Scritto di Fisica Matematica - seconda parte -Corso di Laurea Triennale in Matematica - 21 giugno 2011 sottolineare: [vecchio ordinamento 509] [nuovo ordinamento 270]

Avvertenza: Questo testo va riconsegnato, con cognome e nome sopra scritto, assieme al foglio su cui è svolto il compito, anch'esso con cognome e nome, ordinamento e con il numero 2 messo in evidenza.

• Nel sistema inerziale Oxyz si considerano le due guide circolari:

$$C_1: \qquad x^2 + y^2 = R^2, \quad z = 0$$

 \mathbf{e}

$$C_2: \qquad x^2 + y^2 = R^2, \quad z = R$$

Su C_1 è vincolata senza attrito la particella P_1 di massa m, su C_2 è vincolata senza attrito la particella P_2 di ugual massa m. Si considerino quali parametri Lagrangiani l'angolo orientato θ dal semi-asse positivo x alla semiretta per OP_1 e l'angolo orientato ϕ dalla semiretta per OP_1 alla semiretta per OP_2' , dove P_2' è la proiezione ortogonale di P_2 sul piano Oxy.

Oltre alla gravità $\mathbf{g} = -g\,\hat{z}, \ g > 0$, è tesa una molla di costante elastica H > 0 tra P_1 e P_2 . Inoltre:

su P_1 è attaccata una molla di costante elastica h > 0 e di centro (2R, 0, 0), su P_1 è pure attaccata un'altra molla di costante elastica h > 0 e di centro (0, 2R, 0). Scrivere l'energia cinetica del sistema, mettendo in evidenza la matrice cinetica. Determinare gli equilibri, individuarne uno stabile e lì impostare il problema delle piccole oscillazioni: $0 = \det(\dots)$. A questo punto, ponendo q = m = h = H = R = 1, determinare le frequenze di piccola oscillazione.

- •• (i) Si consideri un corpo rigido libero (cioè, l'unico vincolo sia quello di rigidità), dimostrare che un moto è dinamicamente possibile se e solo se soddisfa le equazioni cardinali.
- (ii) Si considerino le equazioni di Euler del corpo rigido, nel caso del seguente momento risultante delle forze esterne rispetto al baricentro:

$$\underline{N}_{G}^{(ext)} = -k\underline{\omega} \qquad k > 0$$

Usando o il primo metodo o il secondo di Lyapunov (in quest'ultimo caso usare come candidata funzione di Lyapunov l'energia cinetica $T_G(\underline{\omega})$), dimostrare che nello spazio \mathbb{R}^3 ove valutiamo la velocità angolare, $\underline{\omega} = \underline{0}$ è stabile (asintoticamente?)

- Scrivere nome e cognome in stampatello su ogni foglio consegnato.
- Consegnare solo la bella. Cancellare in modo chiaro ogni pezzo che non deve essere valutato.

• (traccia di soluzione)

$$T = \frac{1}{2}mR^{2}[\dot{\theta}^{2} + (\dot{\theta} + \dot{\phi})^{2}]$$
 $a(\theta, \phi) = mR^{2}\begin{pmatrix} 2 & 1\\ 1 & 1 \end{pmatrix}$

$$U(\theta, \phi) = -2hR^{2}(\sin \theta + \cos \theta) - HR^{2}\cos \phi$$

Equilibri: $\sin \phi = 0$: $\phi = 0, \pi$ $\cos \theta = \sin \theta$: $\theta = \pi/4, \pi + \pi/4$

$$\nabla^2 U = \begin{pmatrix} 2hR^2(\sin\theta + \cos\theta) & 0\\ 0 & HR^2\cos\phi \end{pmatrix}$$

 $(\theta_E,\phi_E)=(\pi/4,0)$ è stabile. Per g=m=h=H=R=1:

$$\omega_1 = \sqrt{\sqrt{2} + 1 + \sqrt{3}}$$

$$\omega_2 = \sqrt{\sqrt{2} + 1 - \sqrt{3}}$$

•• (traccia di soluzione)

$$\frac{d}{dt}T_G = \frac{d}{dt}\frac{1}{2}(\mathcal{I}\underline{\omega},\underline{\omega}) = \frac{(\mathcal{I}\underline{\dot{\omega}},\underline{\omega}) + (\mathcal{I}\underline{\omega},\underline{\dot{\omega}})}{2} =_{(\mathcal{I}^T = \mathcal{I})} (\mathcal{I}\underline{\dot{\omega}},\underline{\omega}) =$$
$$= (-\underline{\omega} \wedge \mathcal{I}\underline{\omega} - k\underline{\omega},\underline{\omega}) = -k|\underline{\omega}|^2,$$

 T_G è definita positiva attorno a $\underline{\omega}=0,\,\frac{d}{dt}T_G$ è definita negativa attorno a $\underline{\omega}=0$: asintotica stabilità.