regime: Metastability
- Output: Subcritical Regime: Central Limit Theorem continues to hold
- Oritical Regime: Critical Dynamics

We consider the fluctuations of the order parameter around its limiting dynamics.

Theorem

For $t \in [0, T]$, with T fixed, a Central Limit Theorem holds true for the order parameter; in other words, the fluctuations of the order parameter converge to a Gaussian process.

- Supercritical Regime: Metastability
- Subcritical Regime: Central Limit Theorem continues to hold
- Oritical Regime: Critical Dynamics

We consider the fluctuations of the order parameter around its limiting dynamics.

Theorem

For $t \in [0, T]$, with T fixed, a Central Limit Theorem holds true for the order parameter; in other words, the fluctuations of the order parameter converge to a Gaussian process.

- Supercritical Regime: Metastability
 - Subcritical Regime: Central Limit Theorem continues to hold
- Oritical Regime: Critical Dynamics

We consider the fluctuations of the order parameter around its limiting dynamics.

Theorem

For $t \in [0, T]$, with T fixed, a Central Limit Theorem holds true for the order parameter; in other words, the fluctuations of the order parameter converge to a Gaussian process.

- Supercritical Regime: Metastability
- Subcritical Regime: Central Limit Theorem continues to hold
- Oritical Regime: Critical Dynamics

We consider the fluctuations of the order parameter around its limiting dynamics.

Theorem

For $t \in [0, T]$, with T fixed, a Central Limit Theorem holds true for the order parameter; in other words, the fluctuations of the order parameter converge to a Gaussian process.

- Supercritical Regime: Metastability
- Subcritical Regime: Central Limit Theorem continues to hold
- Oritical Regime: Critical Dynamics

Step III: Critical Dynamics

Definition

The Critical Dynamics describe the behavior of the fluctuations at the critical point in the infinite volume limit.

Typically, we observe critical phenomena along a low-dimensional subspace of the space where the order parameter takes values. We say this subspace to be the **critical direction** of the system.

Step III: Critical Dynamics

Definition

The Critical Dynamics describe the behavior of the fluctuations at the critical point in the infinite volume limit.

Typically, we observe critical phenomena along a low-dimensional subspace of the space where the order parameter takes values. We say this subspace to be the **critical direction** of the system.

Outline

• We consider a system composed by N sites: j = 1, ..., N

At each site *j* we associate a spin value, which is a random variable *σ_j* taking values in {-1,+1}

• A configuration of the system is $\underline{\sigma} = (\sigma_j)_{j=1}^N \in \{-1, +1\}^N$

Example (N=18)

site
$$j \rightsquigarrow \begin{cases} \bullet & \text{if } \sigma_j = +1 \\ \circ & \text{if } \sigma_j = -1 \end{cases}$$

 $\underline{\sigma} = (+1, -1, +1, +1, -1, +1, +1, +1, -1, -1, +1, -1, +1, +1, -1, -1, +1)$

• We consider a system composed by N sites: j = 1, ..., N

At each site *j* we associate a spin value, which is a random variable *σ_j* taking values in {-1,+1}

• A configuration of the system is $\underline{\sigma} = (\sigma_j)_{i=1}^N \in \{-1, +1\}^N$

- We consider a system composed by N sites: j = 1, ..., N
- At each site *j* we associate a spin value, which is a random variable *σ_j* taking values in {-1, +1}

• A configuration of the system is $\underline{\sigma} = (\sigma_j)_{j=1}^N \in \{-1, +1\}^N$

- We consider a system composed by N sites: j = 1, ..., N
- At each site *j* we associate a spin value, which is a random variable σ_j taking values in {-1, +1}
- A configuration of the system is $\underline{\sigma} = (\sigma_j)_{j=1}^N \in \{-1, +1\}^N$

- The interaction is of the **mean field** type: each site interacts with all the others in the same way
 - \Rightarrow there is no spatial geometry
 - \Rightarrow it depends on the magnetization

$$m_N^{\underline{\sigma}}(t) := rac{1}{N} \sum_{j=1}^N \sigma_j(t)$$

• The rates of transitions are of the form

$$\sigma_j \longrightarrow -\sigma_j$$
 at rate $e^{-\beta \sigma_j m_N^{\sigma}}$

9/28

- The interaction is of the mean field type: each site interacts with all the others in the same way
 - \Rightarrow there is no spatial geometry
 - \Rightarrow it depends on the magnetization

$$m_N^{\underline{\sigma}}(t) := \frac{1}{N} \sum_{j=1}^N \sigma_j(t)$$

9/28

• The rates of transitions are of the form

$$\sigma_i \longrightarrow -\sigma_i$$
 at rate $e^{-\beta \sigma_i m_N^{\sigma}}$

- The interaction is of the mean field type: each site interacts with all the others in the same way
 - \Rightarrow there is no spatial geometry
 - \Rightarrow it depends on the magnetization

$$m_N^{\underline{\sigma}}(t) := \frac{1}{N} \sum_{j=1}^N \sigma_j(t)$$

9/28

• The rates of transitions are of the form

$$\sigma_i \longrightarrow -\sigma_i$$
 at rate $e^{-\beta\sigma_i m_N^{\sigma}}$

- The interaction is of the mean field type: each site interacts with all the others in the same way
 - \Rightarrow there is no spatial geometry
 - ⇒ it depends on the magnetization

$$m_{\overline{N}}^{\underline{\sigma}}(t) := rac{1}{N} \sum_{j=1}^{N} \sigma_j(t)$$

• The rates of transitions are of the form

$$\sigma_j \longrightarrow -\sigma_j$$
 at rate $e^{-\beta \sigma_j m_N^{\sigma}}$

Remark

No simultaneous jumps can happen!

