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PART I

1. Pre-Andersen MD



What is MD

e MD is a method “...for studying classical statistical mechan-
ics of well-defined systems through a numerical solution of
Newton’s equations.”

e Conventionally, birth of MD = Fermi-Pasta-Ulam numerical ex-
periment (1955) (background ensemble = microcanonical en-
semble {N,E,Q}).

e “ ..MD simulations ... are in a sense computer experiments
which open new avenues in investigations of the microscopic
origin of material phenomena.”




What is MD after

e MD was first proposed to simulate the behavior of fluid
materials, under the assumption that ¢...time averages
of properties of the simulated fluid are equal to
microcanonical ensemble averages of the same properties.”

e “Upon increasing external pressure crystals usually undergo
structural phase transitions. Often, the final structure is un-
known and simulations can be very useful in identifying pos-
sible candidates.”




What are the main limitations of MD

e Writes A. (end of 1979): “A MD calculation can simulate the
motion of only a small number of particles (typically, between
50 and 1000). A physical system with this number of particles
is more like a droplet than a bulk fluid, and its properties would
be strongly affected by its surface ...to eliminate ... surface [ef-
fects] ..., periodic boundary conditions are ordinarily used.”

e P&R say (1981): “...periodic boundary conditions ...are
obtained by periodically repeating a unit cell of volume
containing the N particles by suitable translations. ...every

particle can be thought of as being at the ‘center’. In
other words, ...the summation over J in [the Newton equa-
tions ] extends over the infinite system generated by the periodic
boundary conditions.”




What are the equations of Pre-Andersen MD

e 1; = current position vector of [-th molecule

in a simulation cell of fixed volume ;

e Lagrangian: L=K(7,...7y)—V(r,...7y), where
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I

% ZZ ®(ryy), ryi=lr—mrl;
T J

oL 8L_0 I=1 N,
o7 o =1,...,N), i.e,,

intermolecular potential V

d
e motion equations: It (

) 1
myiy ==Y —&(r,)(r—r) I=1,..,N)
T2 I'ry

NB. Recall quote from P&R 1981 about summation over J !!



Molecular Dynamics & Continuum Mechanics

e MD is a method “... for studying classical statistical mechan-
ics of well-defined systems through a numerical solution of
Newton’s equations.”

e CM is a field theory aiming to posit initial/boundary-value
problems for such fields as displacement, velocity, and stress.

e MD simulations concern a basic cell & of attomole size and
have a duration & of nanosecond order, with time step one

femtosecond

(1 attomole = 10718 x 6.0221 x 10%® ~ one million of molecules;
1 nanosecond = one billionth of a second; femto = 107>

At the CM scale, the MD space-time regions & X J are to be

regarded as (point, instant) pairs (x,t). To establish any link
between MD and CM, scale-bridging criteria must be posited.




2. Andersen-Parrinello & Rahman MD



Basic References

e H.C. Andersen, J. Chem. Phys. 72 (4), 2384 (1980).
e M. Parrinello and A. Rahman,

— Phys. Rev. Lett. 45, 1196 (1980)

— Polymorphic transitions in single crystals: A new molecular
dynamics method. J. Appl. Phys. 52, 7182 (12) (1981).



Main Idea(s)

“We (Laio & Parrinello, 2002)

o use the edges of the simulation cell as collective variables

e and [we] define a metadynamics that drives the system away
from the local minimum towards a new crystal structure.

...We illustrate the power of the method by studying the
pressure-induced diamond to simple hexagonal phase transition in
a model of silicon.”




Geometry of Simulation Cell

A molecule’s current and referential position vectors:

rlzé';hi and slzé';gi (I=1,...,N)

o } i-th convected coordinate of I'" molecule
o N number of molecules in simulation cell
® g,h referential and current covariant base vectors

i.e., referential and current lattice vectors

e F=h®g" deformation gradient at (macrolocation of)

simulation cell

¢ g contravariant base vectors

(lattice cell needs not be a right parallelepiped)

e Hence, 7, =F's;, the Cauchy-Born scale-bridging criterion.




3. Exact and Uncompromising MD vs. A-P &R MD



Central Kinematic Assumption

e both molecules and simulation cell fluctuate:

TIZFSI = 'i"I:FSI'FFSI




Kinetic Energies

Given that
'if’I - FSI + FSI,

e exact kinetic energy:
K := lsz 7 :FTF-EZm 5 ®5
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e P&R kinetic energy:
Kpp=FTF - 1Zm 5 ® & +11|F|2
PR 24 151985 )

with I > 0 an adjustable parameter (dim(I) = mass x length?).



More on Kinetic Energies
For I :=) m;s; ® s; =referential inertia tensor,

2(K—Kpg) = FTF -(I —11,,)
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e Say P&R about the Lagrangian they associate with Kp;:

“Whether such a Lagrangian is derivable from first principles
is a question for further study; its validity can be judged, as of
now, by the equations of motion and the statistical ensembles

that it generates.”



