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A system of stochastic oscillators

Mechanical system in a force field coupled to a heat bath:

dx(t) = v(t) dt, (1)

Mdv(t) = −Bv(t) dt−∇V (x(t))dt+ ΣdW (t). (2)

1. V ∈ C1 bounded below, tends to infinity for |x| → ∞;

2. W (t), t ≥ 0 standard n-dimensional Wiener process

(Ẇ is Gaussian white noise, (dW (t))2 ≈ dt);

3. M , B and Σ are n× n matrices with M = MT > 0. B and Σ

need not be diagonal or even symmetric.



A system of stochastic oscillators (cont’d)

• Model (1)-(2) generalizes Ornstein-Uhlenbeck model of physi-

cal Brownian motion (equivalently, it generalizes the Nyquist-

Johnson model (1928) of RLC network with noisy resistor and

nonlinear capacitor);

• It can, for instance, describe a system of n oscillators with ve-

locity coupling trough first neighbour interaction and different

spatial arrangements (closed ring, linear array).



A system of stochastic oscillators (cont’d)

Equilibrium and Fluctuation-Dissipation relation

Gibbsian postulate of classical statistical mechanics: equilibrium

state of microscopic system at absolute temperature T and with

Hamiltonian function H given by Maxwell-Boltzmann distribution

ρ̄ = Z−1 exp

[
−
H

kT

]
(3)

where Z is the partition function. In our case

H(x, v) =
1

2
〈v,Mv〉+ V (x).

Proposition 1 The Maxwell-Boltzmann distribution (3) is invariant

for system of stochastic oscillators if and only if

ΣΣT = kT (B +BT ). (4)



A system of stochastic oscillators (cont’d)

It has been shown that

1. System with Maxwell-Boltzmann distribution satisfies suitable

Newton law if and only if B is symmetric;

2. Maxwell-Boltzmann distribution necessary for time-reversal in-

variance.

3. Connection between existence of an invariant measure and com-

plete controllability of an associated deterministic system (per-

vasive damping).



A system of stochastic oscillators (cont’d)

H-Theorem

Let ρ0(x, v) be density of (x0, v0) and let ρt(x, v) denote the corre-

sponding solution of the Fokker Planck equation

∂ρ

∂t
+ v · ∇xρ−∇v · (Bvρ) =

1

2

n∑
i,j=1

aij
∂2

∂vi∂vj
ρ, (5)

where (
aij
)

= ΣΣT .

Suppose Maxwell-Boltzmann density is stationary solution of (5)



A system of stochastic oscillators (cont’d)

Consider now the free energy functional

kTD(ρt||ρ̄) = F (ρt) = kT

∫
Rn

∫
Rn

log
ρt

ρ̄
ρt dxdv,

where ρ̄ is given by (3) . We have

d

dt
F (ρt) = −

kT

2

∫
Rn

∫
Rn
〈ΣΣT∇v log

ρt

ρ̄
,∇v log

ρt

ρ̄
〉ρt dxdv (6)

This can be recognized as a form of the H-Theorem.

There exists, however, a stronger form.



Differentials of Markov diffusion

For f defined on [t0, t1] and dt > 0, let

d+f(t) := f(t+ dt)− f(t), d−f(t) = f(t)− f(t− dt)

be forward and backward increment at time t, respectively. Con-

sider a Markov diffusion process {X(t); t0 ≤ t ≤ t1} with diffusion

coefficient σ2. Under mild assumptions, X admits both forward and

backward drifts

b+(X(t), t) = lim
dt↘0

E

{
d+X(t)

dt
|X(τ ), t0 ≤ τ ≤ t

}
,

b−(X(t), t) = lim
dt↘0

E

{
d−X(t)

dt
|X(τ ), t ≤ τ ≤ t1

}
.



Differentials of Markov diffusion (cont’d)

Hence X possesses two differentials

d+X(t) = b+(X(t), t)dt+ σdW+(t),

d−X(t) = b−(X(t), t)dt+ σdW−(t).

Moreover,

b−(x, t) = b+(x, t)− σ2∇ log ρ(x, t).



A stronger form of the H-Theorem

Suppose, for simplicity, that Σ = σI and B = βI are diagonal

satisfying Einstein’s relation. Introduce the free energy density

ψ(x, v, t) = kT log ρtρ̄ (x, v), so that F (ρt) = E(ψ(x(t), v(t), t)). It

can be shown that −ψ is the value function of the following reverse-

time stochastic control problem

−ψ(x, v, t) = infu∈UE

(
kTσ2

2

∫ t

t0

‖u− b̄−‖2ds− ψ(x(0), v(0), 0)

)
,

subject to

dx(t) = v(t)dt, x(t) = x

Mdv(t) = u(x(t), v(t), t)dt+ σdW (t), v(t) = v,

and b̄− = βv − ∇V (x) may be seen as the equilibrium backward

drift of Mv.