Francesca Collet (Università di Padova) The Impact of Disorder in Critical Dynamics A Thermodynamics Day 10 / 28

Remark

Remark

Remark

Remark

Remark

Remark

Remark

Remark

Remark

Remark

Remark

Remark

Remark

Remark

Remark

Remark

Remark

$$L_N f(\underline{\sigma}) = \sum_{j=1}^N e^{-\beta \sigma_j m_N^{\underline{\sigma}}} \nabla_j^{\underline{\sigma}} f(\underline{\sigma})$$

•
$$\nabla_j^{\sigma} f(\underline{\sigma}) = f(\underline{\sigma}^j) - f(\underline{\sigma})$$

•
$$\underline{\sigma}^{J} = (\sigma_1, \sigma_2, \dots, \sigma_{j-1}, -\sigma_j, \sigma_{j+1}, \dots, \sigma_N)$$

$$L_N f(\underline{\sigma}) = \sum_{j=1}^N e^{-\beta \sigma_j m_N^{\underline{\sigma}}} \nabla_j^{\underline{\sigma}} f(\underline{\sigma})$$

•
$$\nabla_j^{\sigma} f(\underline{\sigma}) = f(\underline{\sigma}^j) - f(\underline{\sigma})$$

•
$$\underline{\sigma}^{j} = (\sigma_{1}, \sigma_{2}, \dots, \sigma_{j-1}, -\sigma_{j}, \sigma_{j+1}, \dots, \sigma_{N})$$

$$L_N f(\underline{\sigma}) = \sum_{j=1}^N e^{-\beta \sigma_j m_N^{\underline{\sigma}}} \nabla_j^{\underline{\sigma}} f(\underline{\sigma})$$

•
$$\nabla_j^{\sigma} f(\underline{\sigma}) = f(\underline{\sigma}^j) - f(\underline{\sigma})$$

•
$$\underline{\sigma}^{j} = (\sigma_1, \sigma_2, \dots, \sigma_{j-1}, -\sigma_j, \sigma_{j+1}, \dots, \sigma_N)$$

$$L_N f(\underline{\sigma}) = \sum_{j=1}^N e^{-\beta \sigma_j m_N^{\underline{\sigma}}} \nabla_j^{\underline{\sigma}} f(\underline{\sigma})$$

•
$$\nabla_j^{\sigma} f(\underline{\sigma}) = f(\underline{\sigma}^j) - f(\underline{\sigma})$$

•
$$\underline{\sigma}^{j} = (\sigma_{1}, \sigma_{2}, \dots, \sigma_{j-1}, -\sigma_{j}, \sigma_{j+1}, \dots, \sigma_{N})$$

Addition of the Magnetic Field

• A configuration: $\underline{\sigma} = (\sigma_j)_{j=1}^N \in \{-1, +1\}^N$

• A realization of the magnetic field: $\underline{\eta} = (\eta_j)_{j=1}^N \in \{-1, +1\}^N$ a sequence of i.i.d. random variables, with law $\mu \sim \text{Be}(1/2)$

Addition of the Magnetic Field

• A configuration:
$$\underline{\sigma} = (\sigma_j)_{j=1}^N \in \{-1, +1\}^N$$

• A realization of the magnetic field: $\underline{\eta} = (\eta_j)_{j=1}^N \in \{-1, +1\}^N$ a sequence of i.i.d. random variables, with law $\mu \sim \text{Be}(1/2)$

Addition of the Magnetic Field

• A configuration:
$$\underline{\sigma} = (\sigma_j)_{j=1}^N \in \{-1, +1\}^N$$

• A realization of the magnetic field: $\underline{\eta} = (\eta_j)_{j=1}^N \in \{-1, +1\}^N$ a sequence of i.i.d. random variables, with law $\mu \sim \text{Be}(1/2)$

$$L_N f(\underline{\sigma}) = \sum_{j=1}^N e^{-\beta \sigma_j (m_N^{\underline{\sigma}} + h\eta_j)} \nabla_j^{\sigma} f(\underline{\sigma})$$

$$L_N f(\underline{\sigma}) = \sum_{j=1}^{N} e^{-\beta \sigma_j (m_N^{\underline{\sigma}} + h\eta_j)} \nabla_j^{\sigma} f(\underline{\sigma})$$

For given $\underline{\eta}$ and $t \in [0, T]$, T fixed, the process $\underline{\sigma}(t) = (\sigma_j(t))_{j=1}^N$ evolves as a Continuous Time Markov Chain with Infinitesimal Generator L_N , acting on functions $f : \{-1, +1\}^N \longrightarrow \mathbb{R}$ as follows:

$$L_N f(\underline{\sigma}) = \sum_{j=1}^N e^{-eta \sigma_j (m_N^{\underline{\sigma}} + h \eta_j)} \nabla_j^{\sigma} f(\underline{\sigma})$$