Q.1 — When is it that K reduces to Kpg?



Assumptions one can think of

a. I=I1,, = K-Knp=Q+®
b. I = const. = K-Kpz= @-I— @
c. FTFeSym = K-—Kuyp=QO+®

e a. strictly speaking, appropriate almost only for fluids; as to
b., note that < I >= 0

e a. and b. are kinematical constraints on molecule fluctuations

e c. is a kinematical constraint on cell fluctuations, equivalent
to symmetry of macroscopic velocity gradient:

cell fluctuation motion should be irrotational (have null spin)

a., b. and c. together yield the P &R kinetic energy!




Q.2 — Is there an uncompromising choice

of a kinetic energy of A-P &R type?



Recall that

a. I=11,; = K-Kuyp=0@+0G)
b. I = const. = K—-Kppr=O+0G)
c. FTFeSym = K-Kuyp=0O+®

Note that

b. and c. together yield the desired P & R—type kinetic energy:
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Q.3 — Why no MD practitioners ever worried

about conceptual foundations of A-P &R MD?

A. (offered by G. Ciccotti) — Because
A-P &R MD is regarded as

a trick to generate the desired statistics.




Q.4 — What are the uses of the (exact or)

uncompromising versions of A-P &R MD?



Serious Work Program

with A. Di Carlo, M. Ribezzi Crivellari,

M. Paoluzzi, L.R. Zastrow, M. Minozzi, ...

e 1st Goal. (Cell microdynamics, fast)

Find out whether kinetic couplings (2) and (3), neglected in
trademark A-P & R MD, do affect cell fluctuations.

e 2nd Goal. (Cell macrodynamics, slow)

By an array of interacting A-P & R-like cells simulated in par-
allel, each of which is regarded as a material element (= an
infinitesimal chunk of a simple continuous body), construct
atomistically-informed approximations to a continuum.




PART II

4. Constitutive Bridging:

a Conceptual Use of MD, a la A-P &R or not



A typical energy landscape

e colors suggest level curves of stored-energy map F — 6(F')

¢ a path through a saddle point connecting two local minima =
a dynamics allowing to clear the energy barrier between two
phases



This picture can be looked at

e with the eyes of a solid-state physicist interested in struc-
tural phase transitions of crystalline solids, such as austen-
ite/martensite phase changes

e with the eyes of a continuum mechanist/analyst, whose inter-
ests are in a mathematical study of sensible initial /boundary-
value problems in elasticity



A lot to gain for the solid-state physicist,
who works at the microscopic scale and uses MD

e to gather info about energy landscapes: set of local minima,
shape & height of energy barriers, ...

¢ to find out whether there is an evolutionary process connect-
ing two given local minima, be it

— artificial, introducing a pseudo-time and a pseudo-driving
force (i.e., a metadynamics)

— real & multiscale in both space and time, running on-the-fly

computations based on a coupled atomistic-continuum ap-
proach




Not much to gain for the mechanist/analyst,

who works at the macroscopic scale and

aims to put on a firm footing such issues as ...



... J. Ball’s assumptions on stored-energy map

we recall that J. M. BALL’s [1] existence results concerning minimizers of the
functional (1.2) are obtained when ¢ is polyconvex, polycoercive, and consistent
with the growth condition:

(A) 6(F)— oo as det F— 0+.
Precisely, o is polyconvex if there is a convex function
(1.6) (X, Y, 0)—o(X, ¥, 0)

over LinxLinxR such that, for each F¢€ Lint,

(1.7) o(F, F*, det F) = o(F).

o is polycoercive if there are constants p, g, r, %, and A, with
(B+H), p=2 qgz=z——, r>1,

such that, for all Fe Lin®,
(B™), 5(F) = #{[ FIP + || F*| -+ (det F)'} + 4, %> 0



Note that

e any talking about Finite Elasticity requires that the properties
of a class of energy functionals are specified;

e any Molecular Dynamics run requires that a specific inter-
molecular potential is chosen.

Micro/Macro Constitutive Consistency Issues

e given an intermolecular potential, to find a consistent class of
energy functionals;

e given a class of energy functionals, to find all consistent inter-
molecular potentials.



5. More about

uncompromising vs. A-P &R MD



Lagrangian Version of A-P &R MD

e Lagrangian:
L K(SI)SI;F,F) 1
1\ Rop(a P, ) [~ 2 3(r1))+ QS F,
{ Lpgr } { Kpr($;; F, F) 2 XI:Z (rrs) ef

where r;; :=|F(s;—s;)| and S = external referential stress =
observable applied stress.

e motion equations:
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e iso-enthalpy, iso-stress ensemble {N,H = enthalpy, S}:

H K(Sb 31§F,F) 1
= ~ . . + — d(r _Qre SF
{HPR } { Kpr(8p; F, F) 2 ZI:Z,: (r1,) /



Uncompromising A-P & R Motion Equations

e motion equations:

m;(Fs;) + FZ P ‘(r,))(s,—8)=0 (I=1,...,N),

g1 T

ZmI(F31)®31+F(ZZ _(I’ "(ris)(s1—8,)@(8— SJ)) QS =0.

