Algebra 2 - February 12, 2013

FIRST NAME AND FAMILY NAME:

MATRICOLA:

Es 1	Es 2	Es 3	Es 4	Es 5	Es 6	Es 7	Tot

- 1. Let H be a subgroup, and N a normal subgroup of the group G. A function $\phi: H \to G/N$ is defined by $\phi(h) = hN$ for each $h \in H$. Prove that
 - (a) ϕ is a group homomorphism;
 - (b) $\phi(H) = HN/N$;
 - (c) $H/H \cap N \cong HN/N$.
- 2. (a) Partition the elements of the symmetric group S_4 in conjugacy classes.
 - (b) Partition the elements of the alternating group A_4 in conjugacy classes.
- 3. Let p be a prime number, and G a finite group.
 - (a) Write the definition: A p-Sylow subgroup of G is...
 - (b) Let N be a normal subgroup of G. Show that, if the order of N is a power of p, then N is contained in every p-Sylow subgroup of G.
- 4. Put $u = \sqrt{5} + i\sqrt{7}$.
 - (a) Prove that u is algebraic over \mathbb{Q} .
 - (b) Is $\mathbb{Q}(u) = \mathbb{Q}(\sqrt{5}, i\sqrt{7})$?
 - (c) Find the minimum polynomial f(x) of u over \mathbb{Q} .
 - (d) Check whether $\mathbb{Q}(u)$ is a splitting field of f(x) over \mathbb{Q} .
- 5. Let $z \in \mathbb{C}$ be a primitive p-th root of 1 (p is a prime). Show that $1 + x + \dots + x^{p-1}$ is the minimum polynomial of z over \mathbb{Q} .
- 6. Put $F = \mathbb{Z}/3\mathbb{Z}$, and $f(x) = x^3 + 2x + 2 \in F[x]$.
 - (a) Show that f(x) is irreducible in F[x].
 - (b) Let α be a root of f(x) in a suitable field extension of F, and let $K = F(\alpha)$. How many are the elements of K?
 - (c) How many the subfields of K?
 - (d) Write $(\alpha^2 + 2)^{-1}$ as a polynomial expression in α with coefficients in F.

- 7. (a) Show that the ring $\mathbb{Z}/(17\cdot 19)\mathbb{Z}$ is isomorphic to $\mathbb{Z}/17\mathbb{Z}\times\mathbb{Z}/19\mathbb{Z}$ (direct product of rings).
 - (b) Consider the equation $x^2 = x$ in $\mathbb{Z}/(17\cdot 19)\mathbb{Z}$. How many solutions does it have?
 - (c) Write explicitly the solutions of that equation.