Remark

The disorder is of **quenched** type.

$$L_N f(\underline{\sigma}) = \sum_{j=1}^N e^{-\beta \sigma_j (m_N^{\underline{\sigma}} + h \eta_j)} \nabla_j^{\sigma} f(\underline{\sigma})$$

Order parameter:
$$\begin{pmatrix} m_N^{\sigma}(t) \\ m_N^{\sigma \eta}(t) \end{pmatrix} = \begin{pmatrix} \frac{1}{N} \sum_{j=1}^N \sigma_j(t) \\ \frac{1}{N} \sum_{j=1}^N \eta_j \sigma_j(t) \end{pmatrix}$$

Limiting Dynamics ($N \longrightarrow +\infty$)

Theorem

For $t \in [0, T]$, the order parameter converges to the solution of the following system of ordinary differential equations

$$\dot{m}_t^{\sigma} = -2 m_t^{\sigma} \cosh(\beta h) \cosh(\beta m_t^{\sigma}) - 2 m_t^{\sigma\eta} \sinh(\beta h) \sinh(\beta m_t^{\sigma}) + 2 \cosh(\beta h) \sinh(\beta m_t^{\sigma})$$

(LD)

$$\dot{m}_t^{\sigma\eta} = -2 m_t^{\sigma} \sinh(\beta h) \sinh(\beta m_t^{\sigma}) - 2 m_t^{\sigma\eta} \cosh(\beta h) \cosh(\beta m_t^{\sigma}) + 2 \sinh(\beta h) \cosh(\beta m_t^{\sigma})$$

Remark

The limiting dynamics $(m_t^{\sigma}, m_t^{\sigma\eta})$ are deterministic.

We are going to determine the stationary solution(s).

Limiting Dynamics ($N \longrightarrow +\infty$)

Theorem

For $t \in [0, T]$, the order parameter converges to the solution of the following system of ordinary differential equations

$$\dot{m}_t^{\sigma} = -2 m_t^{\sigma} \cosh(\beta h) \cosh(\beta m_t^{\sigma}) - 2 m_t^{\sigma\eta} \sinh(\beta h) \sinh(\beta m_t^{\sigma}) + 2 \cosh(\beta h) \sinh(\beta m_t^{\sigma})$$

$$\dot{m}_t^{\sigma\eta} = -2 \, m_t^{\sigma} \sinh(\beta h) \sinh(\beta m_t^{\sigma}) - 2 \, m_t^{\sigma\eta} \cosh(\beta h) \cosh(\beta m_t^{\sigma}) \\ + 2 \sinh(\beta h) \cosh(\beta m_t^{\sigma})$$

Remark

The limiting dynamics $(m_t^{\sigma}, m_t^{\sigma\eta})$ are deterministic.

We are going to determine the stationary solution(s).

(LD)

Limiting Dynamics ($N \longrightarrow +\infty$)

Theorem

For $t \in [0, T]$, the order parameter converges to the solution of the following system of ordinary differential equations

$$\dot{m}_t^{\sigma} = -2 m_t^{\sigma} \cosh(\beta h) \cosh(\beta m_t^{\sigma}) - 2 m_t^{\sigma\eta} \sinh(\beta h) \sinh(\beta m_t^{\sigma}) + 2 \cosh(\beta h) \sinh(\beta m_t^{\sigma})$$

$$\dot{m}_t^{\sigma\eta} = -2 \, m_t^{\sigma} \sinh(\beta h) \sinh(\beta m_t^{\sigma}) - 2 \, m_t^{\sigma\eta} \cosh(\beta h) \cosh(\beta m_t^{\sigma}) \\ + 2 \sinh(\beta h) \cosh(\beta m_t^{\sigma})$$

Remark

The limiting dynamics $(m_t^{\sigma}, m_t^{\sigma\eta})$ are deterministic.

We are going to determine the stationary solution(s).

(LD)

Any equilibrium solution of (LD) is of the form

$$m_*^{\sigma} = rac{1}{2} \left[anh(eta(m_*^{\sigma} + h)) + anh(eta(m_*^{\sigma} - h))
ight]$$

$$m_*^{\sigma\eta} = rac{1}{2} \left[\tanh(eta(m_*^{\sigma} + h)) - \tanh(eta(m_*^{\sigma} - h))
ight]$$

Remark

 $(0, tanh(\beta h))$ is always a stationary solution.

Any equilibrium solution of (LD) is of the form

$$m_*^{\sigma} = rac{1}{2} \left[\operatorname{tanh}(eta(m_*^{\sigma} + h)) + \operatorname{tanh}(eta(m_*^{\sigma} - h))
ight]$$

$$m_*^{\sigma\eta} = \frac{1}{2} \left[\tanh(\beta(m_*^{\sigma} + h)) - \tanh(\beta(m_*^{\sigma} - h)) \right]$$

Remark

 $(0, tanh(\beta h))$ is always a stationary solution.

We consider $m_*^{\sigma} = \frac{1}{2} [\tanh(\beta(m_*^{\sigma} + h)) + \tanh(\beta(m_*^{\sigma} - h))]$ and we look for solutions $m_*^{\sigma} > 0$.