A stronger form of the H-Theorem (cont’d)

The optimal feedback control law u∗(x, v, t) is the backward drift

of Mv of the evolution starting with ρ0(x, v), namely b− = −βv −

∇V (x) − σ2∇v log ρt(x, v). The stochastic process ψ(x(t), v(t), t)

is consequently a reverse-time submartingale and the free energy

decay follows simply taking expectations.

May be interpreted as a principle of minimum dissipation. Indeed,

it can also be rephrased as follows: The probability distribution in-

duced on path space by the actual physical evolution is the one that

minimizes relative entropy distance from the equilibrium path space

measure among those having initial marginal ρ0(x, v) (instance of

theory of Schrödinger bridges).



Large Deviations

Consider a large number N of i.i.d. Brownian particles Xi in equi-

librium. Let P̄ (t0, t1) be their distribution of C(t0, t1). Consider the

empirical distribution

µN =
1

N

N∑
i=1

δXi, N = 1, 2, . . . .

By the law of large numbers, the probability of observing µN with

marginal density ρ0 6= ρ̄ tends to zero. Nevertheless, for a fixed large

N , since we have observed ρ0 at time t0, we know that µN ∈ D(ρ0).

We ask, which one is its most probable form? Answer is provided

by Sanov’ theorem. Probability of observing µN ∈ D(ρ0) decays as

exp
[
−N inf{D(P (t0, t1)‖P̄ (t0, t1));P (t0, t1) ∈ D(ρ0)}

]
. (7)

Hence, the path-space distribution corresponding to the initial den-

sity ρ0 has most probable form!
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Feedback control of stochastic oscillators

Consider now the same system of stochastic oscillators subject to an external

force :

dx(t) = v(t) dt,

Mdv(t) = −Bv(t) dt−∇V (x(t))dt+ u(t, x(t), v(t)) + ΣdW (t).

Here u is to be designed by the controller in order to achieve a certain desired

evolution of the system.



AFM Experiment

Velocity-dependent feedback control (VFC) to reduce thermal noise of a can-

tilever in Atomic Force Microscopy (AFM)



AFM Experiment (cont’d)

In the AFM experiment:

• V (x) = k
2
‖x‖2, where k is a spring constant of the AFM cantilever;

• Sensor provided by electric circuit detecting motion of the cantilever;

• Control force u is changed proportional to velocity in order to reduce thermal

noise.



AFM Experiment (cont’d)

In the AFM experiment, M = mI3, B = βI3, β > 0, Σ = σI3. Einstein’s relation

reads

σ2 = 2kTβ. (8)

The controlling feedback force is given by

u(t, x, v) = −αv, α > 0.

The control then acts as a frictional force on the macromolecule. Since the

frictional coefficient is now β + α, we can rewrite (8) as

σ2 = 2kTeff(β + α), (9)

where the effective temperature Teff is given by

Teff =
β

β + α
T < T.



Shannon’s entropy

My greatest concern was what to call it. I thought of calling it ‘information’, but

the word was overly used, so I decided to call it ‘uncertainty’. John von Neumann

had a better idea, he told me, ‘You should call it entropy, for two reasons. In the

first place your uncertainty function goes by that name in statistical mechanics.

In the second place, and more important, nobody knows what entropy really is,

so in a debate you will always have the advantage.(C. E. Shannon as quoted

in M. Tribus, E.C. McIrvine, Energy and information, Scientific American, 224

(September 1971), 178-184.)



Relative Entropy

For ρ ≥ 0 and σ ≥ 0 on Rn, define the (information) relative entropy (divergence,

Kullback-Leibler index, etc.)

D(ρ||σ) =

{ ∫
Rn log ρ

σ
ρ dx, Supp(ρ) ⊆ Supp(σ),

+∞, Supp(ρ) 6⊆ Supp(σ).
.

When ρ and σ satisfy ∫
Rn

ρ(x)dx =

∫
Rn

σ(x)dx <∞,

1. D(ρ||σ) ≥ 0,

2. D(ρ||σ) = 0 if and only if ρ = σ.

For σ ≡ 1, −D(ρ||σ) = S(ρ) the entropy.



Relative Entropy (cont’d)

• Originates from statistical mechanics (Boltzmann, Gibbs);

• Maximun entropy problems promoted to general inference method (Kullback,

Jaynes);

• Concept plays central role in Information Theory (Shannon), Mathematical

Statistics, Probability Theory (Sanov, Barron), Signal Processing (Burg,Byrnes,

Georgiou, Lindquist,...);

• Umegaki-von Neumann relative entropy in Quantum Information Theory.