J>1

e a relevant consequence:

w: gt = (ZZ _‘1’ (’"IJ)(”'I ;) ® (1) — TJ))

J>1

the internal stress S'"' is a motion constant.



A-P & R Motion Equations

e motion equations: for C := F'F,

. 1
my(8+C7 C8) + ) — ¥ (ry)(s—8)=0 (I=1,...,N),
J>1 " 1J

[F=Q.,(T-P)FT,

where T :=(det F)SF! = external current stress,

P :=(detF)! (ZZ %@’(rlj)(rl—rj)®(r1—rj)—z mI'vI®va)

J>1

with v; = F's;, and P the so-called virial stress.

e The difference (T — P) drives the fluctuation motion:

“The basic idea ...is to allow the tensor h [our F'], which
characterizes the molecular dynamic cell, to vary in time as
a result of the difference between the varying internal micro-
scopic stress tensor [our P] and the constant external stress
tensor o [our T'].” (Ray&Rahman, 1984)



6. Micro/Macro Consistency



More on the Cauchy-Born Rule

e The C-B rule is the standard recipe for computing the stored-
energy mapping corresponding to a given atomistic potential.
For a recent review of its uses, see

— J. Ericksen, Math. Mech. Solids 13, 199 (2008)

e For a validation of the C-B rule at zero temperature, see

- W. E and P Ming, Arch. Rational Mech. Anal. 183, 241
(2007)

From the Introduction: “We prove, under certain sharp sta-
bility conditions, that the correct nonlinear elasticity model is
given by the classical Cauchy-Born rule in the sense that the
elastically deformed states of the atomistic model are closely
approximated by solutions of the continuum model with stored
energy functionals obtained from the Cauchy-Born rule.”



Zero-Temperature MD

e no-fluctuation equations (all the same, no matter whether
starting from exact, uncompromising or trademark A-P&R
motion equations):

1 /
) ), — (s —s)=0 (I=1,...,N),
J>1 " 1J
(force balance for I-th molecule);
1 ~i = _
(k) ZZ — &' (r,)(s;,—8,)®(s;,—8,):=8"=8:=F'§
I

Jo1 T

(micro/macro stress balance).



Induced Micro/Macro Consistency Condition
e Given the constitutive equation for an elastic material:
S=03,6(C), C=F'F,

the ‘microscopic’ molecule potential  and the ‘macroscopic’
stored-energy mapping & should satisfy:

1
D> ()5 — )@ (5= 8,) = 0cH(FTF), VF.
I IJ

J>1

¢ One may ask, e.g.,

— what & ’s are consistent with one or another &?

— what is a candidate elasticity tensor?



What the relationships between, say,

e Ciarlet-Geymonat’s elastic energy density

Goo(F)= o | F|*+a,| F*|*+p(det F), ¢(8)= a352—a410g5 (a; > 0)

and

e Lennard-Jones potential

v n(2)" ()

e Morse potential

M r r
® U)=ﬂ{ﬂ(am(—2—)—wmp(——))

2?97?



What if we set

e the macroscopic elasticity tensor
A:=0p(Foo¥(C))

equal to the corresponding microscopic construct:

6p(FOc¥(C)) = (A )ZZ(sI )@ (51— 5,)8p ()

=1 J>I IJarIJ

2?7?7?



Basta, per oggi.

E grazie per la vostra attenzione!



Appendix. What metadynamics makes sense

to explore energy landscapes



A Typical Energy Landscape

e colors suggest level curves of stored-energy map F — 6(F')

¢ a path through a saddle point connecting two local minima =
a dynamics allowing to clear the energy barrier between two
phases



A Metadynamics Trick to Escape Energy Minima

-6

Fig. 1. Time evolution of the sum of a one-dimensional model potential V(o)
and the accumulating Gaussian terms of Eg. 2. The dynamic evolution (thin
lines) is labeled by the number of dynamical iterations (Eq. 1). The starting
potential (thick line) has three minima and the dynamics is initiated in the
second minimum.

e from A. Laio & M. Parrinello, Escaping free-energy minima,
PNAS 99 (2002)



Recall assumption advanced to reduce the uncompromising-to-
trademark gap in A-P &R Lagrangians:

the simulation cell’s fluctuation motion be irrotational.

Accordingly,

irrotationality of cell fluctuations

should be incorporated in whatever metadynamics one runs. In-
terestingly, in the literature

this measure is always taken,

often approximately and/or in disguise!