We consider $m_*^{\sigma} = \frac{1}{2} [\tanh(\beta(m_*^{\sigma} + h)) + \tanh(\beta(m_*^{\sigma} - h))]$ and we look for solutions $m_*^{\sigma} > 0$.

We consider $m_*^{\sigma} = \frac{1}{2} [\tanh(\beta(m_*^{\sigma} + h)) + \tanh(\beta(m_*^{\sigma} - h))]$ and we look for solutions $m_*^{\sigma} > 0$.

There are three phases corresponding to 0, 1 and 2 ferromagnetic solutions. The lower curve is $\beta \mapsto h(\beta) = \frac{1}{\beta} \operatorname{arccosh}(\sqrt{\beta})$ for $\beta \ge 1$.

Central Limit Theorem

Theorem

For $t \in [0, T]$, with T fixed, the fluctuations of the magnetization

$$\begin{aligned} x_N^{(1)}(t) &:= \sqrt{N} \left(m_N^{\underline{\sigma}}(t) - m_t^{\sigma} \right) \\ x_N^{(2)}(t) &:= \sqrt{N} \left(m_N^{\underline{\sigma}\underline{\eta}}(t) - m_t^{\sigma\eta} \right) \end{aligned}$$

converge to a limiting Gaussian Process $(x^{(1)}(t), x^{(2)}(t))$, which is the unique solution of

$$\begin{pmatrix} dx^{(1)}(t) \\ dx^{(2)}(t) \end{pmatrix} = 2\mathscr{H}A_1(t) dt + 2A_2(t) \begin{pmatrix} x^{(1)}(t) \\ x^{(2)}(t) \end{pmatrix} dt + D(t) \begin{pmatrix} dB_1(t) \\ dB_2(t) \end{pmatrix}$$

where $B_1(t)$, $B_2(t)$ are independent standard Brownian motions, \mathcal{H} is a Gaussain random variable and $A_1(t)$, $A_2(t)$, D(t) are suitable matrices.

Critical Dynamics ($\beta = \cosh^2(\beta h)$)

Critical Dynamics ($\beta = \cosh^2(\beta h)$)

• Critical Direction: $m_{\overline{N}}^{\underline{\sigma}}(t) = \frac{1}{N} \sum_{j=1}^{N} \sigma_j(t)$

Critical Dynamics ($\beta = \cosh^2(\beta h)$)

• Critical Direction: $m_{\overline{N}}^{\sigma}(t) = \frac{1}{N} \sum_{j=1}^{N} \sigma_j(t)$

Critical Dynamics (
$$\beta = \cosh^2(\beta h)$$
)

Theorem

For $t \in [0, T]$, if we consider the two-dimensional critical fluctuation process

$$y_N^{(1)}(t) := N^{1/4} m_N^{\underline{\sigma}}(N^{1/4}t)$$

$$y_N^{(2)}(t) := N^{1/4} \left(m_N^{\underline{\sigma}}(N^{1/4}t) - \tanh(\beta h) \right)$$

then, as $N \longrightarrow +\infty$, $y_N^{(2)}(t)$ collapses and $y_N^{(1)}(t)$ converges to the limiting Gaussian process

$$y^{(1)}(t) = 2\mathscr{H}\sinh(\beta h)t\,,$$

where \mathscr{H} is a Gaussian random variable.

Critical Dynamics of the Homogeneous Model ($\mu \sim \delta_0$)

• Order parameter = critical direction: $m_N^{\sigma}(t) = \frac{1}{N} \sum_{j=1}^N \sigma_j(t)$

Theorem ($\beta = 1$)

For $t \in [0, T]$, if we consider the critical fluctuation process

 $y_N(t) := N^{1/4} m_N^{\underline{\sigma}}(\sqrt{N}t)$

then, as $N \longrightarrow +\infty$, $y_N(t)$ converges to a limiting Non-Gaussian process y(t), which is the unique solution of

$$\begin{cases} dy(t) = -\frac{2}{3}y^{3}(t)dt + 2dB(t) \\ y(0) = 0 \end{cases}$$

where B(t) is a standard Brownian motion.

Critical Dynamics of the Homogeneous Model ($\mu \sim \delta_0$)

• Order parameter = critical direction: $m_N^{\sigma}(t) = \frac{1}{N} \sum_{j=1}^N \sigma_j(t)$

Theorem ($\beta = 1$)

For $t \in [0, T]$, if we consider the critical fluctuation process

$$y_N(t) := N^{1/4} m_N^{\underline{\sigma}}(\sqrt{N}t)$$

then, as $N \longrightarrow +\infty$, $y_N(t)$ converges to a limiting Non-Gaussian process y(t), which is the unique solution of

$$\begin{cases} dy(t) = -\frac{2}{3}y^3(t)dt + 2dB(t) \\ y(0) = 0 \end{cases}$$

where B(t) is a standard Brownian motion.

Critical Dynamics of the Homogeneous Model ($\mu \sim \delta_0$)

• Order parameter = critical direction: $m_N^{\sigma}(t) = \frac{1}{N} \sum_{j=1}^N \sigma_j(t)$

Theorem ($\beta = 1$)

For $t \in [0, T]$, if we consider the critical fluctuation process

$$y_N(t) := N^{1/4} m_N^{\underline{\sigma}}(\sqrt{N}t)$$

then, as $N \longrightarrow +\infty$, $y_N(t)$ converges to a limiting Non-Gaussian process y(t), which is the unique solution of

$$\begin{cases} dy(t) = -\frac{2}{3}y^3(t)dt + 2dB(t) \\ y(0) = 0 \end{cases}$$

where B(t) is a standard Brownian motion.