Thermodynamic systems

Consider open thermodynamical system. Macroscopic evolution ∼ n-dimensional

Markov diffusion process {x(t); t0 ≤ t}

Let ρ̄(x) be the Maxwell-Boltzmann probability density corresponding to thermo-

dynamic equilibrium

ρ̄(x) = Z−1 exp[−
H(x)

kT
],

where H is Hamiltonian function.

The Ito differential of x is

dx(t) = −
σ2

2kT
∇H(x(t))dt+ σdW,

W is a standard n-dimensional Wiener process.



Thermodynamic systems (cont’d)

Probability density ρt of x(t) satisfies Fokker-Planck equation

∂ρ

∂t
−∇ · (

σ2

2kT
∇Hρ) =

σ2

2
∆ρ.

Let us introduce the fluxes J(x, t) and forces Φ(x, t) by

J(x, t) = −
1

2
σ2∇ρt(x)−

1

2kT
σ2∇H(x)ρt(x), Φ(x, t) = −∇µ(x, t).

µ = H + kT log ρt is electrochemical potential. Notice:

• Fokker-Plank equation may be rewritten as a continuity equation

∂ρ

∂t
+∇ · J = 0, J = vρ, v = −

σ2

2kT
∇H −

σ2

2
∇ log ρ.



Thermodynamic systems (cont’d)

• Both fluxes and forces are zero in equilibrium. Moreover,

J(x, t) =
σ2

2kT
Φ(x, t)ρt(x),

which plays the role of constitutive relations.

• Define free energy functional

F (ρt) = kT

∫
Rn

∫
Rn

log
ρt

ρ̄
ρt dx = kTD(ρt||ρ̄).

The free energy decay may now be expressed as

d

dt
F (ρt) = −

σ2kT

2

∫
Rn

|∇ log
ρt

ρ̄
|2ρt dx = −

∫
J(x, t)Φ(x, t)dx.



Controlling the Relative Entropy Evolution

Consider previous system subject to feedback control

dxu(t) =

(
−
σ2

2kT
∇H(xu(t)) + u(xu(t), t)

)
dt+ σdw.

u(x, t) is feedback control law designed to alter natural evolution toward equilib-

rium. The density ρut of xut satisfies the controlled Fokker-Planck equation

∂ρ

∂t
+∇ ·

(
(−

σ2

2kT
∇H + u)ρ

)
=
σ2

2
∆ρ.

We are interested in the evolution of D(ρut ||ρt). We need a simple but useful

result.



Controlling the Relative Entropy Evolution (Cont’d)

Consider two families of nonnegative functions on Rn :

{ρt; t0 ≤ t ≤ t1} and {ρ̃t; t0 ≤ t ≤ t1}.

Assumptions:

• A1 There exist measurable functions f(x, t) and f̃(x, t) such that {ρt; t0 ≤
t ≤ t1} and {ρ̃t; t0 ≤ t ≤ t1} are everywhere positive C1 solutions of

∂ρt

∂t
+∇ · (fρt) = 0,

∂ρ̃t

∂t
+∇ · (f̃ ρ̃t) = 0.



Controlling the Relative Entropy Evolution
(Cont’d)

• A2

For every t ∈ [t0, t1]

lim
|x|→∞

f(x, t)ρ̃t(x) = 0,

lim
|x|→∞

f̃(x, t)ρ̃t(x) = 0,

lim
|x|→∞

f̃(x, t)ρ̃t(x) log
ρ̃t

ρt
(x) = 0.

Lemma 1 Suppose D(ρ̃t||ρt) <∞, ∀t ≥ 0. Assume moreover A1 and A2 above.

Then
d

dt
D(ρ̃t||ρt) =

∫
Rn

[
∇ log

ρ̃t

ρt
· (f̃ − f)

]
ρ̃t dx.



Controlling the Relative Entropy Evolution (Cont’d)

Consider again the controlled evolution

dxu(t) =

(
−
σ2

2kT
∇H(xu(t)) + u(xu(t), t)

)
dt+ σdw.

By Lemma 1 , we have

d

dt
D(ρut ||ρt) =

∫
Rn

(
∇ log

ρut
ρt
· (u−

σ2

2
∇ log

ρut
ρt

)

)
ρut dx.

Suppose ρt ≡ ρ̄ Maxwell-Boltzmann distribution. We get

Theorem 1 Under assumptions A1 and A2,

d

dt
D(ρut ||ρ̄) = −

σ2

2

∫
Rn

‖∇ log
ρut
ρ̄
‖2ρut dx+

∫
Rn

∇ log
ρut
ρ̄
· uρut dx



Applications

• Driving system to desired nonequilibrium steady state

(ex.: cooling for AFM or macroscopic resonant-bar gravitational wave de-

tectors).

• Modifying rate at which ρut tends to ρ̄.

Details in:

M. Pavon and F. Ticozzi,

On entropy production for controlled Markovian evolution, J. Math. Phys., 47,

063301 (2006).
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