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1) The framework: microcanonical statistics 

versus the dynamics of an isolated quantum system
2) Equilibrium properties  and fluctuations 
3) What populations? Statistical Ensemble
4) Typicality
5) Thermodynamics
6) Conclusions: an open issue and further developments



Dynamics of a quantum pure state for an isolated system (no interactions
and entanglement with the surrounding, otherwise the system’s 
wavefunction does not exist) 
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1) The framework



Microcanonical density matrix operator           :ˆ Cµρ
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where :  is small enough but not too much
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Conventional interpretation of        : average of         amongst a 
collection of system’s copies
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1) The framework



In recent years: 
1) quantum computer theory
2) decoherence program (Zurek)

Statistical Thermodynamics of a single system evolving according 
to the Schroedinger equation

1) The framework



2) Equilibrium properties and fluctuations

Quantum dynamics in a finite dimensional Hilbert space defined by
an upper energy cut-off
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Populations:                                    (constants of motion!)
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Pure State Distribution (PSD): homogeneous distribution of the phases for
a given set of populations.



2) Equilibrium properties and fluctuations
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2) Equilibrium properties and fluctuations

Randomly perturbed harmonic oscillators: results for the ground state 
element of the reduced density matrix

Two different (random) choices of the populations (or of        )(0)Ψ
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2) Equilibrium properties and fluctuations

Equilibrium properties from the asymptotic time average
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Equilibrium properties depend on the choice of the populations!

Note: PSD allows the calculations of fluctuations about 
the equilibrium value 

Population dependence also for the (Shannon) entropy

and the (internal) energy 
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3) What populations?

No way of imposing populations to a macroscopic system!

How to get predictions about a system if the populations are unknown?

The populations can be characterized only at the statistical level!

No a priori information on          !( )p P
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Statistical Ensemble for the populations
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3) What populations?

From the lack of knowledge

Random Pure State Ensemble (RPSE): homogeneous distribution of 
on the unit sphere in
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3) What populations?

From the (Euclidean) measure in       :
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Note: RPSE is defined only in a finite dimensional Hilbert space

necessity of the high energy cut-off  maxE

From          : statistical sampling of the populations and of the system’s 
(equilibrium) properties

( )p P



Example for randomly perturbed harmonic oscillators
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3) What populations?



3) What populations?

Different realizations of the system lead to different values of the
equilibrium properties, in particular of the Entropy and of the Internal Energy

What a relation with Thermodynamical properties?

Note: standard microcanonical analysis corresponds to a specific choice
of the populations
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4) Typicality

Concept of typicality from Information Theory.

is a typical event in a broad meaning ifA

{ } { }i) Prob 1   with  <<1, that is Prob =  ε ε ε= −A A

Strong form of typicality if

like the measure/probability of irrational numbers in the interval 
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Qualitatively speaking, the overwhelming majority of systems has a 
typical value of the property. 
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4) Typicality

The same behavior is found for the internal energy and the entropy

For large enough systems, the variability of populations does not 
influence substantially the observables which, then, can be identified
with their Ensemble averages

ˆS U µ



5) Thermodynamics

Is the RPSE description consistent with the equilibrium thermodynamics
of macroscopic system?

The answer is positive since, for a generic system characterized through 
its density of states ( ) ( )

k

k
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the following items are derived

a) Typicality in the thermodynamic limit (number of components     )
which allows the  identification of the entropy (       ), of the internal 
energy (       ) and of the properties of a component trough 

n → ∞

S
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b) Entropy equation of state                      , by eliminating the dependence
on the energy cut-off
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5) Thermodynamics

c) Both        and        are extensive properties therefore the Temperature

is an intensive parameter

S U

1
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d) is a convex increasing function of        , therefore both 
and         are increasing functions of the Temperature

( )S S U= U

e) The canonical form for the reduced density matrix of subsystem
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S U



6) Conclusions

An open issue

1) There are other possible Statistical Ensembles for the populations.

In the past the Fixed Expectation Energy Ensemble (FEEE) having the 
constraint                                 constant, has been proposed as the quantum
counterpart of the classical microcanonical statistical mechanics.

ˆ| |H E< Ψ Ψ >= =

2) Consistency with Thermodinamics, points a) to e), as the main 
criterion of choice between Ensembles.

As a matter of fact, FEEE does not satisfy conditions d) and e)!

3) Further conditions to be satisfied?
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Switch on the interaction Hamiltonian
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� One observes relaxation 

toward

a well defined equilibrium state

(i.e. within the statistical 

uncertainty due to the finiteness 

of the system)

� The equilibrium state 

depends 

only on the total energy of the 

system,

not on the initial state and 

equipartition of the energy is 

observed  

Thermalization
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