Outline

Motivation

The transition **from inchoerence to collective synchronization** is a phenomenon occurring in biological, chemical, physical and social systems. It consists in a family of individuals spontaneously locking to a cooperative behavior, despite their intrinsic differences.

Examples: fireflies, applause, hearth cells, arrays of lasers, superconducting Josephson junctions,...

Motivation

The transition **from inchoerence to collective synchronization** is a phenomenon occurring in biological, chemical, physical and social systems. It consists in a family of individuals spontaneously locking to a cooperative behavior, despite their intrinsic differences.

Examples: fireflies, applause, hearth cells, arrays of lasers, superconducting Josephson junctions,...

 Kuramoto, 1975: analyzed a model of oscillators running at arbitrary frequencies and coupled through the sine of their phase differences
Motivation

The transition **from inchoerence to collective synchronization** is a phenomenon occurring in biological, chemical, physical and social systems. It consists in a family of individuals spontaneously locking to a cooperative behavior, despite their intrinsic differences.

Examples: fireflies, applause, hearth cells, arrays of lasers, superconducting Josephson junctions,...

http://oldweb.ct.infn.it/~cactus/laboratorio/ 5-Metronome-Synchronisation.divx

Dynamics of the System

Let $\underline{\eta} = (\eta_j)_{j=1}^N \in \{-1, +1\}^N$ be a sequence of i.i.d. random variables, with law $\mu \sim \text{Be}(1/2)$.

For given $\underline{\eta}$, let $\underline{x}(t) = (x_j(t))_{j=1}^N$, with $t \in [0, T]$, be the *N*-diffusion system evolving in accord with the stochastic differential equations

$$dx_j(t) = \left[\omega\eta_j + \frac{\theta}{N}\sum_{k=1}^N \sin(x_k(t) - x_j(t))\right] dt + dB_j(t)$$

The initial condition $\underline{x}(0)$ is assumed to have product distribution $\lambda^{\otimes N}$, with λ probability measure on $[0, 2\pi]$, having finite second moment.

Dynamics of the System

Let $\underline{\eta} = (\eta_j)_{j=1}^N \in \{-1, +1\}^N$ be a sequence of i.i.d. random variables, with law $\mu \sim \text{Be}(1/2)$.

For given $\underline{\eta}$, let $\underline{x}(t) = (x_j(t))_{j=1}^N$, with $t \in [0, T]$, be the *N*-diffusion system evolving in accord with the stochastic differential equations

$$dx_j(t) = \left[\omega\eta_j + \frac{\theta}{N}\sum_{k=1}^N \sin(x_k(t) - x_j(t))\right] dt + dB_j(t)$$

The initial condition $\underline{x}(0)$ is assumed to have product distribution $\lambda^{\otimes N}$, with λ probability measure on $[0, 2\pi]$, having finite second moment.

Remark

The disorder is of **quenched** type.

Dynamics of the System

Let $\underline{\eta} = (\eta_j)_{j=1}^N \in \{-1, +1\}^N$ be a sequence of i.i.d. random variables, with law $\mu \sim \text{Be}(1/2)$.

For given $\underline{\eta}$, let $\underline{x}(t) = (x_j(t))_{j=1}^N$, with $t \in [0, T]$, be the *N*-diffusion system evolving in accord with the stochastic differential equations

$$dx_j(t) = \left[\omega\eta_j + \frac{\theta}{N}\sum_{k=1}^N \sin(x_k(t) - x_j(t))\right] dt + dB_j(t)$$

The initial condition $\underline{x}(0)$ is assumed to have product distribution $\lambda^{\otimes N}$, with λ probability measure on $[0, 2\pi]$, having finite second moment.

• Order parameter:
$$\rho_N := \frac{1}{N} \sum_{j=1}^N \delta_{(x_j,\eta_j)}$$

Limiting Dynamics $(N \longrightarrow +\infty)$

Theorem

For $t \in [0, T]$, the order parameter converges to solution of the following partial differential equation

$$\frac{\partial q_t}{\partial t}(x,\eta) = \frac{1}{2} \frac{\partial^2 q_t}{\partial x^2}(x,\eta) - \frac{\partial}{\partial x} \{ [\omega\eta - \theta r_t \sin x] q_t(x,\eta) \}$$
(LD)

where

$$r_t = \int e^{ix} q_t(x,\eta) \, \mu(d\eta) \, dx$$
.

Remark

The limiting dynamics q_t are deterministic.

We are going to determine the stationary solution(s).

Limiting Dynamics $(N \longrightarrow +\infty)$

Theorem

For $t \in [0, T]$, the order parameter converges to solution of the following partial differential equation

$$\frac{\partial q_t}{\partial t}(x,\eta) = \frac{1}{2} \frac{\partial^2 q_t}{\partial x^2}(x,\eta) - \frac{\partial}{\partial x} \{ [\omega\eta - \theta r_t \sin x] q_t(x,\eta) \}$$
(LD)

where

$$r_t = \int e^{ix} q_t(x,\eta) \, \mu(d\eta) \, dx$$
.

Remark

The limiting dynamics q_t are deterministic.

We are going to determine the stationary solution(s).

Limiting Dynamics $(N \longrightarrow +\infty)$

Theorem

For $t \in [0, T]$, the order parameter converges to solution of the following partial differential equation

$$\frac{\partial q_t}{\partial t}(x,\eta) = \frac{1}{2} \frac{\partial^2 q_t}{\partial x^2}(x,\eta) - \frac{\partial}{\partial x} \{ [\omega\eta - \theta r_t \sin x] q_t(x,\eta) \}$$
(LD)

where

$$r_t = \int e^{ix} q_t(x,\eta) \, \mu(d\eta) \, dx$$
.

Remark

The limiting dynamics q_t are deterministic.

We are going to determine the stationary solution(s).

Any equilibrium solution of (LD) is of the form

$$\begin{aligned} q_*(x,\eta) &= (Z_*)^{-1} \cdot e^{2(\omega\eta x + \theta r_*\cos x)} \bigg[e^{4\pi\omega\eta} \int_0^{2\pi} e^{-2(\omega\eta x + \theta r_*\cos x)} dx \\ &+ (1 - e^{4\pi\omega\eta}) \int_0^x e^{-2(\omega\eta y + \theta r_*\cos y)} dy \bigg] \,, \end{aligned}$$

where Z_* is a normalizing factor and r_* satisfies the self-consistency relation

$$\begin{aligned} r_* &= \Phi(r_*) \\ \Phi(r_*) &= \int e^{ix} q_*(x,\eta) \, \mu(d\eta) \, dx \end{aligned}$$
 (SC)

Any equilibrium solution of (LD) is of the form

$$q_*(x,\eta) = (Z_*)^{-1} \cdot e^{2(\omega\eta x + \theta r_*\cos x)} \left[e^{4\pi\omega\eta} \int_0^{2\pi} e^{-2(\omega\eta x + \theta r_*\cos x)} dx + (1 - e^{4\pi\omega\eta}) \int_0^x e^{-2(\omega\eta y + \theta r_*\cos y)} dy \right],$$

where Z_* is a normalizing factor and r_* satisfies the self-consistency relation

$$\begin{aligned} \mathbf{r}_* &= \Phi(\mathbf{r}_*) \\ \Phi(\mathbf{r}_*) &= \int e^{i x} q_*(x, \eta) \, \mu(d\eta) \, dx \end{aligned} \tag{SC}$$

Remark

 $r_* = 0$ is always a solution of (SC) and the corresponding stationary distribution is $q_*(x, \eta) = \frac{1}{2\pi}$.

Any equilibrium solution of (LD) is of the form

$$\begin{aligned} q_*(x,\eta) &= (Z_*)^{-1} \cdot e^{2(\omega\eta x + \theta r_*\cos x)} \bigg[e^{4\pi\omega\eta} \int_0^{2\pi} e^{-2(\omega\eta x + \theta r_*\cos x)} dx \\ &+ (1 - e^{4\pi\omega\eta}) \int_0^x e^{-2(\omega\eta y + \theta r_*\cos y)} dy \bigg] \,, \end{aligned}$$

where Z_* is a normalizing factor and r_* satisfies the self-consistency relation

$$\begin{array}{lll} r_* &=& \Phi(r_*) \\ \Phi(r_*) &=& \int e^{ix} q_*(x,\eta) \, \mu(d\eta) \, dx \end{array} \tag{SC}$$

Solutions with $r_* = 0$ are called **incoherent**, while those with $r_* > 0$ are called **synchronized**.

We consider $r_* = \Phi(r_*)$ and we look for solutions $r_* > 0$.

We consider $r_* = \Phi(r_*)$ and we look for solutions $r_* > 0$.

We consider $r_* = \Phi(r_*)$ and we look for solutions $r_* > 0$.

There are three phases corresponding to 0, 1 and 2 synchronized solutions. The lower curve is $\theta \mapsto \omega(\theta) = \frac{1}{2}\sqrt{\theta - 1}$ for $1 \le \theta \le 2$. The value $\theta = 2$ turns out to be a value above which non-stationary periodic solutions occur.

Central Limit Theorem

For $h \ge 1$, we are interested in the evolution of integrals of the type

$$\begin{split} X_{h}^{(1,N)}(t) &:= \int \cos(hx) d\hat{\rho}_{N}(t) \qquad X_{h}^{(2,N)}(t) := \int \sin(hx) d\hat{\rho}_{N}(t) \\ X_{h}^{(3,N)}(t) &:= \int \eta \cos(hx) d\hat{\rho}_{N}(t) \qquad X_{h}^{(4,N)}(t) := \int \eta \sin(hx) d\hat{\rho}_{N}(t) \end{split}$$

where

$$\hat{\rho}_N := \sqrt{N} \bigg[\frac{1}{N} \sum_{j=1}^N \delta_{(x_j,\eta_j)} - \frac{1}{2\pi} \bigg].$$

Theorem

The process $\left(X_{h}^{(1,N)}, X_{h}^{(2,N)}, X_{h}^{(3,N)}, X_{h}^{(4,N)}\right)_{h\geq 1}$ converges to the Gaussian process $\left(X_{h}^{(1)}, X_{h}^{(2)}, X_{h}^{(3)}, X_{h}^{(4)}\right)_{h\geq 1}$ which is the unique solution of an infinite dimensional linear diffusion equation.

Central Limit Theorem

For $h \ge 1$, we are interested in the evolution of integrals of the type

$$\begin{split} X_{h}^{(1,N)}(t) &:= \int \cos(hx) d\hat{\rho}_{N}(t) \qquad X_{h}^{(2,N)}(t) := \int \sin(hx) d\hat{\rho}_{N}(t) \\ X_{h}^{(3,N)}(t) &:= \int \eta \cos(hx) d\hat{\rho}_{N}(t) \qquad X_{h}^{(4,N)}(t) := \int \eta \sin(hx) d\hat{\rho}_{N}(t) \end{split}$$

where

$$\hat{\rho}_N := \sqrt{N} \bigg[\frac{1}{N} \sum_{j=1}^N \delta_{(x_j,\eta_j)} - \frac{1}{2\pi} \bigg].$$

Theorem

The process $\left(X_{h}^{(1,N)}, X_{h}^{(2,N)}, X_{h}^{(3,N)}, X_{h}^{(4,N)}\right)_{h\geq 1}$ converges to the Gaussian process $\left(X_{h}^{(1)}, X_{h}^{(2)}, X_{h}^{(3)}, X_{h}^{(4)}\right)_{h\geq 1}$ which is the unique solution of an infinite dimensional linear diffusion equation.

$$\operatorname{span}\left\{\int (\sin x + 2\omega\eta\cos x)\,d\rho_N, \int (\cos x - 2\omega\eta\sin x)\,d\rho_N\right\}$$

We consider more "moderate" fluctuations

$$\widetilde{\rho}_N := N^{-1/4} \widehat{\rho}_N = N^{1/4} \left[\frac{1}{N} \sum_{j=1}^N \delta_{(x_j, \eta_j)} - \frac{1}{2\pi} \right]$$

• Critical direction:
span
$$\left\{ \int (\sin x + 2\omega\eta \cos x) d\rho_N, \int (\cos x - 2\omega\eta \sin x) d\rho_N \right\}$$

We consider more "moderate" fluctuations

$$\widetilde{\rho}_N := N^{-1/4} \widehat{\rho}_N = N^{1/4} \left[\frac{1}{N} \sum_{i=1}^N \delta_{(x_j, \eta_j)} - \frac{1}{2\pi} \right]$$

• Critical direction:

$$\operatorname{span}\left\{\int (\sin x + 2\omega\eta\cos x)\,d
ho_N,\int (\cos x - 2\omega\eta\sin x)\,d
ho_N
ight\}$$

• We consider more "moderate" fluctuations

$$\widetilde{\rho}_{N} := N^{-1/4} \widehat{\rho}_{N} = N^{1/4} \left[\frac{1}{N} \sum_{j=1}^{N} \delta_{(x_{j},\eta_{j})} - \frac{1}{2\pi} \right]$$

Theorem

Assume $\omega < \frac{1}{2}$. For $t \in [0, T]$, the process

$$V^{(1,N)}(t) := \int (\sin x + 2\omega\eta \cos x) \, d\widetilde{\rho}_N(\sqrt{N}t)$$
$$V^{(2,N)}(t) := \int (\cos x - 2\omega\eta \sin x) \, d\widetilde{\rho}_N(\sqrt{N}t)$$

converges, as $N \longrightarrow +\infty$, to a limiting Non-Gaussian process $(V^{(1)}(t), V^{(2)}(t))$, which is the unique solution of

$$\begin{pmatrix} dV^{(1)}(t) = -\frac{1}{4} \frac{(1+4\omega^2)^2}{(1-4\omega^2)^3} V^{(1)}(t) \Big[\left(V^{(1)}(t) \right)^2 + \left(V^{(2)}(t) \right)^2 \Big] dt + \sqrt{\frac{1+4\omega^2}{2}} dB^{(1)}(t) \\ dV^{(2)}(t) = -\frac{1}{4} \frac{(1+4\omega^2)^2}{(1-4\omega^2)^3} V^{(2)}(t) \Big[\left(V^{(1)}(t) \right)^2 + \left(V^{(2)}(t) \right)^2 \Big] dt + \sqrt{\frac{1+4\omega^2}{2}} dB^{(2)}(t) \\ V^{(1)}(0) = V^{(2)}(0) = 0$$

- Order parameter: $\rho_N := \frac{1}{N} \sum_{j=1}^N \delta_{x_j}$
- Critical direction: span{ $\int \cos x \, d\rho_N$, $\int \sin x \, d\rho_N$ }

Theorem ($\theta = 1$)

For $t \in [0, T]$, the process

$$Y^{(1,N)}(t) := \int \cos x \, d\widetilde{\rho}_N(\sqrt{N}t) \qquad Y^{(2,N)}(t) := \int \sin x \, d\widetilde{\rho}_N(\sqrt{N}t)$$

converges, as $N \longrightarrow +\infty$, to a limiting Non-Gaussian process $(Y^{(1)}(t), Y^{(2)}(t))$, which is the unique solution of

$$\begin{cases} dY^{(1)}(t) = -\frac{1}{4}Y^{(1)}(t) \Big[\left(Y^{(1)}(t)\right)^2 + \left(Y^{(2)}(t)\right)^2 \Big] dt + \frac{1}{\sqrt{2}} dB^{(1)}(t) \\ dY^{(2)}(t) = -\frac{1}{4}Y^{(2)}(t) \Big[\left(Y^{(1)}(t)\right)^2 + \left(Y^{(2)}(t)\right)^2 \Big] dt + \frac{1}{\sqrt{2}} dB^{(2)}(t) \\ Y^{(1)}(0) = Y^{(2)}(0) = 0 \end{cases}$$

- Order parameter: $\rho_N := \frac{1}{N} \sum_{j=1}^N \delta_{x_j}$
- Critical direction: span{ $\int \cos x \, d\rho_N$, $\int \sin x \, d\rho_N$ }

Theorem ($\theta = 1$)

For $t \in [0, T]$, the process

$$Y^{(1,N)}(t) := \int \cos x \, d\widetilde{\rho}_N(\sqrt{N}t) \qquad Y^{(2,N)}(t) := \int \sin x \, d\widetilde{\rho}_N(\sqrt{N}t)$$

converges, as $N \longrightarrow +\infty$, to a limiting Non-Gaussian process $(Y^{(1)}(t), Y^{(2)}(t))$, which is the unique solution of

$$\begin{cases} dY^{(1)}(t) = -\frac{1}{4}Y^{(1)}(t) \Big[\left(Y^{(1)}(t)\right)^2 + \left(Y^{(2)}(t)\right)^2 \Big] dt + \frac{1}{\sqrt{2}} dB^{(1)}(t) \\ dY^{(2)}(t) = -\frac{1}{4}Y^{(2)}(t) \Big[\left(Y^{(1)}(t)\right)^2 + \left(Y^{(2)}(t)\right)^2 \Big] dt + \frac{1}{\sqrt{2}} dB^{(2)}(t) \\ Y^{(1)}(0) = Y^{(2)}(0) = 0 \end{cases}$$

- Order parameter: $\rho_N := \frac{1}{N} \sum_{j=1}^N \delta_{x_j}$
- Critical direction: span{ $\int \cos x \, d\rho_N$, $\int \sin x \, d\rho_N$ }

Theorem ($\theta = 1$)

For $t \in [0, T]$, the process

$$Y^{(1,N)}(t) := \int \cos x \, d\widetilde{\rho}_N(\sqrt{N}t) \qquad Y^{(2,N)}(t) := \int \sin x \, d\widetilde{\rho}_N(\sqrt{N}t)$$

converges, as $N \longrightarrow +\infty$, to a limiting Non-Gaussian process $(Y^{(1)}(t), Y^{(2)}(t))$, which is the unique solution of

$$\begin{cases} dY^{(1)}(t) = -\frac{1}{4}Y^{(1)}(t) \Big[\left(Y^{(1)}(t)\right)^2 + \left(Y^{(2)}(t)\right)^2 \Big] dt + \frac{1}{\sqrt{2}} dB^{(1)}(t) \\ dY^{(2)}(t) = -\frac{1}{4}Y^{(2)}(t) \Big[\left(Y^{(1)}(t)\right)^2 + \left(Y^{(2)}(t)\right)^2 \Big] dt + \frac{1}{\sqrt{2}} dB^{(2)}(t) \\ Y^{(1)}(0) = Y^{(2)}(0) = 0 \end{cases}$$

- Order parameter: $\rho_N := \frac{1}{N} \sum_{j=1}^N \delta_{x_j}$
- Critical direction: span{ $\int \cos x \, d\rho_N$, $\int \sin x \, d\rho_N$ }

Theorem ($\theta = 1$)

For $t \in [0, T]$, the process

$$Y^{(1,N)}(t) := \int \cos x \, d\widetilde{\rho}_N(\sqrt{N}t) \qquad Y^{(2,N)}(t) := \int \sin x \, d\widetilde{\rho}_N(\sqrt{N}t)$$

converges, as $N \longrightarrow +\infty$, to a limiting Non-Gaussian process $(Y^{(1)}(t), Y^{(2)}(t))$, which is the unique solution of

$$\begin{cases} dY^{(1)}(t) = -\frac{1}{4}Y^{(1)}(t) \Big[\left(Y^{(1)}(t)\right)^2 + \left(Y^{(2)}(t)\right)^2 \Big] dt + \frac{1}{\sqrt{2}} dB^{(1)}(t) \\ dY^{(2)}(t) = -\frac{1}{4}Y^{(2)}(t) \Big[\left(Y^{(1)}(t)\right)^2 + \left(Y^{(2)}(t)\right)^2 \Big] dt + \frac{1}{\sqrt{2}} dB^{(2)}(t) \\ Y^{(1)}(0) = Y^{(2)}(0) = 0 \end{cases}$$

In inhomogeneous spin systems the critical fluctuations exist on a shorter time-scale than the homogeneous ones.

In inhomogeneous diffusion system the critical fluctuations exist on the same time-scale than the homogeneous ones.

In inhomogeneous spin systems the critical fluctuations exist on a shorter time-scale than the homogeneous ones.

In inhomogeneous diffusion system the critical fluctuations exist on the same time-scale than the homogeneous ones.

Thanks for your attention!